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GENERALIZED RING STIFFNESS MATRIX FOR 

RING-STIFFENED  SHELLS OF REVOLUTION 

By George E. Weeks  and  Joseph E. Walz 
Langley  Research  Center 

SUMMARY 

A generalized set of nonlinear  boundary  conditions  and  ring  stiffness  coefficients 
are derived  for a shell of revolution  with  an  elastic  ring of arbitrary  cross  section 
attached  to its boundary in  an  arbitrary  manner.  The effects of shear  deformation,  inter- 
nal pressure,  eccentricity,  restraint of warping,  torsion,  out-of-plane  bending,  and  pre- 
stress of the  ring are included  in  the  analysis. The boundary  conditions are applicable  to 
shells  with  an  axisymmetric initial equilibrium  state of s t r e s s  and  deformation  which are 
subject  to  small  asymmetric  deflections away from  the initial state due  to  either  bifurca- 
tion  buckling o r  the addition of an  asymmetric load.  The results  are  presented  in a form . 

which can be easily  introduced  into a computer  program  for shells of revolution. 

INTRODUCTION 

Shells of revolution  with  rings  attached  at  the  boundaries are common structural  
elements  in  aerospace  vehicles. A typical  example is the envelope or  "aeroshell" of a 
spacecraft  designed  for  entry  into a planetary  atmosphere.  The  analysis  and  design of 
such  structural  elements  require a knowledge of the  edge  restraint  or  boundary  conditions 
on the shell  provided by an  elastic  ring of arbitrary  cross  section.  However,  because  the 
stiffness  characteristics of an  arbitrary  r ing are very  complex  and  lead  to  complicated 
boundary  conditions  for  the shell to  which  the  ring is attached,  analytical  procedures  for 
taking  into  account  ring  behavior are usually  based  on  approximate  and  many  times  inad- 
equate  theory. 

At  the  time this study  was  initiated,  the  most  comprehensive  treatment of ring 
boundary  conditions in  the  literature  was  given by Cohen who presented  in  reference 1 the 
boundary  conditions for   an  arbi t rary  shel l  of revolution  with  an elastic ring of arbi t rary 
cross  section  attached  to its boundary.  Effects of prestress,  shear  deformation,  and 
restraint  of warping  in  the  ring were neglected.  Later  in  reference 2, Cohen  included 
some  prestress  effects,  but still, his  analysis is only  applicable to a ring whose shear  
center  and  centroid  coincide,  and  in  addition,  the  normal  to  the  shell at the  point of 



attachment  must  pass  through  the  ring  centroid.  The  present  theory  does  not  have  these 
restrictions  and  has  been  developed  independently of the  theory of reference 1. 

The  purpose of this paper is (1) to  present  the  assumptions  and  theoretical  develop- 
ment of a ring  theory  for  the  nonlinear  boundary  conditions of a general  shell of revolu- 
tion  with  an elastic ring of arbitrary  cross  section  attached  to its boundary, (2) to  present 
the  resulting  equations  (ring  stiffness  coefficients)  in a form which can  be  easily  incorpo- 
rated  into a computer  program  for  shells of revolution,  and (3) to  demonstrate  the  use of 
the  equations  with  selected  results  which show the  influence of ring  flexibility  and  ring 
eccentricity.  The  ring  theory is general  and  includes  shear  deformation,  restraint of 
warping,  out-of-plane  bending,  eccentricity,  internal  pressure,  torsion,  and  axisymmetric 
prestress  of the  r ing.   (For  stress  analysis,   r ing  prestress refers to any initial internal 
load in the ring with no external  load  on  the  shell.  For  stability  analysis,  ring  prestress 
also  includes  internal  loading  in  the  ring  prior  to  buckling  due  to  the  prebuckling  deforma- 
tion of the  shell  from  applied  loads.) 

The  ring  theory is derived on the  basis of the  total  potential  energy of the  ring.  The 
energy of restraint  of warping  and  torsion are included  in  an  approximate  manner  similar 
to  that of straight-beam  theory  whereas  the  energy of bending  and  extension a r e  consid- 
ered  rigorously.  The  results  are  also  applicable, with certain  noted  exceptions,  to  the 
special but important case of a pressurized  r ing of closed  cross  section. 

SYMBOLS 

The  units  used  for  the  physical  quantities  defined  in this paper are given both in  the 
U.S. Customary Units  and  in  the  International  System of Units  (SI) (ref. 3).  Conversion 
factors  pertinent  to  the  present  analysis are presented  in  appendix A. 

A,B,C,D,F functions of displacement  variables (see eqs. (3)) 

Ar  cross-sectional area of ring 

- 
Ar area enclosed by ring of closed  cross  section 

geometrical  expressions  defined by equations  (B3); i = 1,2,3,4,5 

bi  constants  defined by equations (B5) and (C14) which relate ring  variables  to 
shell  variables; i = 1,2,. . .,21 

E Young's  modulus of ring  and  shell 
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e0 circumferential  strain of centroidal axis of ring 

ex,e, thickness-compression  strains at any  point in  ring  cross  section 

eY circumferential  strain at any  point in  ring  cross  section 

Fr 2' 0,Fa  middle-surface stress resultants at shell  boundary  in  cylindrical 
coordinate  system  (see fig. 1) 

G  shear  modulus 

Gij  elements of 4 X 4 stiffness  matrix 

- - 
Gij,A,Gij,B  ring  stiffness  coefficients  defined by equations (El )  and (E2), respectively 

h  thickness of shell wall 

Ix,Iz,Ixz moments  and  product of inertia of ring  cross  section  with  respect  to  ring 
coordinate  system 

J torsional  constant of ring cross section 

li elements of 4 X 1 column  matrix  in  boundary-condition  equation  identified by 
external  loadings 

M,,M, bending  moments in   r ing 

Mv 

"7 

meridional  bending-moment  resultant  in  shell 

nondimensional  meridional  bending-moment  resultant  in  shell, Mt)/qnh2 

N hoop force  in  ring 

N v y Q 7 7  
middle-surface stress resultants  in  shell with respect to intrinsic  coordinate 

system  (see  fig. F1) 
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n Fourier  index 

