
#### SCSi Telescopes, SBIR Updates Government Mirror Technology Days

Sept 18-20, 2006



Be Substitution Phase II





Methods of Attachment Phase I

#### McCarter Machine Inc. Woman-owned Small Business

2002 - SBA Award of Excellence 2006 - Deer Park Texas Business of the Year

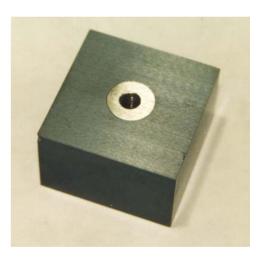


# Acknowledgements

Presented by Roger Paquin, Materials Stabilization Scientist (Co-authored by Douglas R McCarter)

- Be Substitute for GMD (Be-Sub II)
- COR: Dr. Doug Deason USASMC
- SBIR Phase II
- Manufacturing SCSi Test Samples & Telescope

- Methods of Attachments (MoA)
- COR: Mr Mark Pickens USASMC
- SBIR Phase I
- Bonding Techniques for Si/Metals


#### Special Thanks to Walt Wrigglesworth, Jim Dolan, Chris Theriault and Tony Lee at RMS

#### Leveraging McCarter's Cryostable Lightweight Silicon Technology for Larger and More Complex Silicon Components

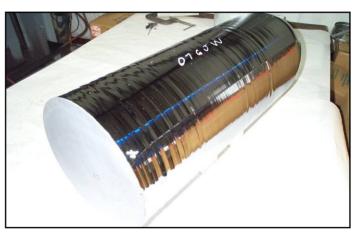
#### • Why Silicon?

- Excellent Polishability
- Excellent Quality Control of Material
- Low Coefficient of Thermal Expansion
- High Thermal Conductivity
- Low Density
- Moderately High Modulus of Elasticity
- Why Glass Frit Bonding?
  - Allows Scale-up to Larger Components than Existing Monolithic Material Technology
  - Allows Assembly of Efficient Configurations
  - Verified Suitability for Silicon to LN<sub>2</sub> Temperature
  - Implemented in an Air Atmospheric Furnace

Mirror Tech Days 2006



## 300 mm Diameter Zero-Defect Silicon Ingots




300mm Crystal Puller at St. Peters, MO Site





300mm diameter Silicon Crystal



MEMC Supplied Boule to McCarter with Both Ends Cropped

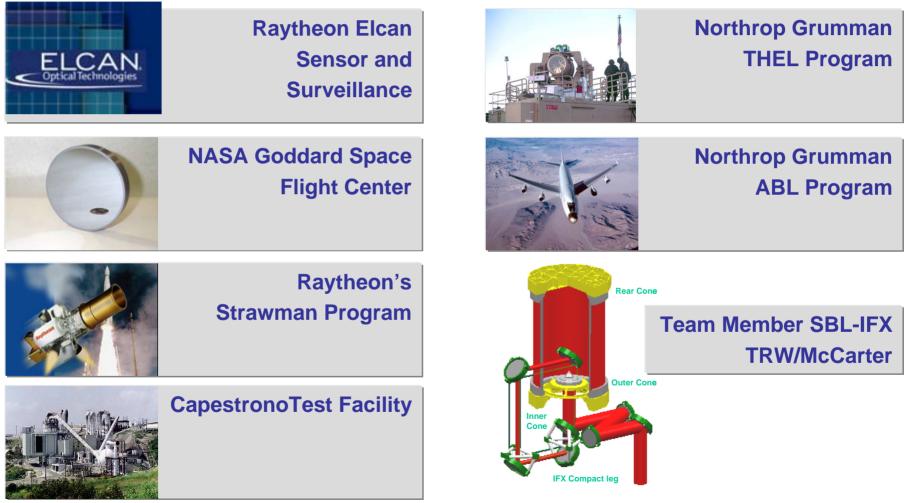
### Producibility McCarter Superfinish





Allows near net shaping

Awarded US Patent 6,443,817 for Superfinishing Method


- Improved Surface finish lowers optical lapping cost and reduces schedule
- An integral part of frit bonding

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 06-MDA-1875 913 sep 06)

