

HE LEADER IN ENVIRONMENTAL TESTING

October 11, 2007

David G. Coles Coles Environmental 750 S. Rosemont Rd. West Linn, OR 97068

RE: Harbor Tank 23

Enclosed are the results of analyses for samples received by the laboratory on 08/17/07 12:38. The following list is a summary of the Work Orders contained in this report, generated on 10/11/07 08:06.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
PQH0767	Harbor Tank 23	P7176.1

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Q-1	PQH0767-01	Soil	08/16/07 14:50	08/17/07 12:38
Q-2	PQH0767-02	Soil	08/16/07 13:30	08/17/07 12:38
Q-3	PQH0767-03	Soil	08/16/07 11:25	08/17/07 12:38
Q-4	PQH0767-04	Soil	08/16/07 16:15	08/17/07 12:38
Q-5	PQH0767-05	Soil	08/16/07 14:00	08/17/07 12:38
Field Rinsate	PQH0767-06	Water	08/16/07 13:45	08/17/07 12:38
Trip Blank	PQH0767-07	Water	08/16/07 00:00	08/17/07 12:38

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Hydrocarbon Identification per NW-TPH Methodology

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Note
PQH0767-01 (Q-1)		So	il		Samp	led: 08	8/16/07 14:5	50		
Gasoline Range Hydrocarbons	NWTPH HCID	DET		14.7	mg/kg wet	1x	7081079	08/23/07 14:30	08/23/07 19:59	
Diesel Range Hydrocarbons	"	DET		36.7	"	"	"	"	"	
Heavy Oil Range Hydrocarbons	"	DET		73.4	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadeco	ane		NR		50 - 150 %	"			"	Z 9
PQH0767-02 (Q-2)		So	il		Samp	led: 08	8/16/07 13:3	30		
Gasoline Range Hydrocarbons	NWTPH HCID	DET		19.8	mg/kg wet	1x	7081079	08/23/07 14:30	08/23/07 20:29	
Diesel Range Hydrocarbons	"	DET		49.6	"	"	"	"	"	
Heavy Oil Range Hydrocarbons	"	DET		99.1	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadeco	ane		NR		50 - 150 %	"			"	Z 9
PQH0767-03 (Q-3)		So	il		Samp	led: 08	8/16/07 11:2	25		
Gasoline Range Hydrocarbons	NWTPH HCID	DET		17.9	mg/kg wet	1x	7081079	08/23/07 14:30		
Diesel Range Hydrocarbons	"	DET		44.8	"	"	"	"	"	
Heavy Oil Range Hydrocarbons	"	DET		89.7	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadeco	ane		NR		50 - 150 %	"			"	Z 9
PQH0767-04 (Q-4)		So	il		Samp	led: 08	B/16/07 16:1	15		
Gasoline Range Hydrocarbons	NWTPH HCID	DET		18.1	mg/kg wet	1x	7081079	08/23/07 14:30	08/23/07 21:30	
Diesel Range Hydrocarbons	"	DET		45.3	"	"	"	"	"	
Heavy Oil Range Hydrocarbons	"	DET		90.6	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadeco	ane		NR		50 - 150 %	"			"	Z 9
PQH0767-05 (Q-5)		So	il		Samp	led: 08	3/16/07 14:0	00		
Gasoline Range Hydrocarbons	NWTPH HCID	DET		16.4	mg/kg wet	1x	7081079	08/23/07 14:30	08/23/07 22:00	
Diesel Range Hydrocarbons	"	DET		41.1	"	"	"	"	"	
Heavy Oil Range Hydrocarbons	"	DET		82.1	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadeco	ane		NR		50 - 150 %	"			"	Z 9
PQH0767-06 (Field Rinsate	e)	W	ater		Samp	led: 08	8/16/07 13:4	15		
Gasoline Range Hydrocarbons	NWTPH HCID	ND		0.236	mg/l	1x	7081100	08/23/07 14:00	08/23/07 23:59	
Diesel Range Hydrocarbons	"	ND		0.594	"	"	"	"	"	
Heavy Oil Range Hydrocarbons	"	ND		0.594	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadeco	ane		92.5%		50 - 150 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Gasoline Hydrocarbons per NW TPH-Gx Method TestAmerica - Portland, OR

	16	Stamence	ı - 1 OI ti	anu, OK						
Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed		Notes
	So	il		Samp	led: 08	3/16/07 14:5	50			
NW TPH-Gx	22500		3330	mg/kg wet	10x	7081533	08/31/07 11:26	09/05/07 13:17		Н
		128%		50 - 150 %	"			"	ZX	
	So	il		Samp	led: 08	3/16/07 13:3	30			
NW TPH-Gx	21600		1450	mg/kg wet	4x	7081533	08/31/07 11:26	09/05/07 13:45		Н
		124%		50 - 150 %	"			"	ZX	
	So	il		Samp	led: 08	3/16/07 11:2	25			
NW TPH-Gx	20700		364	mg/kg wet	1x	7081533	08/31/07 11:26	09/01/07 19:11		Н
		122%		50 - 150 %	"			"	Н	
				50 - 150 %	"			"	H	
	So	il		Samp	led: 08	3/16/07 16:1	15			
NW TPH-Gx	17100		400	mg/kg wet	1x	7081533	08/31/07 11:26	09/01/07 19:39		Н
		107%		50 - 150 %	"			"	Н	
				50 - 150 %	"			"	H	
	So	il		Samp	led: 08	3/16/07 <u>1</u> 4:0	00			
NW TPH-Gx	17800		1450	mg/kg wet	4x	7081533	08/31/07 11:26	09/05/07 15:29		Н
		91.6%		50 - 150 %	"			"	ZX	
	NW TPH-Gx NW TPH-Gx NW TPH-Gx	Method Result SO NW TPH-Gx SO NW TPH-Gx 21600 SO NW TPH-Gx 20700 SO NW TPH-Gx 17100	Method Result MDL* Soil 128% Soil NW TPH-Gx 21600 124% Soil NW TPH-Gx 17100 107% 17800	Method Result MDL* MRL Soil NW TPH-Gx 22500 3330 Soil NW TPH-Gx 21600 1450 Soil NW TPH-Gx 17100 400 107% Soil NW TPH-Gx 17800 1450	Soil Samp NW TPH-Gx 22500 3330 mg/kg wet Soil Samp NW TPH-Gx 21600 1450 mg/kg wet Soil Samp NW TPH-Gx 20700 364 mg/kg wet 122% 50 - 150 % 50 - 150 % 50 - 150 % 50 - 150 % 50 - 150 % 50 - 150 % 50 - 150 % 50 - 150 % Soil Samp NW TPH-Gx 17800 1450 mg/kg wet	Method Result MDL* MRL Units Dil Soil Sampled: 08 NW TPH-Gx 22500 3330 mg/kg wet 10x Soil Sampled: 08 NW TPH-Gx 21600 1450 mg/kg wet 4x Soil Sampled: 08 NW TPH-Gx 20700 364 mg/kg wet 1x Soil Sampled: 08 NW TPH-Gx 17100 400 mg/kg wet 1x Soil Sampled: 08 NW TPH-Gx 17800 1450 mg/kg wet 4x	Method Result MDL* MRL Units Dil Batch Soil Sampled: 08/16/07 14:533 NW TPH-Gx 22500 3330 mg/kg wet 10x 7081533 Soil Sampled: 08/16/07 13:3 NW TPH-Gx 21600 364 mg/kg wet 4x 7081533 Soil Sampled: 08/16/07 11:2 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 Soil Sampled: 08/16/07 16:1 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 Soil Sampled: 08/16/07 14:0 Sampled: 08/16/07 14:0 NW TPH-Gx 17800 1450 mg/kg wet 4x 7081533	Method Result MDL* MRL Units Dil Batch Prepared Soil Sampled: 08/16/07 14:50 NW TPH-Gx 22500 3330 mg/kg wet 10x 7081533 08/31/07 11:26 Soil Sampled: 08/16/07 13:30 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 Soil Sampled: 08/16/07 11:25 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 Soil Sampled: 08/16/07 16:15 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 Soil Sampled: 08/16/07 16:15 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 Soil Sampled: 08/16/07 16:15 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 Soil Sampled: 08/16/07 16:15 NW TPH-Gx 17800 <t< td=""><td>Method Result MDL* MRL Units Dil Batch Prepared Analyzed NW TPH-Gx 22500 3330 mg/kg wet 10x 7081533 08/31/07 11:26 09/05/07 13:17 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:39 50-150 % " " 50-150 % " " " " NW TPH-Gx 178</td><td>Method Result MDL* MRL Units Dil Batch Prepared Analyzed NW TPH-Gx 22500 3330 mg/kg wet 10x 7081533 08/31/07 11:26 09/05/07 13:17 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:39 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:39</td></t<>	Method Result MDL* MRL Units Dil Batch Prepared Analyzed NW TPH-Gx 22500 3330 mg/kg wet 10x 7081533 08/31/07 11:26 09/05/07 13:17 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:39 50-150 % " " 50-150 % " " " " NW TPH-Gx 178	Method Result MDL* MRL Units Dil Batch Prepared Analyzed NW TPH-Gx 22500 3330 mg/kg wet 10x 7081533 08/31/07 11:26 09/05/07 13:17 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 21600 1450 mg/kg wet 4x 7081533 08/31/07 11:26 09/05/07 13:45 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 20700 364 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:11 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:39 NW TPH-Gx 17100 400 mg/kg wet 1x 7081533 08/31/07 11:26 09/01/07 19:39