S 

S 

Smax 

T 

tr7 
Uf 

UP 

U r  

internal  pressure  in  r ing 

geometrical  expressions  defined by equations (D2); i = 1,2,. . .,23 

generalized  forces  defined by equations (Dl); i = 1,2,3,4,5,6 

Fourier  coefficient  in  expansion  for  normal  pressure  on  conical  shell 

constant radial line  loading 

radius of curvature of shell which generates  shell  circumference 

radius of middle  surface of shell at any  point  along  shell  meridian  (see  fig. 1) 

radius of middle  surface of conical  shell at large end 

radius of line of shear  centers  and  line of centroids of ring  cross  section, 
respectively 

GArr: 
shear-stiffness  parameter, - 

2E1, 

meridional  distance  measured  from  large end of conical  shell 

total  meridional  distance of conical  shell 

EAr$ 
extensional-stiffness  parameter, - 

EIX 

nondimensional  meridional  stress  resultant,  Ntyqnro 

potential  energy of external  forces  applied  to  ring 

potential  energy of pressurizing  gas 

total  strain  energy of ring 
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u 1 rU2 ,u3 strain  energy of ring  bending  and  extension,  restraint of warping,  and 
shear,  respectively 

u,v,w axial, circumferential,  and radial displacements,  respectively, of shell 
middle  surface  in  cylindrical  coordinate  system (see fig. 1) 

Ua,va,wa axial, circumferential, radial displacements, respectively, of any 
Point in  r ing section in cylindrical coordinate system 

up ,vp 9Wp axial, circumferential,  and radial displacements,  respectively, of any 
point in  shell  wall  in  cylindrical  coordinate  system (see fig. B2) 

u s  ,vs  ,ws axial, circumferential, and radial displacements,  respectively, of shear 
center of ring  in  cylindrical  coordinate  system  (see  fig. B1) 

u,w meridional  and  normal  displacements,  respectively, of shell  middle  surface 
" 

in  intrinsic  coordinate  system  (see fig. F1) 

W nondimensional  normal  displacement, - 
qnr o 

2 
Eh G(n) 

rl 

X,Y ,Z ring  coordinate  system  (see fig. B1) 

xc  ,z c axial and radial distance,  respectively,  from  ring  shear  center  to  centroid 
(see  fig. B3) 

x,z axial and radial distance,  respectively,  from  ring  shear  center  to  point of 
" 

attachment of ring  to  shell (see fig. B3) 

ZO eccentricity of ring  centroid  normal  to  shell  middle  surface  measured 
positively  along  outward  normal 

%h normal  distance  from  shell  middle  surface  in  intrinsic  coordinate  system  to 
point of attachment of ring  to  shell 

Z 
- 

distance of shell  displacements  up,  vp,  and wp from  shell  middle  surface 

a! angle  which  meridian Line  of shell  makes  with radial direction  (see fig. F1) 

P rotation of ring cross section  about axis of ring  shear  center  (see fig. B1) 
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r warping  constant of straight-beam  theory 

YyXJyz Timoshenko-type  ring  transverse  shear  strains 

6 operator  which  indicates  variation of variable or function 

c. angle of twist of ring  cross  section  with  respect  to its shear  center 

77 meridional  coordinate 

V i  quantities  defined by equations (C3b) to (C3f); i = 1,2,3,4,5 

8 circumferential  coordinate 

[ = C + A '  

$ rotation of shell  appearing  in  equation (B2) 

Subscripts: 

A initial equilibrium state 

B incremental  equilibrium  state 

Superscript: 

( 4  Fourier  coefficient of indicated  variable 

A prime  indicates a derivative with respect to the  circumferential  coordinate 8. 

ANALYSIS 

Statement of the  Problem 

The  most  general  boundary  conditions  for a shell of revolution  supported by some 
generalized  unloaded  elastic  medium at its boundaries  can  be  written  in  the following  con- 
venient  matrix  form (see, for  instance, ref. 1): 
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- 
G1l  G12 G13 G14 

G22  G23 (333 G2][] (334 = 1 
Symmetric (344 
- 

The Gij are  stiffness  coefficients which  define  the  stiffness  characteristics of the  sup- 
porting  medium;  u,  v, w, and @ are  the  middle-surface  shell  variables  and Fa, F6, 
and Fr a r e  stress resultants at the  shell 
boundary  in  the axial, circumferential,  and 
radial directions,  respectively.  The  quan- 
tity MV is the  moment  per  unit  length 
imposed  on  the  shell  boundary by the  elas- 
tic  support which produces a rotation  about 
a tangent  to  the  circumference.  Here, all 
terms  are  referred  to  the  cylindrical  coor- 
dinate  system shown in  figure 1 and  the 
positive  sign  in  equations (1) applies if  the 
ring is connected  to  the  positive  (terminal) 
end of the  shell. 

The  column  vector  with  elements ,$ 
is nonzero if  additional  external  middle- 
surface  forces  on  the  boundary  are  specified. 
The  effects of external  loads on the  ring  itself  are not considered  in  the  present  paper. 
However,  the  method  for  taking  these  effects  into  account is derived  in  detail  in  refer- 
ence 4. 

Figure 1.- Stress resultants,  moment  resultant,  displacements, 
and  rotation of shell at boundary. 

The  basic  problem is to  determine  the  stiffness  coefficients  Gij of an  elastic  r ing 
of arbitrary  cross  section  attached  in an arbitrary  manner  to  the  boundary of an  arbitrary 
shell of revolution so that  the  boundary  conditions  (eqs. (1)) for  such a shell  can  be 
defined.  The  procedure  used  to  determine  the  desired  coefficients will be  based  on  the 
variation of the  total  potential  energy of the  ring. 

Potential  Energy of the  Ring 

To  formulate  the  potential  energy of the  ring,  the  displacements of any  point  in  the 
cross  secuon of the  ring are referred  to  displacements of the  shear  center.  The 



displacements of the  shell  through  the  thickness are then  determined  and the ring dis- 
placements are expressed  in  terms of the  shell  middle-surface  displacements  in  the 
cylindrical  coordinate  system (fig. 1) by requiring  compatibility of displacements  and 
rotations at the  line of attachment of the  ring to the  shell  and by assuming  that  shell dis- 
placements  vary  linearly  through  the  thickness of the  shell.  These  kinematic  relation- 
ships are derived  in  appendix B. The  final  expressions for the  displacements of a general 
point  in  the  ring  cross  section  ua,  va,  and W a  in   terms of the  shell  middle-surface 
displacements  u,  v,  and w; rotation @; and  ring  transverse  shear  strains yyz and 

YYX are 

Ua( 8,z) = B(8) + (. - zc) @(e) 

z -  x - xc 
va(8,x,z) = c(8) - - zc D(8) - - 

rS rS 

where 

and  where rs is the radius of the  line of shear  centers of the  ring  cross  section  and  the 
coefficients  bi a r e  given by equations (B5) in  appendix B. 