### SCSi Mirrors Manufactured by McCarter



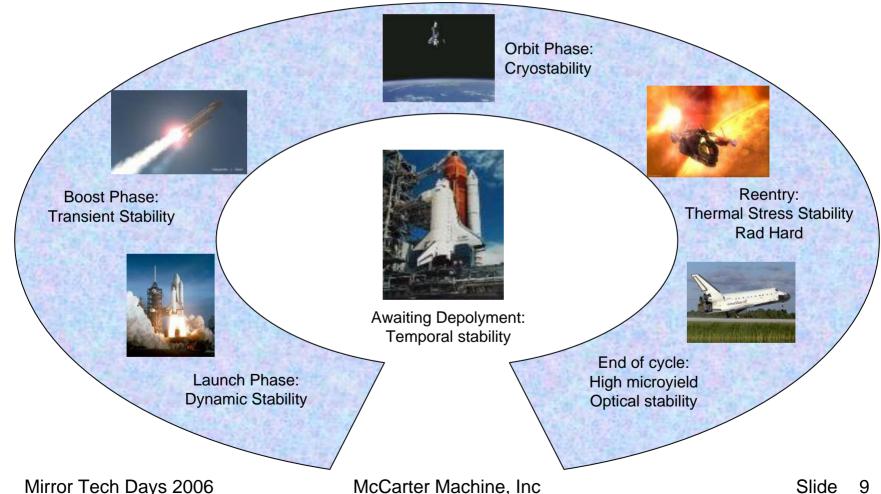
### Programs Using Our Unique Approach



Mirror Tech Days 2006

## SCSi Material Properties versus Beryllium

#### **Selected Room Temperature Material Properties**


| Reference: R.A. Paquin, "material for Mirror Systems: An Overview", SPIE<br>Proceedings Vol 23543, p2-11, July 1995. |                                            |                                         |                                                                |                                                           |                                               |                                                                            | Distortion<br>Coefficient               |                                                  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| Preferred                                                                                                            | Density<br>ρ<br>g/cm <sup>3</sup><br>Small | Young's<br>Modulus<br>E<br>Gpa<br>Large | Specific<br>Stiffness<br>E/p<br>Gpa/g/cm <sup>3</sup><br>Large | Thermal<br>Expansion<br>α<br>10 <sup>-6</sup> /K<br>Small | Thermal<br>Conductivity<br>k<br>W/mK<br>Large | Thermal<br>Diffusivity<br>D<br>10 <sup>-6</sup> m <sup>2</sup> /s<br>Large | Steady<br>State<br>α/k<br>μm/W<br>Small | Transient<br>α/D<br>s/m <sup>2</sup> -k<br>Small |
| Berylliuml-70                                                                                                        | 1.85                                       | 303                                     | 163.78                                                         | 11.4                                                      | 216                                           | 57.2                                                                       | 0.05                                    | 0.20                                             |
| Silicon                                                                                                              | 2.33                                       | 131                                     | 56.2                                                           | 2.6                                                       | 156                                           | 89.2                                                                       | 0.02                                    | 0.03                                             |

#### SCSi as a Beryllium replacement optic

- Will increase thermal and transient stability
- Does not creep or jitter
- Will improve cost and schedule

Mirror Tech Days 2006

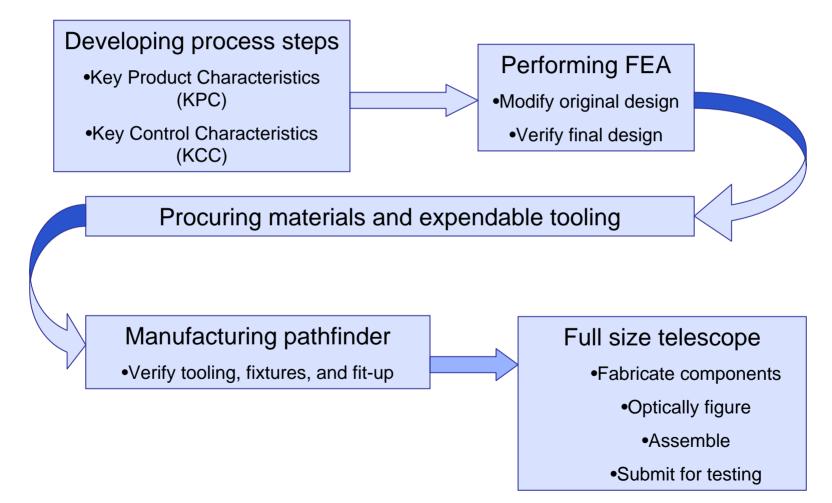




# Be-Sub II Program

- Significance of Problem:
  - Cost/schedule reduction
  - Eliminate health liabilities
  - Improve stability/performance
- Program Plan




- Testing manufacturing processes to optimize cost:performance
- Fabricate 5-inch prototype telescope for performance evaluation

# **Be-Sub II Testing/Samples**

- Testing manufacturing process effects on SCSi for thermal & dimensional stability and strength
- Testing dimensional stability of mirror surface from effects of fritted inserts



# **Be-Sub II Telescope Status**



### MoA Program Methods of Attachment

- Significance of the Problem:
  - Provide methods of attaching Si to metals
  - Minimize stress concentration & risk
  - Minimize complexity to control cost
- Program Plan
  - Evaluate 4 bonding techniques
    - Glass frit, solder, thin film, hybrid
  - Develop minimum contact designs
    - 4 bond pad configurations

# MoA Status

- Researching literature (public/private)
- Established test plan
  - FEA of metal insert design




- Solid Works modeling of test assemblies
- Procured materials
- Fabricating samples for testing
- Evaluating sealability & joint strength
- Testing as funds permit

Mirror Tech Days 2006

## Future Possibilities Using Single Crystal Silicon

Lightweight Mirrors Optical Benches Cooled Mirrors > Cornercubes Substructures Housings and Shields Mechanical Apparatus Metal/Silicon Assemblies Spacecraft Instrumentation