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Note
	Wethou	So		WIKE					Anaryzeu	11010
PQH0767-01 (Q-1)			<u> </u>				3/16/07 14:5			
Diesel Range Organics	NWTPH-Dx	103000			mg/kg wet	100x	7081385	08/29/07 12:45		
Heavy Oil Range Hydrocarbons	"	99300		12600	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecan	пе		NR		50 - 150 %	"			"	Z 3
PQH0767-02 (Q-2)		So	il		Samp	oled: 08	3/16/07 13:3	30		
Diesel Range Organics	NWTPH-Dx	76900		6150	mg/kg wet	100x	7081385	08/29/07 12:45	08/30/07 07:44	
Heavy Oil Range Hydrocarbons	"	70300		12300	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecan	пе		NR		50 - 150 %	"			"	Z 3
PQH0767-03 (Q-3)		So	il		Samp	oled: 08	3/16/07 11:2	25		
Diesel Range Organics	NWTPH-Dx	131000		11600	mg/kg wet	100x	7081385	08/29/07 12:45	08/30/07 09:51	
Heavy Oil Range Hydrocarbons	"	151000		23300	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecan	пе		NR		50 - 150 %	"			"	Z 3
PQH0767-04 (Q-4)		So	il		Samp	oled: 08	3/16/07 16:1	15		
Diesel Range Organics	NWTPH-Dx	95500		9230	mg/kg wet	100x	7081385	08/29/07 12:45	08/30/07 08:47	
Heavy Oil Range Hydrocarbons	"	99100		18500	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecan	пе		NR		50 - 150 %	"			"	Z 3
PQH0767-05 (Q-5)		So	il		Samp	oled: 08	3/16/07 14:0	00		
Diesel Range Organics	NWTPH-Dx	112000		4490	mg/kg wet	100x	7081385	08/29/07 12:45	08/30/07 09:18	
Heavy Oil Range Hydrocarbons	"	112000		8980	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecan	ne		NR		50 - 150 %	"			"	Z 3
3()										

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PQH0767-01 (Q-1)		So	il		Sampled: 08/16/07 14:50						
Aldrin	8081A/8082	ND		2010	ug/kg wet	10x	7081200	08/25/07 10:40	08/29/07 22:16		
alpha-BHC	"	ND		2010	"	"	"	"	"		
beta-BHC	"	ND		2010	"	"	"	"	"		
delta-BHC	"	ND		2010	"	"	"	"	"		
gamma-BHC (Lindane)	"	ND		2010	"	"	"	"	"		
alpha-Chlordane	"	ND		2010	"	"	"	"	"		
Chlordane (tech)	"	ND		45000	"	"	"	"	"		
gamma-Chlordane	"	ND		2010	"	"	"	"	"		
4,4′-DDD	"	ND		2010	"	"	"	"	"		
4,4'-DDE	"	ND		2010	"	"	"	"	"		
4,4'-DDT	"	ND		10000	"	50x	"	"	08/29/07 18:38	RL1	
Dieldrin	"	ND		2010	"	10x	"	"	08/29/07 22:16		
Endosulfan I	"	ND		2010	"	"	"	"	"		
Endosulfan II	"	ND		2010	"	"	"	"	"		
Endosulfan sulfate	"	ND		2010	"	"	"	"	"		
Endrin	"	ND		2010	"	"	"	"	"		
Endrin aldehyde	"	ND		2010	"	"	"	"	"		
Endrin ketone	"	ND		2010	"	"	"	"	"		
Heptachlor	"	ND		2010	"	"	"	"	"		
Heptachlor epoxide	"	ND		2010	"	"	"	"	"		
Methoxychlor	"	ND		10000	"	50x	"	"	08/29/07 18:38	RL1	
Toxaphene	"	ND		60000	"	10x	"	"	08/29/07 22:16		

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene 218% 36 - 140 % ZX

PQH0767-01RE1 (Q-1)		Soil		Sampled: 08/16/07 14:50						
Aroclor 1016	8081A/8082	ND		970	ug/kg wet	1x	7081488	08/30/07 17:30	08/31/07 00:17	
Aroclor 1221	"	ND		1950	"	"	"	"	"	
Aroclor 1232	"	ND		970	"	"	"	"	"	
Aroclor 1242	"	ND		3640	"	"	"	"	"	RL1
Aroclor 1248	"	ND		970	"	"	"	"	"	
Aroclor 1254	"	ND		970	"	"	"	"	"	
Aroclor 1260	"	3050		970	"	"	"	"	"	

Surrogate(s): Decachlorobiphenyl 66.0% 16 - 149 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PQH0767-02 (Q-2)	Soil Sampled: 08/16/07 13:30									RL	
Aldrin	8081A/8082	ND		1990	ug/kg wet	10x	7081200	08/25/07 10:40	08/29/07 22:41		
alpha-BHC	n .	ND		1990	"	"	"	"	"		
beta-BHC	"	ND		1990	"	"	"	"	"		
delta-BHC	"	ND		1990	"	"	"	"	"		
gamma-BHC (Lindane)	"	ND		1990	"	"	"	"	"		
alpha-Chlordane	"	ND		1990	"	"	"	"	"		
Chlordane (tech)	"	ND		44600	"	"	"	"	"		
gamma-Chlordane	II .	ND		1990	"	"	"	"	"		
4,4′-DDD	"	ND		1990	"	"	"	"	"		
4,4'-DDE	"	ND		1990	"	"	"	"	"		
4,4'-DDT	II .	ND		9950	"	50x	"	"	08/29/07 19:29	RL1	
Dieldrin	"	ND		1990	"	10x	"	"	08/29/07 22:41		
Endosulfan I	"	ND		1990	"	"	"	"	"		
Endosulfan II	n .	ND		1990	"	"	"	"	"		
Endosulfan sulfate	II .	ND		1990	"	"	"	"	"		
Endrin	n .	ND		1990	"	"	"	"	"		
Endrin aldehyde	"	ND		1990	"	"	"	"	"		
Endrin ketone	n .	ND		1990	"	"	"	"	"		
Heptachlor	"	ND		1990	"	"	"	"	"		
Heptachlor epoxide	"	ND		1990	"	"	"	"	"		
Methoxychlor	"	ND		9950	"	50x	"	"	08/29/07 19:29	RL1	
Toxaphene	m .	ND		59400	"	10x	"	"	08/29/07 22:41		

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene 318% 36 - 140 % ZX

PQH0767-02RE1 (Q-2)		Soil Sampled: 08/16/07 13:30								RL3
Aroclor 1016	8081A/8082	ND		4990	ug/kg wet	5x	7081488	08/30/07 17:30	08/31/07 00:39	
Aroclor 1221	"	ND		10000	"	"	"	"	"	
Aroclor 1232	"	ND		4990	"	"	"	"	"	
Aroclor 1242	"	ND		4990	"	"	"	"	"	
Aroclor 1248	"	ND		4990	"	"	"	"	"	
Aroclor 1254	"	ND		4990	"	"	"	"	"	
Aroclor 1260	"	10500		4990	"	"	"	"	"	
		10000								_