The  total  potential  energy is composed of the  internal  strain  energy U r  of the 
ring, the potential  energy Uf of the  forces  acting  on  the  ring,  and,  for  pressurized  rings 
of closed  cross  section,  the  potential  energy UP of the  pressurizing  gas. 

Strain  energy.-  The  strain  energy  for a circular  ring,  including  the  energy of 
bending,  extension,  transverse  shear,  and  the  approximate  energy of torsion  and  restraint 
of warping, is derived  in  appendix C in   t e rms  of the  shell  variables  and  the  ring  trans- 
verse  shear  strains.  The  result is 
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where rc is the  radius of the  line of centroids of the  ring  cross  section,  the  quantities 
eo and vi are given by equations (C3) in  appendix C, and b20 and  b21 are given by 
equations (C 14) in  appendix C. 

Potential  energy of the  external  forces.-  The  potential  energy of the  external 
applied  to  the  ring is 

forces 

(5) 

where Fa, Fe, F,, and Mq are   the   s t ress  and  moment  resultants  in  the  shell which 
a r e  functions of the  deformations of the  shell  and  where 11, 12, 13 ,  and 14 contain  the 
contribution of the  applied  external stress and  moment  resultants at the  shell  boundary. 

Potential  energy of the  pressurizing  gas.-  The  equations  developed up to  this  point 
in  the  analysis  are  applicable  to  rings of both  open  and  closed cross  section. It is also 
useful  to  extend  the  analysis  to  incorporate a pressurized  ring of arbitrary  closed  cross 
section. For such a cross  section,  the  change  in  the  potential  energy of the  pressurizing 
gas  must  be  accounted for in  determining  the  stiffness of the  ring.  The  change  in  the 
potential  energy of the  pressurizing  gas  has  been  derived  in  reference 5 by utilizing  the 
following  assumptions: 

- ~ 
~~~ 

(1) The  pressurized  ring is considered  to  be a membrane  in  that  the  local  bending 
stiffness of the  walls  are  neglected. 

(2) The  internal  pressure  in  the  ring is constant  during  deformation. 

In the  notation of the  present  paper  and  consistent with these  assumptions,  the  potential 
energy of the  pressurizing  gas of the  r ing  in   terms of the  shell  variables  and  ring  trans- 
verse   shear   s t ra ins  is 

where A, B, and  C a r e  given by equations (3). 
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Shell  Boundary  Conditions 

Derivation of general  boundary  conditions.-  The  equilibrium  equations of the  ring 
and  subsequently  the  boundary  conditions of the  shell  can  be  obtained by variation of the 
total  potential  energy of the  ring. From equations  (4), (5), and (6), the result is 

corresponding  to  arbitrary  variations of the  shell  middle-surface  displacements and rota- 
tion 6u, 6v, 6w, and 6@ and arbitrary  variations of the  ring  shear  strains 6yyx and 
6yyz. Equation (7) can  be  rearranged  to  isolate  the  generalized  forces  in  the  ring which 
correspond  to  the  generalized  displacements  u, v, w, @, yyx, and y For equilib- 
rium of the  ring,  equation (7) vanishes  for  arbitrary  virtual  displacements,  leading  to  the 
following  equations  which  must  be  satisfied: 

YZ' 

10 



(". 6Yyz = 0) 

are listed  in  appendix D. The  choi ce of the  plus or  minu .s signs 
in  equations (8) depends on the  origin  chosen  for  the  shell  coordinates.  Equations (8a) 
to  (8d) become  the  general  nonlinear  boundary  conditions of an  arbitrary  shell  of revo- 
lution  with  an  attached  ring  provided  equations (8e) and (8f) are  used  to  eliminate  the 
shear  strains y and y Before  carrying out this  elimination,  however, it is 
appropriate  to  express  equations (8) in a linearized  form. 

YZ F' 

Linearization of the  boundary  conditions.- Many practical  problems of aerospace 
shell  structures  involve  small  asymmetric  deviations away from  an  axisymmetric state 
of equilibrium.  The  ring  boundary  conditions will be  written  herein  in a form  applicable 
to  such  problems  wherein  the  asymmetric  linear  deviation  may  be  due  to  either  bifurca- 
tion  buckling or the  application of an  asymmetric load.  To this  end,  the  stress  and 
moment  resultants Fe, Fr, and ; displacements,  rotation,  and  shear  strains 
(u, v, w, @, yyz); and  external  loads  are  expressed as the  sum of two 
parts;  for  example, 

where  the  term with subscript  A  describes  an initial axisymmetric  equilibrium state 
and  the  term  with  subscript  B is an  incremental  change  in  the  term  away  from  this 
equilibrium  state. 

The  linearized set of boundary  conditions  for  the  incremental  equilibrium  state 
(subscript B) is obtained by substituting  equations  typified by equation (9) into  equa- 
tions (8), subtracting  out  the initial state (subscript A),  and  neglecting  terms  nonlinear 
with  respect  to  subscript  B  variables.  The hoop force,  moments,  and  strain  in  the  ring 
for  the initial and  incremental  states  were  also  obtained  and are listed  in  appendix D. The 
linearized  subscript B variables  are  then  taken  to  vary  harmonically  in  the  circumfer- 
ential  direction  in  the  following  manner.  The  quantities  uB, WB, GB, F,,B, Fr,B, 
M V , ~ ,  2 1 , ~ ,  ZS,~, and Z4,B vary  in a cosine  distribution;  for  example, 

UB = u$)cos ne (10) 

and VB, YyZ,B, Yyx,B)  Fe,B,  and 22 B vary  sinusoidally;  for  example, 



The  boundary-condition  equations  for the incremental state can  then be put in  matrix  form as 

I ~" " " " " " " " " " " -  _ I  """ " _ I " " " "  J """" 

I " " " " L " " " " ' " " " "  
I -I"""" 1"""" 

I""""L""""l""""""""- 

I I 

I _  

:G66,A "66,E 

- - - I  0 

where the E.. and E.. are given in  equations (El) and (E2), respectively,  in  appendix E. The subscripts A 

and B refer to  terms  arising  from the initial and  incremental stress states, respectively. 
11 ,A 13 ,B 

For  special  conditions, these general  coefficients  simplify.  For  example,  for a ring which has no internal 
pressure,  has no restraint of warping, has the shear center and  centroid  coincident,  and is attached at the  centroid 
to the middle  surface of the  shell,  equations (12) reduce  to 



I 

J " " -  " _  I """""""""r"""I-""""""""""-l"""- 

I 

L""" 

I - .  
""" " " _ " " " " " " " " " "  1 

I 

1 ,  
I 

I 

J 

" " _  f 

! 

" " _  " _  
0 

" _  
0 

J 

Symmetric 

: E1zeo,A 

: 'E L 

- - - - - - - - I - - - - - - -  - 1 -  - - - - - -  

Symmetric 



If it is further  assumed  that I,, = 0, equations (13) become, after some  rearrangement, 

I 

I 

-n I 

I I 

I I 

- n2 M,IA I I .2 22 M ",IA I -n 

'3, I '2, I r: 
I 

: ETeo,A 

: '2, " " _  

I 

I 
~""""""""-c"""""""c--""-- 

'C 

r 

I 

"""""""""""""" 

Symmetr ic  

r 
1 0  
I 

I 

I 0 
I 

I 

I I I 
"""""""" 

I -\- I -  - - - - - - - 

Symmetr ic  

I 

: G A , + n 2 >  
E1 

I '2, 



Equations (14) are convenient for  use  in a subsequent  section  to  compare  results  from the present  theory with well- 
known results  in the literature  for in-plane  and out-of-plane ring buckling. 

Final  form of linearized boundary  conditions.- To obtain  the  stiffness  coefficients  for  the  ring  in the form of 

equations (l), the shear strains y(n) and y(n) must be eliminated  from  equations (12). The last two equations 

of equations (12) give 
YZ,B Y O  

where 



Substitution of equations (15) into  the first four  equations of equations (12) leads to the 

desired  stiffness  coefficients  in  the  form of equations (1) where 

r 
+ 

If transverse  shear  strains  in  the  ring  can be  neglected,  equations (17) still define the 
stiffness  coefficients of equations (1) where now 
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The  form of equations (1) is appropriate  for  computer  programs if the  shell  behavior is 
defined in  cylindrical  coordinates.  The  transformation  required  for  shells  defined  in  the 
intrinsic  shell  coordinates is given in  appendix F. 

DISCUSSION OF RESULTS 

Boundary-Condition  Equations 

Equations (1) are the  general  boundary  conditions  for  an  arbitrary  shell of revolu- 
tion  with  an  elastic  ring of general  cross  section rigidly attached at the  shell  boundary. 
These  equations as developed  in  this  paper  can  be  used  for  the  stress  analysis of sym- 
metrically or asymmetrically  loaded  shells with a symmetrically  prestressed  ring 
attached at the  shell  boundary.  The  terms Zi represent  the  external  loads, if any, 
applied at the  shell  boundary. 