Surrogate(s): Decachlorobiphenyl 60.4% 16 - 149 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PQH0767-03 (Q-3)	Soil Sampled: 08/16/07 11:25									RL3	
Aldrin	8081A/8082	ND		1990	ug/kg wet	10x	7081200	08/25/07 10:40	08/29/07 23:07		
alpha-BHC	"	ND		1990	"	"	"	"	"		
beta-BHC	"	ND		1990	"	"	"	"	"		
delta-BHC	"	ND		1990	"	"	"	"	"		
gamma-BHC (Lindane)	"	ND		1990	"	"	"	"	"		
alpha-Chlordane	"	ND		1990	"	"	"	"	"		
Chlordane (tech)	"	ND		44600	"	"	"	"	"		
gamma-Chlordane	"	ND		1990	"	"	"	"	"		
4,4′-DDD	"	ND		1990	"	"	"	"	"		
4,4'-DDE	"	ND		1990	"	"	"	"	"		
4,4′-DDT	"	ND		9950	"	50x	"	"	08/29/07 19:55	RL1	
Dieldrin	"	ND		1990	"	10x	"	"	08/29/07 23:07		
Endosulfan I	"	ND		1990	"	"	"	"	"		
Endosulfan II	"	ND		1990	"	"	"	"	"		
Endosulfan sulfate	"	ND		1990	"	"	"	"	"		
Endrin	"	ND		1990	"	"	"	"	"		
Endrin aldehyde	"	ND		1990	"	"	"	"	"		
Endrin ketone	"	ND		1990	"	"	"	"	"		
Heptachlor	"	ND		1990	"	"	"	"	"		
Heptachlor epoxide	"	ND		1990	"	"	"	"	"		
Methoxychlor	"	ND		9950	"	50x	"	"	08/29/07 19:55	RL1	
Toxaphene	"	ND		59400	"	10x	"	"	08/29/07 23:07		

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

102% 36 - 140 %

Aroclor 1016 8081A/8082 ND 4900 ug/kg wet 5x 7081488 08/30/07 17:30 Aroclor 1221 " ND 9850 " " " " Aroclor 1232 " ND 4900 " " " "		RL3
Arocior 1221 ND 9630	08/31/07 01:01	
Arcelor 1232 " ND 4900 " " " "	"	
Allociol 1232	II .	
Aroclor 1242 " ND 4900 " " " "	II .	
Aroclor 1248 " ND 4900 " " " "	II .	
Aroclor 1254 " ND 4900 " " " "	II .	
Aroclor 1260 " ND 4900 " " " "	"	

Surrogate(s): Decachlorobiphenyl

55.1%

16 - 149 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-04 (Q-4)		So		Sampled: 08/16/07 16:15						
Aldrin	8081A/8082	ND		1930	ug/kg wet	10x	7081200	08/25/07 10:40	08/29/07 23:33	
alpha-BHC	n .	ND		1930	"	"	"	"	"	
beta-BHC	"	ND		1930	"	"	"	"	"	
delta-BHC	"	ND		1930	"	"	"	"	"	
gamma-BHC (Lindane)	"	ND		1930	"	"	"	"	"	
alpha-Chlordane	"	ND		1930	"	"	"	"	"	
Chlordane (tech)	"	ND		43300	"	"	"	"	"	
gamma-Chlordane	II .	ND		1930	"	"	"	"	"	
4,4′-DDD	"	ND		1930	"	"	"	"	"	
4,4'-DDE	"	ND		1930	"	"	"	"	"	
4,4'-DDT	II .	ND		9660	"	50x	"	"	08/29/07 20:21	RL1
Dieldrin	"	ND		1930	"	10x	"	"	08/29/07 23:33	
Endosulfan I	"	ND		1930	"	"	"	"	"	
Endosulfan II	n .	ND		1930	"	"	"	"	"	
Endosulfan sulfate	II .	ND		1930	"	"	"	"	"	
Endrin	n .	ND		1930	"	"	"	"	"	
Endrin aldehyde	"	ND		1930	"	"	"	"	"	
Endrin ketone	n .	ND		1930	"	"	"	"	"	
Heptachlor	"	ND		1930	"	"	"	"	"	
Heptachlor epoxide	"	ND		1930	"	"	"	"	"	
Methoxychlor	"	ND		9660	"	50x	"	"	08/29/07 20:21	RL1
Toxaphene	"	ND		57700	"	10x	"	"	08/29/07 23:33	

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

120%

36 - 140 %

	Soi	l	Sampled: 08/16/07 16:15						
8081A/8082	ND		979	ug/kg wet	1x	7081488	08/30/07 17:30	08/31/07 01:23	
"	ND		1970	"	"	"	"	"	
"	ND		979	"	"	"	"	"	
"	ND		979	"	"	"	"	"	
"	ND		979	"	"	"	"	"	
"	ND		979	"	"	"	"	"	
"	2330		979	"	"	"	"	"	
	11 11 11	8081A/8082 ND " ND " ND " ND " ND " ND " ND	8081A/8082 ND " ND " ND " ND " ND " ND " ND	8081A/8082 ND 979 " ND 1970 " ND 979 " ND 979 " ND 979 " ND 979 " ND 979	8081A/8082 ND 979 ug/kg wet " ND 1970 " " ND 979 "	8081A/8082 ND 979 ug/kg wet 1x " ND 1970 " " " ND 979 " "	8081A/8082 ND 979 ug/kg wet 1x 7081488 " ND 1970 " " " " ND 979 " " "	8081A/8082 ND 979 ug/kg wet 1x 7081488 08/30/07 17:30 " ND 1970 " " " " " " ND 979 " " " " " "	8081A/8082 ND 979 ug/kg wet 1x 7081488 08/30/07 17:30 08/31/07 01:23 " ND 1970 " " " " " " " " " " " " " " " " " " "

Surrogate(s): Decachlorobiphenyl

49.6%

16 - 149 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-05 (Q-5)		So	oil		Samj	pled: 08	/16/07 14:	00		RL3
Aldrin	8081A/8082	ND		1970	ug/kg wet	10x	7081200	08/25/07 10:40	08/29/07 23:59	
alpha-BHC	"	ND		1970	"	"	"	"	"	
beta-BHC	"	ND		1970	"	"	"	"	"	
delta-BHC	"	ND		1970	"	"	"	"	"	
gamma-BHC (Lindane)	"	ND		1970	"	"	"	"	"	
alpha-Chlordane	"	ND		1970	"	"	"	"	"	
Chlordane (tech)	"	ND		44100	"	"	"	"	"	
gamma-Chlordane	II .	ND		1970	"	"	"	"	"	
4,4′-DDD	"	ND		1970	"	"	"	"	"	
4,4'-DDE	"	ND		1970	"	"	"	"	"	
4,4'-DDT	"	ND		9850	"	50x	"	"	08/29/07 20:47	RL1
Dieldrin	"	ND		1970	"	10x	"	"	08/29/07 23:59	
Endosulfan I	"	ND		1970	"	"	"	"	"	
Endosulfan II	n .	ND		1970	"	"	"	"	"	
Endosulfan sulfate	II .	ND		1970	"	"	"	"	"	
Endrin	n .	ND		1970	"	"	"	"	"	
Endrin aldehyde	"	ND		1970	"	"	"	"	"	
Endrin ketone	n .	ND		1970	"	"	"	"	"	
Heptachlor	n .	ND		1970	"	"	"	"	"	
Heptachlor epoxide	"	ND		1970	"	"	"	"	"	
Methoxychlor	"	ND		9850	"	50x	"	"	08/29/07 20:47	RL1
Toxaphene	"	ND		58800	"	10x	"	"	08/29/07 23:59	

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

109%

36 - 140 %

PQH0767-05RE1 (Q-5)		Soi	l		Samp	led: 08	/16/07 14:0	00		
Aroclor 1016	8081A/8082	ND		979	ug/kg wet	1x	7081488	08/30/07 17:30	08/31/07 01:45	
Aroclor 1221	"	ND		1970	"	"	"	"	"	
Aroclor 1232	"	ND		979	"	"	"	"	"	
Aroclor 1242	"	ND		979	"	"	"	"	"	
Aroclor 1248	"	5860		979	"	"	"	"	"	
Aroclor 1254	"	ND		979	"	"	"	"	"	
Aroclor 1260	"	6170		979	"	"	"	"	"	

Surrogate(s): Decachlorobiphenyl

70.7%

16 - 149 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Chlorinated Herbicides per EPA Method 8151A Modified