When the  equations a r e  applied  to  stability  problems,  the  external  loading on the 
shell  must  be  symmetric so that  the  prebuckling  stresses  and  deformations of both the 
shell  and  the  ring  are  also  symmetric.  (This  restriction, of course,  does not imply that 
the  buckling  deformations  must  be  symmetric.)  The  prestress  terms  in  the  stiffness 
matr ix   are  now obtained  from  the  axisymmetric  prebuckling  solution. Also, for  buckling 
problems,  the 2 i  are  always  zero if the  external  loads  on  the  ring  are  zero. 

A n  exception  to  the  previous  discussion  must be noted  for  the  special  case of the 
pressurized  ring. For the  pressurized  ring,  the  boundary  conditions  given by equa- 
tions (1) a r e  valid  only  for  axisymmetric  stress  analysis  and  symmetric or  asymmetric 
buckling  analysis.  Equations (1) a r e  not  valid  for  asymmetric  stress  analysis of a pres- 
surized  ring  because of the way in which the  internal  pressure  terms  were handled  in  the 
perturbation  procedure. (When nonhomogeneous terms  appear  on  the  right-hand  sides of 
eqs. (8),  eqs. (10) and (11) a r e  not valid  solutions  for  n > 0.) 

Buckling  Solutions  for a Ring 

To  check  the  validity of the  ring  stiffness  coefficients  developed  in this paper, 
selected  ring  buckling  calculations  were  carried  out  for a ring of doubly symmetric  cross 
section  subjected  to a constant radial line  loading 4. Equations (14) a r e   i n  a convenient 
form  to  consider both in-plane  and  out-of-plane  buckling.  The  axisymmetric  prestress 
deformations are obtained  from  equations (14) by setting  n = 0, letting li,B n) = -rcq,  and 
replacing  the  subscript  B  with A so that 

A 
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Yyx,A = J 
The  other two prestress  deformations VA and  uA vanish  from  axisymmetry  and  lack 
of rigid body motion,  respectively.  The  prestress strain, hoop force,  and  moments  may 
be  determined by substitution of equations (18) and (3) into  equations (D4) which yields 

M = O  
z,A J 

Since  in  the  formulation of the  buckling  problem  the  incremental  loads are zero,  the  deter- 
minant of the  coefficients of the  displacements of equations (14) must  equal  zero.  Because 
MZyA is equal  to  zero,  in-plane  buckling  and  out-of-plane  buckling  are  uncoupled. 

In-plane  buckling.-  The  in-plane  buckling  solutions are obtained by setting  the 
determinant of the  coefficients of the  in-plane  variables of equations (14) equal  to  zero. 
A  first-order  approximation  to  the  critical  load is obtained by retaining only the  linear 
terms  in  in  the  expansion  for  the  determinant. For the  lowest  buckling  mode,  n = 2, 
this  expansion  yields zi.: 4 4 

- =  - - 
2 T + 3  2 4 1  1 +-- 1 +-+--- 
S T + 1  S S T + 1  

(20) 
EIX 
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where 

The  critical  load as determined by equation (20) agrees with  the  result  given by 
Ratzersdorfer  (ref. 6) when S - 00. 

Out-of-plane  buckling. - The out-of -plane  buckling  solutions are obtained by setting 
the  determinant of the coefficients of the out-of-plane  variables of equations (14) equal  to 
zero. Again a first-order  approximation  to the critical  load is obtained by retaining  only 
the  linear  terms  in 6 in  the  expansion.  For  the  lowest  buckling  mode,  n = 2, this 
expansion  yields 

4rc 3 9 

where 

f =- 
EIZ i 

L J 

EI, + EI, 
g =  

EIZ J 
When T - 00 and S - 00, equation (22) reduces  to  the  classical  solution  contained i n  
reference 7. 

Application  to  the  Stress  Analysis of a Conical  Shell 

To  illustrate  the  application of the  ring  theory  to a shell  problem,  the  boundary- 
condition  matrices  were  used  to  solve a representative  shell  stress-analysis  problem. 
The  problem  chosen is a conical  shell  subjected  to a normal  pressure  loading  q which 
is constant  along  the  meridian  and  varies  harmonically  around  the  circumference of the 
shell (fig. 2(a)).  Thus, q = qn cos  ne  where qn is a constant.  This  loading is appro- 
priate  because a general  asymmetric  load  on a shell of revolution  can  be  expanded  into a 
series of such  components. 
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The shell is simply  supported  at the small end  (that i s ,  all displacements and the 
meridional  bending-moment  resultant  vanish) and contains a Z-section  ring  rigidly 
attached  at  the  large end.  The properties of the  ring are shown in  figure 2(b). 

h = 0.1 in. (0.254 cm) 

No eccentricity 

- I  r = 20 in. (50.8 cm) 

Positive  eccentricity  Modified  simple  support 

Detail A 

(a) Geometry of conical  shell  with  detail of various  ring  attachment  positions. 

A = 0.92 i n  (5.94 cm ) 
2 2 

I l l  = 0.446 in (18.56 cm 1 4 4 

Iz2 = 0.551 i n  (22.93 cm ) 
4  4 

r 

.188 in. L476 cm) 

T 11 , 1.75 in. I l 2  = -0.392 in (-16.32 cm ) 
4 4 

(4. dA cm) 

I 

I J -0 .012 in   (0 .50cm ) 
4 4 

P”-l r = 0.148 in (39.74 cm ) 
6  6 

2 
E - 30 x lo6 psi (207 GN/m2) 

G = 10 x 106psi (68.9 GNlm 2 I 

(b) Properties of ring. 

Figure 2.- Geometry of conical  shell  and  edge-stiffening  ring. 
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Results  were  obtained  from  the  computer  program of reference 8 for  the  distribu- 
tion of the nondimensional  shell  variables, 

where ro is the  radius of the  middle  surface of the  conical  shell at the  large end. 
Poisson's  ratio  was  taken to be 0.3 in  the  calculations  and  the  shell  and  ring  were  made 
of the  same  material.  The  amplitudes of meridional  moment  resultant,  meridional  stress 
resultant,  and  normal  displacement as functions of distance  from  the  stiffened  edge (up  to 
0.6 of Smm) are shown in  figures 3, 4, and  5  for the Fourier  indices  n = 3 and 8. The 
effects of eccentricity  are  shown  in  the  figures  for  the  ring  centroid  attached  to  the  shell 
(zo = 0) and  for a leg of the  ring  attached  to  the  outside of the  shell (20 = 0.925 inch 
(2.35 cm)). 

8oo h 
600 

400 

200 

0 

zo = 0.925 in. (2.35 cm) 

- LMod i f i ed   s in ipk   suppor t  
- 

-4lm I I I I I I I I  1 1 1 1  

0 . I  . 2  .3 . 4  .5 . 6  
S'smax 

(a) n = 3. 

300 

250 

200 

150 

100 

50 

0 

-50 

-100 

Figure 3.- Nondimensional  meridional  moment  resultant mrl a5 a funct ion of distance  from  stiffened edge of conical   shel l  
wh ich   i s  subjected to  external  pressure, 
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-1.6 
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-2.4 I I I I I I I I I I I J  

0 .1 . 2  .3 . 4  . 5  . 6  

S'smax 

(a) n = 3. 

.8 - 
- 

. 4  - 

- 

zo = 0.925 in. (2.35 cm) 

-1.6 - 

- Modified  simple  support 

- 2 . 0 - 1 1 1 1 1 1 1 1 1 ' 1 '  
0 .1 . 2  .3 . 4  .5 .6 

Slsmax 

(b) n = 8. 

Figure 4.- Nondimensional  meridional  stress  resultant trl as  a  function of distance  from  stiffened edge of conical   shel l  
which  is  subjected t o  external  pressure. 
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Figure 5.- Nondimensional  normal  displacement wrl as  a  function of distance  from  stiffened edge of conical   shel l   which 
is  subjected to external  pressure. 
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Results are also shown in  the  figures  for  the  shell  with  the  same  boundary  condi- 
tions at the  small  end  and  with  boundary  conditions  denoted as "modified simple  support" 
at the  large end. The  modified-simple-support  boundary  conditions are (see fig.  2(a)) as 
follows:  Radial  motion is restrained,  movement  in  the  direction of the axis of the  cone is 
unrestrained,  meridional  moment  vanishes,  and  circumferential  displacement  vanishes. 
These  boundary  conditions  could  be  used to approximate  the  contribution of a stiff ring  to 
shell  behavior. 

Results  were  also  obtained for the  same  ring-stiffened  shell  problems by using  the 
ring  boundary  conditions  contained  in  reference 1. The  calculations  based  on  the  ring 
theory of reference 1 agree with  the  present  calculations  to  within 5 percent  and  conse- 
quently a r e  not  shown in  the  figures.  Further  comparisons of results  obtained  with  the 
two theories are given in  reference 5. 

Plots  for  n = 3 in  figures  3, 4, and 5 show  that  taking  into  account  the  eccentricity 
of the  ring  can  cause  appreciable  changes  in  the  behavior of the  shell. Fting eccentricity, 
however, was not important  for  n = 8. The  results  also show that  the  modified-simple- 
support  boundary  conditions  for  the  shell  are  poor  approximations  to  the  behavior of the 
ring-stiffened  shell.  The  approximation  for stress  resultants  appears to  be  better  than 
that  for  displacements  and  moments. 

CONCLUDING REMARKS 

The  contributions of ring  stiffness  to  the  boundary  conditions  for  asymmetric 
behavior of a prestressed  shell  of revolution  have  been  derived  for  an  elastic  ring of 
arbitrary  cross  section  rigidly  attached  to  the  shell  boundary.  The  ring  behavior  includes 
the effects of shear  deformation,  restraint of warping,  ring  torsion,  out-of-plane  bending, 
internal  pressure,  eccentricity,  and  axisymmetric  prestress.  The  results  for  the  ring 
stiffness  matrix are presented  in a form  that is well suited  for  inclusion  in a computer 
program  for  analysis of shells of revolution.  The  ring  stiffness  effects  are  applied  to  the 
sample  case of a conical  shell  stiffened at one  end by a ring  and  subjected  to  an  asym- 
metric load. The  results show that it is important  to  include  properly  the  ring  effect  and 
ring  eccentricity  in  order to determine  accurately  the  stresses  in  the  shell. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., December 9, 1969. 
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APPENDIX  A 

CONVERSION OF U.S. C U S T O U Y  UNITS TO SI UNITS 

The  International  System of Units (SI) was  adopted  by  the  Eleventh  General  Confer- 
ence  on  Weights and Measures, Paris, 1960 (ref. 3). Factors for converting  the U.S. 
Customary Units used  herein  to  the  International  System of Units are given  in  the  following 
table: 

U.S. Customary 
unit 

Conversion 
Physical  quantity factor SI unit 

(*) (**I 
Area . . . . . . . . . .  

meters6 (m6) 2.685 X 10-10 Warping  constant . . .  , in6 
newtons/metera (N/m2) 6.895 X lo3 psi = lbf/in2 Stress . . . . . . . . .  
meters4 (m4) 4.162 X 10-7  in4 Moment of iner t ia .  . .  
meters  (m) 2.54 X in.  Length. . . . . . . . .  
meters2 (m2) 6.452 X in2 

~~ * Multiply  value  given  in U.S. Customary Unit by conversion  factor  to  obtain  equiv- 
alent  value  in SI Unit. 

** Prefixes to  indicate  multiples of SI Units are as follows: 

Prefix Multiple 

giga (GI 
centi  (c) 10-2 
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APPENDJX B 

DERIVATION OF THE KINEMATIC RELATIONS FOR A CIRCULAR RING 

ATTACHEDTOASHELLOFREVOLUTION 

The  kinematic  relations are derived  for a circular  ring of arbitrary  cross  section 
undergoing  shear  deformations  and  rigidly  attached  to  the  surface of a shell of revolution. 
These  relations are then  expressed  in  terms of the  middle-surface  shell  displacements 
and  rotation  in a cylindrical  coordinate  system by requiring  compatibility of the  ring  and 
shell at the point of attachment. (A more  detailed  analysis  may  be found in  ref. 5.) 

Displacements of a Point  in  the  Cross  Section of a Circular  Ring 

The  coordinate  system  to  be  used  for  the  ring (fig. B1) is as follows: a coordinate 
x normal  to  the  plane of the  ring, a coordinate  y  along  the  shear-center axis of the 
ring so that  y = rsO, and a coordinate  z  measured  radially  inward  from  the  shear  cen- 
ter. The  subscript s refers  to  the  shear  center.  The  dispiacement  vector at any  point 
in  the  ring is made up of the  displacement 
components  ua, V a ,  and W a  in  the  direc- 
tions x, y,  and z,  respectively.  The 
rotation p is assumed  to  be  positive  clock- 
wise  about  the y-axis through  the  shear  cen- 
ters .  (The  positive  rotation  vector is tangent 
to  the  ring  circumference  in  the  plane of the 
ring  and  in  the  direction of increasing 0.) 
In  defining p, the  thickness-compression 

Axis  of shear  centers 

Figure B1.- Ring  coordinate system. 

strains ex and e, are  assumed  to be zero so that  the  projection of the  deformed  ring 
cross  section  into  the  xz-plane  remains  invariant  during  deformation. Note that this 
assumption  does not preclude a warping  displacement  normal  to  the  xz-plane.  Consistent 
with this assumption,  the  shear  strain ex, is taken  to  be  zero  throughout this analysis. 

The  displacements U a ,  va, and W a  for  moderately  small  rotations are, to first 
order,  

ua(z,e) = us(@ + zp(e) (B 14 
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APPENDIX B - Continued 

where  the last two t e rms  for va in  equation  (Blb) are the  effects of transverse  shear 
deformations of the  ring.  (See  ref. 5.) Note  that  equations  (Bl)  do  not  include a contri- 
bution  from  warping of the  cross  section.  This  contribution is considered  separately  in 
appendix C. 

For a thin  shell,  the  displacements  in a cylindrical  coordinate  system (fig. B2) are 

U 