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01RE1 (Q-1)		So	il		Sam	pled: 08	/16/07 14:	50		Н
2,4-D	8151mod	ND		200	ug/l	10x	7090058	09/04/07 11:26	09/05/07 12:05	
2,4-DB	"	ND		200	"	"	"	"	"	C
2,4,5-T	"	ND		200	"	"	"	"	"	
2,4,5-TP (Silvex)	"	ND		200	"	"	"	"	"	
Dalapon	"	ND		200	"	"	"	"	"	C
Dicamba	"	ND		200	"	"	"	"	"	
Dichlorprop	"	ND		200	"	"	"	"	"	
Dinoseb	"	ND		400	"	20x	"	"	09/05/07 23:22	C
MCPA	"	ND		20000	"	10x	"	"	09/05/07 12:05	
MCPP	"	ND		20000	"	"	"	"	"	

Surrogate(s): 2,4-Dichlorophenylacetic acid

143%

30 - 140 % 1x Z2

	Soil	l		San	ipled: 08	/16/07 13:3	80		Н
8151mod	ND		200	ug/l	10x	7090058	09/04/07 11:26	09/05/07 12:29	
"	ND		200	"	"	"	"	"	C
"	ND		200	"	"	"	"	"	
"	ND		200	"	"	"	"	"	
II .	ND		200	"	"	"	"	n .	C
"	ND		200	"	"	"	"	"	
"	ND		200	"	"	"	"	"	
II .	ND		400	"	20x	"	"	09/05/07 23:46	C
"	ND		20000	"	10x	"	"	09/05/07 12:29	
"	ND		20000	"	"	"	"	"	
	11 11 11 11 11	8151mod ND "	" ND	8151mod ND 200 " ND 400 " ND 20000	8151mod ND 200 ug/l " ND 200 " " ND 400 " " ND 20000 "	8151mod ND 200 ug/l 10x " ND 200 " " " ND 200 " "	8151mod ND 200 ug/l 10x 7090058 " ND 200 " " " " ND 200 " " " "	8151mod ND 200 ug/l 10x 7090058 09/04/07 11:26 " ND 200 " " " " " " ND 400 " 20x " " " ND 400 " 20x " "	8151mod ND 200 ug/l 10x 7090058 09/04/07 11:26 09/05/07 12:29 " ND 200 " " " " " " " " ND 200 " " " " " " " " ND 200 " " " " " " " " ND 200 " " " " " " " " " ND 200 " " " " " " " " " ND 200 " " " " " " " " " " ND 200 " " " " " " " " " " ND 200 " " " " " " " " " " " ND 200 " " " " " " " " " " " " " ND 200 " " " " " " " " " " " " " " " " " "

Surrogate(s): 2,4-Dichlorophenylacetic acid

143%

30 - 140 %

Z2

PQH0767-03RE1 (Q-3)		Soil Sampled: 08/16/07 11:25								
2,4-D	8151mod	ND		200	ug/l	10x	7090058	09/04/07 11:26	09/05/07 12:54	
2,4-DB	"	ND		200	"	"	"	"	"	C
2,4,5-T	"	ND		200	"	"	"	"	"	
2,4,5-TP (Silvex)	"	ND		200	"	"	"	"	n .	
Dalapon	"	ND		200	"	"	"	"	"	C
Dicamba	"	ND		200	"	"	"	"	"	
Dichlorprop	"	ND		200	"	"	"	"	n .	
Dinoseb	"	ND		400	"	20x	"	"	09/06/07 00:10	C
MCPA	"	ND		20000	"	10x	"	"	09/05/07 12:54	
MCPP	"	ND		20000	"	"	"	"	"	

Surrogate(s): 2,4-Dichlorophenylacetic acid

151%

30 - 140 %

Ix

Z2

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Chlorinated Herbicides per EPA Method 8151A Modified

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-04RE1 (Q-4)		So	il		Sam	pled: 08	3/16/07 16:	15		Н
2,4-D	8151mod	ND		200	ug/l	10x	7090058	09/04/07 11:26	09/05/07 13:19	
2,4-DB	m .	ND		200	"	"	"	"	"	C
2,4,5-T	"	ND		200	"	"	"	"	"	
2,4,5-TP (Silvex)	m .	ND		200	"	"	"	"	"	
Dalapon	m .	ND		200	"	"	"	"	"	C
Dicamba	"	ND		200	"	"	"	"	"	
Dichlorprop	m .	ND		200	"	"	"	"	"	
Dinoseb	"	ND		400	"	20x	"	"	09/06/07 00:34	C
MCPA	"	ND		20000	"	10x	"	"	09/05/07 13:19	
MCPP	"	ND		20000	"	"	"	"	"	

97.8% 30 - 140 % Surrogate(s): 2,4-Dichlorophenylacetic acid 1x

PQH0767-05RE1 (Q-5	5)	Soi	l		San	pled: 08	/16/07 14:0	00		Н
2,4-D	8151mod	ND		200	ug/l	10x	7090058	09/04/07 11:26	09/05/07 13:43	
2,4-DB	"	ND		200	"	"	"	"	n .	C
2,4,5-T	"	ND		200	"	"	"	"	"	
2,4,5-TP (Silvex)	"	ND		200	"	"	"	"	"	
Dalapon	"	ND		200	"	"	"	"	n .	C
Dicamba	"	ND		200	"	"	"	"	"	
Dichlorprop	"	ND		200	"	"	"	"	"	
Dinoseb	"	ND		400	"	20x	"	"	09/06/07 00:59	C
MCPA	"	ND		20000	"	10x	"	"	09/05/07 13:43	
MCPP	"	ND		20000	"	"	"	"	"	

Surrogate(s): 2,4-Dichlorophenylacetic acid 137% 30 - 140 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01 (Q-1)		So	il		Samp	oled: 08	3/16/07 14:5	50		RL3
Acenaphthene	EPA 8270C	ND		1500	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 17:26	
Acenaphthylene	"	ND		1500	"	"	"	"	"	
Anthracene	"	ND		1500	"	"	"	"	"	
Benzo (a) anthracene	"	ND		1500	"	"	"	"	"	
Benzo (a) pyrene	"	ND		1500	"	"	"	"	"	
Benzo (b) fluoranthene	"	ND		1500	"	"	"	"	"	
Benzo (ghi) perylene	"	ND		1500	"	"	"	"	"	
Benzo (k) fluoranthene	"	ND		1500	"	"	"	"	"	
Benzoic Acid	"	ND		3000	"	"	"	"	"	
Benzyl alcohol	"	ND		1500	"	"	"	"	"	
4-Bromophenyl phenyl ether	"	ND		1500	"	"	"	"	"	
Butyl benzyl phthalate	"	ND		1500	"	"	"	"	"	
4-Chloro-3-methylphenol	"	ND		1500	"	"	"	"	"	
4-Chloroaniline	"	ND		6000	"	"	"	"	"	
Bis(2-chloroethoxy)methane	"	ND		1500	"	"	"	"	"	
Bis(2-chloroethyl)ether	"	ND		1500	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	"	ND		1500	"	"	"	"	"	
2-Chloronaphthalene	"	ND		1500	"	"	"	"	"	
2-Chlorophenol	"	ND		1500	"	"	"	"	"	
4-Chlorophenyl phenyl ether	"	ND		1500	"	"	"	"	"	
Chrysene	"	ND		1500	"	"	"	"	"	
Di-n-butyl phthalate	"	ND		3000	"	"	"	"	"	
Di-n-octyl phthalate	"	ND		1500	"	"	"	"	"	
Dibenzo (a,h) anthracene	"	ND		1500	"	"	"	"	"	
Dibenzofuran	"	ND		1500	"	"	"	"	"	
1,2-Dichlorobenzene	"	ND		3000	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		3000	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		3000	"	"	"	"	"	
3,3'-Dichlorobenzidine	"	ND		3000	"	"	"	"	"	
2,4-Dichlorophenol	"	ND		1500	"	"	"	"	"	
Diethyl phthalate	"	ND		1500	"	"	"	"	"	
2,4-Dimethylphenol	"	ND		3000	"	"	"	"	"	
Dimethyl phthalate	"	ND		1500	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	"	ND		3000	"	"	"	"	"	
2,4-Dinitrophenol	"	ND		6000	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		1500	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		1500	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	"	ND		6000	"	"	"	"	"	
Fluoranthene	"	ND		1500	"	"	"	"	"	
Fluorene	"	ND		1500	"	"	"	"	"	
Hexachlorobenzene	"	ND		1500	"	"	"	"	"	
Hexachlorobutadiene	"	ND		3000	"	"	"	"	"	
Hexachlorocyclopentadiene	"	ND		3000	"	"	"	"	"	
		1112								

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		So	oil		Samp	led: 08	3/16/07 14:	50		RL3
Hexachloroethan	e	EPA 8270C	ND		3000	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 17:26	
Indeno (1,2,3-cd)) pyrene	"	ND		1500	"	"	"	"	"	
Isophorone		"	ND		1500	"	"	"	"	"	
2-Methylnaphtha	lene	"	ND		1500	"	"	"	"	"	
2-Methylphenol		"	ND		1500	"	"	"	"	"	
3-,4-Methylphen	ol	"	ND		1500	"	"	"	"	"	
Naphthalene		"	ND		1500	"	"	"	"	"	
2-Nitroaniline		"	ND		1500	"	"	"	"	"	
3-Nitroaniline		"	ND		3000	"	"	"	"	"	
4-Nitroaniline		"	ND		1500	"	"	"	"	"	
Nitrobenzene		"	ND		1500	"	"	"	"	"	
2-Nitrophenol		"	ND		1500	"	"	"	"	"	
4-Nitrophenol		"	ND		3000	"	"	"	"	"	
N-Nitrosodi-n-pr	opylamine	"	ND		1500	"	"	"	"	"	
N-Nitrosodiphen	ylamine	"	ND		1500	"	"	"	"	"	
Pentachlorophen	ol	"	ND		3000	"	"	"	"	"	
Phenanthrene		"	ND		1500	"	"	"	"	"	
Phenol		"	ND		1500	"	"	"	"	"	
Pyrene		"	ND		1500	"	"	"	"	"	
1,2,4-Trichlorobe	enzene	"	ND		1500	"	"	"	"	"	
2,4,5-Trichloropl	henol	m .	ND		1500	"	"	"	"	"	
2,4,6-Trichloroph	henol	"	ND		1500	"	"	"	"	"	
Surrogate(s):	2-Fluorobiphenyl			125%		20 - 150 %	"			"	
9 (/	2-Fluorophenol			130%		10 - 150 %	"			"	
	Nitrobenzene-d5			118%		20 - 150 %	"			"	
	Phenol-d6			146%		10 - 150 %	"			"	
	p-Terphenyl-d14			93.6%		20 - 150 %	"			"	Z 3
	2,4,6-Tribromophe	nol		66.8%		10 - 150 %	"			"	
PQH0767-02	(Q-2)		So	il		Samn	led: 08	3/16/07 13 ::	30		RL3
Acenaphthene	(2 2)	EPA 8270C	ND		1470	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 18:09	
Acenaphthylene		EFA 62/0C	ND ND		1470	mg/kg wet	ıu.	/061293	06/26/07 14.30	09/04/07 18.09	
Anthracene		"	ND ND		1470	"	,,	"	"	"	
	aana	"	ND ND		1470	"	,,	"	"	"	
Benzo (a) anthrac		"	ND ND		1470	"	"	"	"	"	
Benzo (a) pyrene		"	ND ND		1470	"	,,	"	"	"	
Benzo (b) fluorar		"			1470	"	,,	"	"	"	
Benzo (ghi) pery		"	ND		1470	"	,,	"	"	"	
Benzo (k) fluorar	ninene	"	ND		2940	"	,,	,,	"	,,	
Benzoic Acid		"	ND				,,	,,			
Benzyl alcohol	1 1 1		ND		1470	"	,,	"	"		
4-Bromophenyl			ND		1470	"	,,		,,		
Butyl benzyl phtl	haiate		ND		1470	**	.,	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-02 (Q-2)		So	il		Samp	oled: 08	3/16/07 13:3	30		RL3
4-Chloro-3-methylphenol	EPA 8270C	ND		1470	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 18:09	
4-Chloroaniline	"	ND		5880	"	"	"	"	"	
Bis(2-chloroethoxy)methane	"	ND		1470	"	"	"	"	"	
Bis(2-chloroethyl)ether	"	ND		1470	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	"	ND		1470	"	"	"	"	"	
2-Chloronaphthalene	"	ND		1470	"	"	"	"	"	
2-Chlorophenol	"	ND		1470	"	"	"	"	"	
4-Chlorophenyl phenyl ether	"	ND		1470	"	"	"	"	"	
Chrysene	"	ND		1470	"	"	"	"	"	
Di-n-butyl phthalate	"	ND		2940	"	"	"	"	"	
Di-n-octyl phthalate	"	ND		1470	"	"	"	"	"	
Dibenzo (a,h) anthracene	"	ND		1470	"	"	"	"	"	
Dibenzofuran	"	ND		1470	"	"	"	"	"	
1,2-Dichlorobenzene	"	ND		2940	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		2940	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		2940	"	"	"	"	"	
3,3'-Dichlorobenzidine	"	ND		2940	"	"	"	"	"	
2,4-Dichlorophenol	"	ND		1470	"	"	"	"	"	
Diethyl phthalate	"	ND		1470	"	"	"	"	"	
2,4-Dimethylphenol	"	ND		2940	"	"	"	"	"	
Dimethyl phthalate	"	ND		1470	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	"	ND		2940	"	"	"	"	"	
2,4-Dinitrophenol	"	ND		5880	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		1470	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		1470	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	"	ND		5880	"	"	"	"	"	
Fluoranthene	"	ND		1470	"	"	"	"	"	
Fluorene	"	ND		1470	"	"	"	"	"	
Hexachlorobenzene	"	ND		1470	"	"	"	"	"	
Hexachlorobutadiene	"	ND		2940	"	"	"	"	"	
Hexachlorocyclopentadiene	"	ND		2940	"	"	"	"	"	
Hexachloroethane	"	ND		2940	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	"	ND		1470	"	"	"	"	"	
Isophorone	"	ND		1470	"	"	"	"	"	
2-Methylnaphthalene	"	ND		1470	"	"	"	"	"	
2-Methylphenol	"	ND		1470	"	"	"	"	"	
3-,4-Methylphenol	"	ND		1470	"	"	"	"	"	
Naphthalene	n .	ND		1470	"	"	"	"	"	
2-Nitroaniline	n .	ND		1470	"	"	"	"	"	
3-Nitroaniline	"	ND		2940	"	"	"	"	"	
4-Nitroaniline	"	ND		1470	"	"	"	"	"	
Nitrobenzene	"	ND		1470	"	"	"	"	"	
2-Nitrophenol	,,	ND		1470	"	,,	,,	"	,,	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-02	(Q-2)		So	il		Samp	led: 08	3/16/07 13:3	30		RL3
4-Nitrophenol		EPA 8270C	ND		2940	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 18:09	
N-Nitrosodi-n-pro	pylamine	"	ND		1470	"	"	"	"	"	
N-Nitrosodipheny	lamine	"	ND		1470	"	"	"	"	"	
Pentachloropheno	ıl	"	ND		2940	"	"	"	"	"	
Phenanthrene		"	ND		1470	"	"	"	"	"	
Phenol		"	ND		1470	"	"	"	"	"	
Pyrene		"	ND		1470	"	"	"	"	"	
1,2,4-Trichlorobe	nzene	"	ND		1470	"	"	"	"	"	
2,4,5-Trichloroph	enol	"	ND		1470	"	"	"	"	"	
2,4,6-Trichloroph	enol	"	ND		1470	"	"	"	"	"	
Surrogate(s):	2-Fluorobiphenyl			127%		20 - 150 %	"			"	
	2-Fluorophenol			119%		10 - 150 %	"			"	
	Nitrobenzene-d5			122%		20 - 150 %	"			"	
	Phenol-d6			135%		10 - 150 %	"			"	
	p-Terphenyl-d14			89.6%		20 - 150 %	"			"	Z 3
	2,4,6-Tribromoph	enol		74.4%		10 - 150 %	"			"	
PQH0767-03	(Q-3)		So	il		Samp	led: 08	3/16/07 11:2	25		RL3
Acenaphthene		EPA 8270C	ND		1490	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 18:52	
Acenaphthylene		"	ND		1490	"	"	"	"	"	
Anthracene		"	ND		1490	"	"	"	"	"	
Benzo (a) anthrac	ene	"	ND		1490	"	"	"	"	"	
Benzo (a) pyrene		"	ND		1490	"	"	"	"	"	
Benzo (b) fluoran	thene	"	ND		1490	"	"	"	"	"	
Benzo (ghi) peryle		"	ND		1490	"	"	"	"	"	
Benzo (k) fluoran		"	ND		1490	"	"	"	"	"	
Benzoic Acid		"	ND		2970	"	"	"	"	"	
Benzyl alcohol		"	ND		1490	"	"	"	"	"	
4-Bromophenyl p	henyl ether	"	ND		1490	"	"	"	"	"	
Butyl benzyl phth	alate	"	ND		1490	"	"	"	"	"	
4-Chloro-3-methy	lphenol	"	ND		1490	"	"	"	"	"	
4-Chloroaniline		"	ND		5940	"	"	"	"	"	
Bis(2-chloroethox	y)methane	"	ND		1490	"	"	"	"	"	
Bis(2-chloroethyl))ether	"	ND		1490	"	"	"	"	"	
Bis(2-chloroisopre	opyl)ether	"	ND		1490	"	"	"	"	"	
2-Chloronaphthal	ene	"	ND		1490	"	"	"	"	"	
2-Chlorophenol		"	ND		1490	"	"	"	"	"	
4-Chlorophenyl p	henyl ether	"	ND		1490	"	"	"	"	"	
Chrysene		"	ND		1490	"	"	"	"	"	
Di-n-butyl phthala	ate	"	ND		2970	"	"	"	"	"	
Di-n-octyl phthala		"	ND		1490	"	"	"	"	"	
Dibenzo (a,h) antl		"	ND		1490	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-03 (Q-3)		So	il		Samp	oled: 08	3/16/07 11:2	25		RL
Dibenzofuran	EPA 8270C	ND		1490	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 18:52	
1,2-Dichlorobenzene	"	ND		2970	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		2970	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		2970	"	"	"	"	"	
3,3'-Dichlorobenzidine	"	ND		2970	"	"	"	"	"	
2,4-Dichlorophenol	"	ND		1490	"	"	"	"	"	
Diethyl phthalate	"	ND		1490	"	"	"	"	"	
2,4-Dimethylphenol	"	ND		2970	"	"	"	"	"	
Dimethyl phthalate	"	ND		1490	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	"	ND		2970	"	"	"	"	"	
2,4-Dinitrophenol	"	ND		5940	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		1490	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		1490	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	"	ND		5940	"	"	"	"	"	
Fluoranthene	"	ND		1490	"	"	"	"	"	
Fluorene	"	ND		1490	"	"	"	"	"	
Hexachlorobenzene	"	ND		1490	"	"	"	"	"	
Hexachlorobutadiene	"	ND		2970	"	"	"	"	"	
Hexachlorocyclopentadiene	"	ND		2970	"	"	"	"	"	
Hexachloroethane	"	ND		2970	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	"	ND		1490	"	"	"	"	"	
Isophorone	"	ND		1490	"	"	"	"	"	
2-Methylnaphthalene	"	ND		1490	"	"	"	"	"	
2-Methylphenol	"	ND		1490	"	"	"	"	"	
3-,4-Methylphenol	"	ND		1490	"	"	"	"	"	
Naphthalene	"	ND		1490	"	"	"	"	"	
2-Nitroaniline	"	ND		1490	"	"	"	"	"	
3-Nitroaniline	"	ND		2970	"	"	"	"	"	
4-Nitroaniline	"	ND		1490	"	"	"	"	"	
Nitrobenzene	"	ND		1490	"	"	"	"	"	
2-Nitrophenol	"	ND		1490	"	"	"	"	"	
4-Nitrophenol	"	ND		2970	"	"	"	"	"	
N-Nitrosodi-n-propylamine	"	ND		1490	"	"	"	"	"	
N-Nitrosodiphenylamine	"	ND		1490	"	"	"	"	"	
Pentachlorophenol	"	ND		2970	"	"	"	"	"	
Phenanthrene	"	ND		1490	"	"	"	"	"	
Phenol	"	ND		1490	"	"	"	"	"	
Pyrene	"	ND		1490	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		1490	"	"	"	"	"	
2,4,5-Trichlorophenol	"	ND		1490	"	"	"	"	"	
2,4,6-Trichlorophenol	"	ND		1490	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-03	(Q-3)		Soi	1		Samp	led: 08	3/16/07 11:2	25		RL
	2-Fluorophenol			114%		10 - 150 %	10x			09/04/07 18:52	
	Nitrobenzene-d:	5		118%		20 - 150 %	"			"	
	Phenol-d6			136%		10 - 150 %	"			"	
	p-Terphenyl-d1			84.0%		20 - 150 %	"			"	Z 3
	2,4,6-Tribromop	phenol		67.4%		10 - 150 %	"			"	
PQH0767-04	(Q-4)		Soi	1		Samp	led: 08	3/16/07 16:1	15		RL
Acenaphthene		EPA 8270C	ND		1490	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 19:35	
Acenaphthylene		"	ND		1490	"	"	"	"	"	
Anthracene		"	ND		1490	"	"	"	"	"	
Benzo (a) anthra		"	ND		1490	"	"	"	"	"	
Benzo (a) pyrene		"	ND		1490	"	"	"	"	"	
Benzo (b) fluorar		"	ND		1490	"	"	"	"	"	
Benzo (ghi) pery		"	ND		1490	"	"	"	"		
Benzo (k) fluorar	nthene	"	ND		1490	"			"		
Benzoic Acid		"	ND		2970	,,	"	"	,		
Benzyl alcohol	1 1 4	"	ND		1490	,,		,,			
4-Bromophenyl		"	ND		1490	,,	.,	,,			