I Detail A 

Figure B2.- Cylindrical  coordinate  system  for  arbitrary 
shel l  of revolution. 

where 

a1 = -Re 
1 a3 = -a1 

a4 = ra2 

a5 = -ra1 

and r is the  radius of the  shell  middle  surface  and  Re is the  radius of curvature 
which generates  the  shell  circumference.  Here, up, vp,  and wp are  shell  displace- 
ments  in  the axial, circumferential,  and  radial  directions,  respectively, at a distance 
from  the  shell  middle  surface,  and u, v,  and w are the  corresponding  displacements 
at the  middle  surface. 

Compatibility of Ring  and  Shell  Displacements at the  Shell Boundary 

The  ring  displacements  given by equations  (Bl) a r e  now expressed  in  terms of the 
shell  variables  given by equations (B2) by requiring  the  displacements and rotation of the 
ring  and  shell  to  be  the  same at the  point of attachment.  (See fig. B3.) The  line of attach- 
ment of the  ring  to  the  shell is at q = Constant.  Therefore, at the point of attachment, 
the  following  conditions  must be satisfied: 

ua(e,z) = 

1 
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APPENDIX B - Continued 
1 

I"---- r s - 1  

I 

1 %  / I /  h /  

' / \ Shell  middle  surface 

Figure 83.- Geometry  of  attachment of r i n g  to shell.  (Ring  is  attached to shell at  ? = Zsh = h/2.1 

Here Zsh is the  distance  measured  normal  from  the  shell  middle  surface  to  the point of 
attachment,  and j ;  and are the axial and radial distances  from the shear  center of 
the  ring  to  the point of attachment. By means of equations (B2) and  (B4),  the  displace- 
ments at any  point in  the  ring  cross  section  ua, V a ,  and W a  can  be  expressed  in  terms 
of the shell  variables  and  ring  shear  strains. By grouping in  powers of x - xc and 
z - zc, the  result is as given by equations (2) and (3) in  the body of the  paper  where 

r C  b3 =- rs - Z (1 -k a3zsh) 



. . - . . . .. . 

APPENDIX B - Concluded 

1 b12 =-  
rS 

b13 = 0 

b14 = 0 

rc - b15 =- 
rs - z 

- z - z c  

b17 = - X - XC r c  - 
rs - z - 

In equations  (B5), xc and zc are   the axial and radial distances,  respectively,  from  the 
shear  center  to  the  centroid of the  ring,  and rc is the  radius  to  the  centroid (fig. B3). 
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The  nonlinear  strain-displacement  relation  for  the  circumferential  strain at any 
point in  the r ing  in   terms of the  ring  displacements  (ref. 9) is, in  the  notation of the  pres- 
ent  paper, 

ey=-( 1 - ) + 
rs - z va  wa 2 1 i . 8  + pa +.&)I 

2(rs " 2) 

By substituting  equations (2) into  equation  (Cl),  the  circumferential  strain of the 
ring is expressed  in  terms of the  shell  variables  and  ring  shear  strains. If higher  than 
second-order  terms  in z and x a r e  neglected,  the  result is 

where - 

- 
E 

774 =- 
2rg 
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APPENDIX C - Continued 

and  where 

F = C ' - A  'i 

- 
A = (B')2 + (C + A')2 

- 
B = 2B'4' - 2 "(C + A') D 

rS 

- 
C = -2(C + A') 

- 
D = (4') - 2 + D 2  

In  equations (C4) the  variables A, B, C,  D,  and F are given  by  equations (3). 

The  strain  energy  for  bending  and  extension of the  ring  due  to  the  circumferential 
strain  ey is 

eydV = E lv eydArEc 2 - (Z - zCld0 

where V is the  volume of ring  material.  Equation (C5) is expressed  in  terms of the 
shell  variables by using  equation (C2). Integration  over  the  cross  section of the  ring 
yields 
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APPENDIX  C - Continued 

where  use has been  made of the  following  standard  definitions of moments of inertia  and 
area: 

Equation (C6) can be expressed  in  terms of the ring hoop force and  moments. First, 
7 

Mx =I Eey@ - 

Mz = 1 Eey(x - 

Ar 

Ar 

where N is the  ring hoop force  and Mx and MZ are  the  r ing bending  moments  about 
the x- and  z-axes,  respectively.  Then,  equations (C8) are  integrated by substitution of 
equation (C2) into  equations (C8) and by making  use of equations (C7). The  result is 

N = E ( Are0 + 1 x ~ 3  + 1 z ~ 4  + 

Mx = q x v 1  + IXZV2) 
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APPENDIX C - Continued 

Finally,  equations (C9) can be incorporated  into  equation (C6) to give  the  strain  energy 
of the ring  resulting  from  extension  and  bending as 

(C 10) 

The first two te rms  of the  integral  in  equation (C10) represent  the  energy  associated  with 
stretching of the  ring  centroid  line,  the last two terms  represent  the  energy  associated 
with  the  in-plane  and  out-of-plane  bending,  and  the third term  represents  a coupling of 
the  bending  and  extensional  behavior  caused by ring  curvature. 

Strain  Energy of Restraint of Warping 

A rigorous  development  for  the  strain  energy of restraint  of warping would require 
a knowledge of the  distribution of the  warping  displacements  over  the  cross  section of the 
ring  and would constitute  an  extremely  detailed  and  complicated  analysis.  Since  restraint 
of warping is not a primary effect in  ring  behavior, a first approximation  to  restraint of 
warping  was  felt  to  be  adequate  for  defining  shell  boundary  conditions.  This first approx- 
imation of the  strain  energy of restraint  of warping is in  the  same  form as that  for a 
straight  beam  (ref. 7); namely, 

(C 11) 

where ( is the  twist of the  ring with respect  to  the  shear  center  and I' is the  warping 
constant of straight-beam  theory.  Values of r for  cross  sections of various  shapes  can 
be found in  numerous  structural handbooks. It might  be  noted  that  reference 10 also 
obtained  the  expression  for  strain  energy of restraint  of warping of a ring by making  cer- 
tain  simplifying  assumptions  on  ring  behavior. 

The twist of the  ring (ref. 7) is expressed  in  the  notation of the present  paper by 

which is expressed  in  terms of the  shell  variables by use of equations (2), (3), (B4), 
and (B5). The  result is 
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APPENDIX C - Continued 

where 
7 

b20 =-  1 - bg) 

Substituting  equation (C 13) into  equation (C 11) gives  the  strain  energy of restraint  of 
warping  in  terms of the  shell  variables;  namely, 

Strain  Energy of Shear 

In  this analysis, the  strain  energy of shear is 

where V is the  volume of ring  material. It is convenient  to  integrate  equation (C16) by 
separating  the  total  shear  strains  into two par ts  - one  part  due  to  bending  which is a 
function  only of 8 and  another  part  due  to  torsion  which is a function of 8, x, and z. 
The  result is 

eyz = -Yyz(e) +Yyz(~,x,z) 

eyx = -Yyx(8) + 7yx(e,x,z) 
(C 17) 