Butyl benzyl pht		"	ND ND		1490 1490	"	,,	"	,	,,	
4-Chloro-3-meth	iyipnenoi	,,			5940	,,	,,	,,	,,	,,	
4-Chloroaniline Bis(2-chloroetho	vvv)mathana	"	ND ND		1490	,,	,,	"	"	"	
Bis(2-chloroethy	• /	"	ND ND		1490	,,	.,	"	"	"	
Bis(2-chloroisop	/	"	ND		1490	,,	.,	"	"	"	
2-Chloronaphtha		"	ND		1490	"	"	"		"	
2-Chlorophenol	tiche	"	ND		1490	"	"	"	"	"	
4-Chlorophenyl	nhenyl ether	"	ND		1490	"	"	"	"	"	
Chrysene	phonyreuler	n .	ND		1490	"	"	"	"	"	
Di-n-butyl phtha	late	m .	ND		2970	"	"	"	"	"	
Di-n-octyl phtha		"	ND		1490	"	"	"	"	"	
Dibenzo (a,h) an		"	ND		1490	"	"	"	"	"	
Dibenzofuran		"	ND		1490	"	"	"	"	"	
1,2-Dichlorobenz	zene	n .	ND		2970	"	"	"	"	"	
1,3-Dichlorobenz	zene	"	ND		2970	"	"	"	"	"	
1,4-Dichlorobenz	zene	"	ND		2970	"	"	"	"	"	
3,3'-Dichlorober	nzidine	"	ND		2970	"	"	"	"	"	
2,4-Dichloropher		"	ND		1490	"	"	"	"	"	
Diethyl phthalate	e	"	ND		1490	"	"	"	"	"	
2,4-Dimethylphe	enol	n .	ND		2970	"	"	"	"	"	
Dimethyl phthala		"	ND		1490	"	"	"	"	"	
4,6-Dinitro-2-me	ethylphenol	"	ND		2970	"	"	"	"	"	
2,4-Dinitropheno	ol	"	ND		5940	"	"	"	"	"	
2,4-Dinitrotoluer	ne	"	ND		1490	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-04 (Q-4)		So	il		Samp	led: 08	3/16/07 16:	15		RL3
2,6-Dinitrotoluene	EPA 8270C	ND		1490	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 19:35	
Bis(2-ethylhexyl)phthalate	"	ND		5940	"	"	"	"	"	
Fluoranthene	"	ND		1490	"	"	"	"	"	
Fluorene	"	ND		1490	"	"	"	"	"	
Hexachlorobenzene	"	ND		1490	"	"	"	"	"	
Hexachlorobutadiene	"	ND		2970	"	"	"	"	"	
Hexachlorocyclopentadiene	"	ND		2970	"	"	"	"	"	
Hexachloroethane	"	ND		2970	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	"	ND		1490	"	"	"	"	"	
Isophorone	"	ND		1490	"	"	"	"	"	
2-Methylnaphthalene	"	ND		1490	"	"	"	"	"	
2-Methylphenol	"	ND		1490	"	"	"	"	"	
3-,4-Methylphenol	"	ND		1490	"	"	"	"	"	
Naphthalene	"	ND		1490	"	"	"	"	"	
2-Nitroaniline	"	ND		1490	"	"	"	"	"	
3-Nitroaniline	"	ND		2970	"	"	"	"	"	
4-Nitroaniline	"	ND		1490	"	"	"	"	"	
Nitrobenzene	"	ND		1490	"	"	"	"	"	
2-Nitrophenol	"	ND		1490	"	"	"	"	"	
4-Nitrophenol	"	ND		2970	"	"	"	"	"	
N-Nitrosodi-n-propylamine	"	ND		1490	"	"	"	"	"	
N-Nitrosodiphenylamine	"	ND		1490	"	"	"	"	"	
Pentachlorophenol	"	ND		2970	"	"	"	"	"	
Phenanthrene	"	ND		1490	"	"	"	"	"	
Phenol	"	ND		1490	"	"	"	"	"	
Pyrene	"	ND		1490	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		1490	"	"	"	"	"	
2,4,5-Trichlorophenol	"	ND		1490	"	"	"	"	"	
2,4,6-Trichlorophenol	"	ND		1490	"	"	"	"	"	
Surrogate(s): 2-Fluorobiphenyl			123%		20 - 150 %	"			"	
2-Fluorophenol			113%		10 - 150 %	"			"	
Nitrobenzene-d5			111%		20 - 150 %	"			"	
Phenol-d6			127%		10 - 150 %	"			"	
p-Terphenyl-d14			108%		20 - 150 %	"			"	
2,4,6-Tribromophen	ol		56.0%		10 - 150 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Acenaphthene EPA 8270C Acenaphthylene " Anthracene " Benzo (a) anthracene " Benzo (b) fluoranthene " Benzo (ghi) perylene " Benzo (k) fluoranthene " Benzoic Acid " Benzyl alcohol " 4-Bromophenyl phenyl ether " Butyl benzyl phthalate 4-Chloroaniline " Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether " Bis(2-chlorophenol " 4-Chlorophenol " 4-Chlorobenzene " 1,3-Dichlorobenzene " 1,3-Dichlorobenzene " 1,4-Dichlorobenzene " 3,3'-Dichlorobenzene "	ND N	oil	1440 1440 1440 1440 1440 1440 1440 1440	Samp	10x " " " " " " " " " " " " " " " " " " "	7081295	08/28/07 14:30	09/04/07 20:19	RL
Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzoi Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenol 4-Chlorophenol 4-Chlorophenol 5-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-botyl phthalate Di-n-botyl phthalate Di-n-botyl phthalate Di-n-botyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzene 3,3'-Dichlorobenzene 1,4-Dichlorobenzene	ND N		1440 1440 1440 1440 1440 1440	" " " " " " " " " " " " " " " " " " " "	" " " "	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether 2-Chlorophenol 4-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzene 3,3'-Dichlorobenzene 3,3'-Dichlorobenzene 1,4-Dichlorobenzene	ND N		1440 1440 1440 1440 1440 1440	" " "	" "	" " "	" "	" " "	
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,3-Dimethylphenol Dimethyl phthalate 2,4-Dimethylphenol	ND		1440 1440 1440 1440 1440	" " "	"	" "	"	" "	
Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorobenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,5-Dimethylphenol Dimethyl phthalate 2,4-Dimethylphenol	ND		1440 1440 1440 1440	"	"	"		" "	
Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1 Dimethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1 Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND ND ND ND ND ND	 	1440 1440 1440	"	"	"		"	
Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,6-Dinitro-2-methylphenol	ND ND ND ND ND ND		1440 1440	"			"		
Benzo (k) fluoranthene Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,3-Dimethylphenol Dimethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 3,6-Dinitro-2-methylphenol	ND ND ND ND		1440		"				
Benzoic Acid Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,3-Dimethylphenol Dimethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND ND ND ND					"	"	"	
Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,6-Dinitro-2-methylphenol	ND ND ND		2880	"	"	"	"	n .	
4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 3,6-Dinitro-2-methylphenol	ND ND			"	"	"	"	n .	
Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	n .	
Butyl benzyl phthalate 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,6-Dinitro-2-methylphenol			1440	"	"	"	"	"	
4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorobenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol	ND		1440	"	"	"	"	"	
4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol			1440	"	"	"	"	"	
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		5770	"	"	"	"	"	
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzo furan 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol " " " " " " " " " " " " " " " " " " "	ND		1440	"	"	"	"	"	
4-Chlorophenyl phenyl ether Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethyl phthalate 4,6-Dinitro-2-methyl phenol	ND		1440	"	"	"	"	"	
Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethyl phthalate 4,6-Dinitro-2-methyl phenol	ND		1440	"	"	"	"	"	
Di-n-octyl phthalate Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		2880	"	"	"	"	"	
Dibenzo (a,h) anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	n	
1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		2880	"	"	"	"	n .	
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		2880	"	"	"	"	n	
3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND		2880	"	"	"	"	n .	
2,4-Dichlorophenol " Diethyl phthalate " 2,4-Dimethylphenol " Dimethyl phthalate " 4,6-Dinitro-2-methylphenol "	ND		2880	"	"	"	"	"	
Diethyl phthalate " 2,4-Dimethylphenol " Dimethyl phthalate " 4,6-Dinitro-2-methylphenol "	ND		1440	"	"	"	"	n .	
2,4-Dimethylphenol " Dimethyl phthalate " 4,6-Dinitro-2-methylphenol "	ND		1440	"	"	"	"	"	
Dimethyl phthalate " 4,6-Dinitro-2-methylphenol "	ND		2880	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND		1440	"	"	"	"	"	
	ND		2880	"	"	"	"	"	
2,4-Dinitrophenol "	ND		5770	"	"	"	"	"	
2,4-Dinitrophenor	ND		1440	"	"	"	"	"	
2,6-Dinitrotoluene "	ND		1440	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate "	ND		5770	"	"	"	"	"	
Fluoranthene "	ND		1440	"	"	"	"	"	
Fluorene "	1117		1440	"	"	"	"	"	
Hexachlorobenzene "			1440	"	"	"	"	"	
Hexachlorobutadiene "	ND		2880	"	"	"	"	"	
Hexachlorocyclopentadiene "			2880	,,	,,	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-05 (Q-5)		So	il		Samp	led: 08	3/16/07 14:	00		RL3
Hexachloroethane	EPA 8270C	ND		2880	mg/kg wet	10x	7081295	08/28/07 14:30	09/04/07 20:19	
Indeno (1,2,3-cd) pyrene	"	ND		1440	"	"	"	"	"	
Isophorone	"	ND		1440	"	"	"	"	"	
2-Methylnaphthalene	"	ND		1440	"	"	"	"	"	
2-Methylphenol	"	ND		1440	"	"	"	"	"	
3-,4-Methylphenol	"	ND		1440	"	"	"	"	"	
Naphthalene	"	ND		1440	"	"	"	"	"	
2-Nitroaniline	"	ND		1440	"	"	"	"	"	
3-Nitroaniline	"	ND		2880	"	"	"	"	"	
4-Nitroaniline	"	ND		1440	"	"	"	"	"	
Nitrobenzene	"	ND		1440	"	"	"	"	"	
2-Nitrophenol	"	ND		1440	"	"	"	"	"	
4-Nitrophenol	"	ND		2880	"	"	"	"	"	
N-Nitrosodi-n-propylamine	"	ND		1440	"	"	"	"	"	
N-Nitrosodiphenylamine	"	ND		1440	"	"	"	"	"	
Pentachlorophenol	"	ND		2880	"	"	"	"	"	
Phenanthrene	"	ND		1440	"	"	"	"	"	
Phenol	"	ND		1440	"	"	"	"	"	
Pyrene	"	ND		1440	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		1440	"	"	"	"	"	
2,4,5-Trichlorophenol	"	ND		1440	"	"	"	"	"	
2,4,6-Trichlorophenol	"	ND		1440	"	"	"	"	"	
Surrogate(s): 2-Fluorobiphenyl			135%		20 - 150 %	"			"	
2-Fluorophenol			115%		10 - 150 %	"			"	
Nitrobenzene-d5			117%		20 - 150 %	"			"	
Phenol-d6			128%		10 - 150 %	"			"	
p-Terphenyl-d14			96.0%		20 - 150 %	"			" 2	Z 3
2,4,6-Tribromophe	enol		81.1%		10 - 150 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Pesticides per EPA Method 1311/8081A