where  the  y  and  y are the  shear  terms  resulting  from  bending  (the  same as those 
used  in  eqs.  (Bl))  and  the 7 and 7 a r e  the  remaining  shear  terms  resulting  from 
torsion. By substitution of equations (C 17) into  equation  (C16),  the strain  energy of shear 
becomes 

YZ Yx 
YZ YX 

where  V is the  volume of ring  material.  The first integral on the  right-hand  side of 
equation (C18) represents  the  strain  energy  due  to  bending  whereas  the  second  integral 
represents the strain  energy  due  to  torsion  plus a coupling of torsional  and  bending  shear. 
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APPENDIX C - Concluded 

Clearly,  these  coupling  terms are zero if  the torsional  strains are zero.  Hence, if the 
coupling  effect is neglected, the last integral  reduces to the strain  energy of pure  torsion. 
As i n  the case of restraint  of warping, a rigorous  development of this part  of the s t ra in  
energy would necessitate a detailed study  in  itself. It is felt that this detailed study would 
not add materially  to the results of the analysis  and,  consequently,  the  following  simpli- 
fied  expression,  similar  to that used  in  straight-beam  theory (ref. 7), is used  for  the 
strain  energy of torsion: 

- 
'torsion  2 rc --- GJ rs 12' C2rc d8 

so that the  total  strain  energy of shear now becomes 

where J is the torsional  constant of straight-beam  theory. 

In  summary,  the  total  strain  energy  for a ring of arbitrary  cross  section  rigidly 
attached  to a shell of revolution is given by the sum of equations (C lo),  (C 15), and (C20). 
The  result is given by equation (4) in  the body of the paper. 
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APPENDIX D 

LIST OF FUNCTIONS 

The following is a partial list of functions which are referred to in  the  main body  of the  paper  and are included 
for  completeness: 

b 

AEIxzeO - .PA, 2 5 - b3 

rC rC 

" 





where 

b5 - 1 

and 

P2 = b l  + b7 

P3 = 0 

P4 = 434 

b5  - 1 
r C  

P5 =- 

1 
P7 = -  

r C  

APPENDIX  D - Continued 

XC 
p10 = rc1"s 

5 = C  +A'  7 

b17 - 2xc 
p23 = rc 

The  terms  bl,b2,. . .,b21 a r e  given  by  equations (B5) and (C14); the t e rms  A, B, C, 
D, and F a r e  given  by  equations (3). 
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APPENDIX D - Continued 

The  strain, hoop force,  and  moments  in  the  ring  for  the initial equilibrium state are 

AA eo,A = -- 
r C  1 

The hoop force and  moments  in the ring  for  the  incremental  equilibrium  state are 

where  the Ki a r e  given by 
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APPENDIX D - Concluded 

K 1 = -  EA' b3 
' C  

Kg = 0 

EIX 

'C 

K15 = -- 
2 rs 

K17 = 0 

EIxz K23 = -- 'S 
r: 



APPENDIX E 

COEFFICIENTS OF RING STIFFNESS MATRIX 

A listing is provided of the coefficients for the  ring  stiffness  matrix which appears  in  equations (12). The 
coefficients which are a function of the initial state A are 

E1xeo,A[, ) 2E1xzeo,A  E1zeo,A b10 + - + 1 +  x c +  
rzri 2 2  

rC rCrS J 
r c - 7 

+ + b7 + rcb8) + b2 - + b7 + rcb8 + xc(bg - lg e 
jblOrs - ‘cbllb15) - % , A x  b15 + EIxeo,A xc + EIxzeo,A 

c s  e r: - 

t E1zeo9A(bg - 
l)} 

(Eld) 2 
rCrS 



- 
G16,A = n 'NA - + Mx9A (bloxc - rcbllb17) + Mz,A tZ b17 + bl$ + E1xeo,A  2  2E1xzeo,A E1~eo,A 

r~ C C c s  c s  r2   r3  xc + xc + 
r3r  r r  r2r  c s  



r 1 

(bl + b7)2 + " Mx,Akbl 
+ + b7)(b1 + b7 + 2rcb$ b2 2 - -  + 2MZ,A(bg - l)(bl + b7) 

- ( 2 
rC rC 

2 
r C  

+ + b, + 2rcb8) + rcbg 2 - 2b2 + 
C OtA(bg - l)(bl + b7 + r,b8) 

+ 
'2c 

(bl + b7)b15 + M:jA[rs(bl + b7) + rcb8bld + MzyA b15(bg - 1) - E1 x e 'jA r,(bl + b7 + rcbg) 

C '2c 
7 

- r,(bg - l$) 
rz 



- 

2 
b15 b15(-rs + rcb16) + E%eo,A rs 2 

G55,A = NA 2 + 

rc  rc 
3 

r C  

Mz,Ab15 + E%eo,A Ekzeo,A 
17 + 'cb15b19) - 

'2c r4 C r: 
xcrs  + rS 

2 - b17 + Mx,A  2Mz,Ab17 + E&eo,A 2 
G66,A = NA" r$ rz b17(-b17 - - xc - 2E'~e~9~(b17 - xc) + E1zeo,A 

'2c r2 rz r: U. 

The  prestress  quantities  appearing  in  equations  (El) are defined in equations (D4) and  the  constants bi a r e  defined 
in equations (B5) and (C14). 

The  coefficients which a r e  a function of the incremental  state B are: 



r -l 

I" 1 

/ \ 

G 
8 

(E2d) 

R 
M 
I 



(E2i) 



b 



. . .. 
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b15b17 + - rSxC '2 



APPENDIX F 

FORMULATION OF BOUNDARY  CONDITIONS IN INTRINSIC COORDINATE SYSTEM 

The  boundary  conditions  given by equations (1) are expressed  in a cylindrical 
coordinate  system  and  the  shell  variables are also  in  that  coordinate  system.  However, 
the  boundary  conditions are usually  difficult to use  in this form  in  connection with shell 
programs  that  utilize  normal and tangential  displacements as variables. A more con- 
venient  form is to  express  these  boundary  conditions  in  the  cylindrical  coordinate  system 
in   t e rms  of the  shell  variables  in  the  intrinsic  coordinate  system. 

From figure F1, it is noted that the stress resultants  and  middle-surface  displace- 
ments  in  the  cylindrical  coordinate  system are related  to  those  in  the  intrinsic  coordinate 

i 
li I I 

I 
I 

/ Shell meridian 1 '  Shell meridian 

( a )  Cylindrical  coordinate  system. ( b )  Intr insic  cocrdinate  system. 

Figure F1.- Displacements  and  stress  resultants in   cy l indr ica l  
and  intr insic  coordinate systems. 

system by the  following  equations: 

Fa = -Qq COS CY + Nq sin CY 

Fr = Nq COS (Y + Qq sin (Y 

u = u" s in  QI - G cos (Y 

w = G sin cy + G cos cy 

The  circumferential  displacement and rotation, as well as the  stress  and  moment  resul- 
tants Fo and Mq, are the same  in both  coordinate  systems. 
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By perturbing  equations (Fl), by subtracting  out  the initial equilibrium state (subscript A), and in addition by 
defining 

the boundary  conditions in  the  cylindrical  coordinate  system  in  terms of the  shell  variables  in  the  intrinsic  coordi- 
nate  system  can be written as 

r 

f 

G41 sin cy + G43 cos cy : G42 : -G41 cos cy + G43 sin a! 
I I 

In some  instances, it may be advantageous  to express  the boundary  conditions in  the  intrinsic  coordinate  sys- 
tem and in  terms of the  shell  variables  in  that  intrinsic  coordinate  system. By eliminating the coupling terms  in  the 
coefficient of the  force  vector  in  equations (F3), the following new form  for  the boundary  conditions is obtained: 

lh 
(0 



Symmetric 

- 
G11 sin2a + 2G13 sin a cos a + G33 cos2,\ G12 sin a + G32 cos a:  (-Gll + G33) sin a cos a + G13(sin2a - cos2a): G14 s in a + 

G22 cos a + a 3  sin (2 G24 

G44 
- 
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