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01 (Q-1)		Soi	il		Sam	pled: 08	/16/07 14:5	50		Н8
gamma-BHC (Lindane)	1311/8081A	ND		0.000500	mg/l	1x	7100068	10/02/07 15:20	10/03/07 16:08	
Chlordane (tech)	"	ND		0.00625	"	"	"	"	"	
Endrin	"	ND		0.000500	"	"	"	"	"	
Heptachlor	"	ND		0.000500	"	"	"	"	"	
Heptachlor epoxide	II .	ND		0.000500	"	"	"	"	"	
Methoxychlor	"	ND		0.000500	"	"	"	"	"	
Toxaphene	"	ND		0.0625	"	"	"	"	II .	

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

96.3% 30 - 140 %

PQH0767-02 (Q-2)		Soil	l		Sam	pled: 08	/16/07 13:3	0		Н
gamma-BHC (Lindane)	1311/8081A	ND		0.000400	mg/l	1x	7100068	10/02/07 15:20	10/03/07 16:33	
Chlordane (tech)	"	ND		0.00500	"	"	"	"	"	
Endrin	"	ND		0.000400	"	"	"	"	"	
Heptachlor	"	ND		0.000400	"	"	"	"	"	
Heptachlor epoxide	"	ND		0.000400	"	"	"	"	n .	
Methoxychlor	"	ND		0.000400	"	"	"	"	"	
Toxaphene	"	ND		0.0500	"	"	"	"	"	

160% Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

30 - 140 %

ZX

PQH0767-03 (Q-3)		Soil	l		Sam	pled: 08	/16/07 11:2	25		Н8
gamma-BHC (Lindane)	1311/8081A	ND		0.000400	mg/l	1x	7100068	10/02/07 15:20	10/03/07 16:59	
Chlordane (tech)	"	ND		0.00500	"	"	"	"	"	
Endrin	"	ND		0.000400	"	"	"	"	"	
Heptachlor	"	ND		0.000400	"	"	"	"	"	
Heptachlor epoxide	"	ND		0.000400	"	"	"	"	"	
Methoxychlor	"	ND		0.000400	"	"	"	"	"	
Toxaphene	"	ND		0.0500	"	"	"	"	"	

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

104% 30 - 140 %

PQH0767-04 (Q-4)		So	il		Samp	led: 08	3/16/07 16:1	15		Н8
gamma-BHC (Lindane)	1311/8081A	ND		0.000400	mg/l	1x	7100068	10/02/07 15:20	10/03/07 17:25	
Chlordane (tech)	II .	ND		0.00500	"	"	"	"	"	
Endrin	"	ND		0.000400	"	"	"	"	"	
Heptachlor	II .	ND		0.000400	"	"	"	"	"	
Heptachlor epoxide	"	ND		0.000400	"	"	"	"	"	
Methoxychlor	II .	ND		0.000400	"	"	"	"	"	
Toxaphene	"	ND		0.0500	"	"	"	"	"	
			1010/		20 1400/				,,	

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

101%

30 - 140 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Pesticides per EPA Method 1311/8081A

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-05 (Q-5)		So	il		Sam	pled: 08	/16/07 14:0	00		Н8
gamma-BHC (Lindane)	1311/8081A	ND		0.000400	mg/l	1x	7100068	10/02/07 15:20	10/03/07 17:51	
Chlordane (tech)	"	ND		0.00500	"	"	"	"	"	
Endrin	"	ND		0.000400	"	"	"	"	"	
Heptachlor	"	ND		0.000400	"	"	"	"	"	
Heptachlor epoxide	"	ND		0.000400	"	"	"	"	"	
Methoxychlor	"	ND		0.000400	"	"	"	"	"	
Toxaphene	"	ND		0.0500	"	"	"	"	"	

Surrogate(s): 2,4,5,6-Tetrachloro-m-xylene

118%

30 - 140 %

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Semivolatiles per EPA Method 1311/8270

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		So	oil		Samp	led: 08	8/16/07 14:5	50		RL3, H8
1,4-Dichlorobenze	ene	1311/8270	ND		0.200	mg/l	4x	7100022	10/01/07 15:00	10/02/07 19:27	
2,4-Dinitrotoluene	;	"	ND		0.200	"	"	"	"	"	
Hexachlorobenzer	ne	"	ND		0.200	"	"	"	"	"	
Hexachlorobutadi	ene	"	ND		0.200	"	"	"	"	"	
Hexachloroethane		"	ND		0.200	"	"	"	"	"	
Nitrobenzene		"	ND		0.200	"	"	"	"	"	
Pentachloropheno	1	"	ND		0.400	"	"	"	"	"	
Pyridine		"	ND		0.800	"	"	"	"	"	
2,4,5-Trichloroph	enol	"	ND		0.200	"	"	"	"	"	
Total Cresols		"	1.84		0.400	"	"	"	"	"	
2,4,6-Trichloroph	enol	"	ND		0.200	"	"	"	"	"	
Surrogate(s):	2-Fluorophenol			51.9%		7 - 116 %	"			"	
~(*).	Phenol-d6			29.8%		1 - 114 %	"			"	
	2,4,6-Tribromopher	iol		101%		33 - 150 %	"			"	
	Nitrobenzene-d5			76.4%		29 - 140 %	"			"	
	2-Fluorobiphenyl			77.0%		12 - 135 %	"			"	
	p-Terphenyl-d14			84.9%		47 - 138 %	"			"	
PQH0767-02	(Q-2)		So	oil		Samp	led: 08	8/16/07 13:3	30		H8, RL3
1,4-Dichlorobenze		1311/8270	ND		0.150	mg/l	3x	7100022	10/01/07 15:00	10/02/07 20:12	<u> </u>
2,4-Dinitrotoluene		"	ND		0.150	"	"	"	"	"	
Hexachlorobenzer		"	ND		0.150	"	,,	"	"	"	
Hexachlorobutadi		"	ND		0.150	"	,,	"	"	"	
Hexachloroethane		"	ND ND		0.150	"	"	"	"	"	
Nitrobenzene		"	ND		0.150	"	"	"	"	"	
Pentachloropheno	1	"	ND		0.300	"	,,	"	"	"	
Pyridine Pyridine	1	"	ND		0.600	"	,,	"	"	"	
2,4,5-Trichloroph	enol	"	ND		0.150	"	,,	"	"	"	
Total Cresols	CHOI	"	1.50		0.300	,,		"	"	"	
2,4,6-Trichloroph	enol	"	ND		0.150	"	"	"	"	"	
	2-Fluorophenol			48.0%		7 - 116 %	"			"	
Sui i oguic(s).	Phenol-d6			30.1%		1 - 114 %	"			"	
	2,4,6-Tribromopher	nol		94.8%		33 - 150 %	"			"	
	Nitrobenzene-d5			80.4%		29 - 140 %	"			"	
	2-Fluorobiphenyl			76.6%		12 - 135 %	"			"	
	p-Terphenyl-d14						"				

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Semivolatiles per EPA Method 1311/8270

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-03 (Q-3)		So	il		Samp	led: 08	3/16/07 11:2	25		RL3, H8
1,4-Dichlorobenzene	1311/8270	ND		0.250	mg/l	5x	7100022	10/01/07 15:00	10/02/07 23:03	
2,4-Dinitrotoluene	"	ND		0.250	"	"	"	"	"	
Hexachlorobenzene	"	ND		0.250	"	"	"	"	"	
Hexachlorobutadiene	"	ND		0.250	"	"	"	"	"	
Hexachloroethane	"	ND		0.250	"	"	"	"	"	
Nitrobenzene	"	ND		0.250	"	"	"	"	"	
Pentachlorophenol	"	ND		0.500	"	"	"	"	"	
Pyridine	"	ND		1.00	"	"	"	"	"	
2,4,5-Trichlorophenol	"	ND		0.250	"	"	"	"	"	
Total Cresols	"	3.64		0.500	"	"	"	"	"	
2,4,6-Trichlorophenol	"	ND		0.250	"	"	"	"	"	
Surrogate(s): 2-Fluoroph	enol		48.2%		7 - 116 %	"			"	
Phenol-d6			32.7%		1 - 114 %	"			"	
2,4,6-Tribro	omovhenol		97.9%		33 - 150 %	"			"	
Nitrobenzer	•		85.1%		29 - 140 %	"			"	
	1 1		79.7%		12 - 135 %	"			"	
2-Fluorobin	pnenyi		19.1/0		12 133 /0					
2-Fluorobig p-Terpheny			91.4%		47 - 138 %	"			"	
p-Terpheny			91.4%		47 - 138 %				"	
		So	91.4%		47 - 138 %		3/ 16/07 16: 1	15	"	RL3, H8
p-Terpheny		So ND	91.4%	0.200	47 - 138 %		7100022	10/01/07 15:00	10/02/07 23:49	RL3, H8
p-Terpheny PQH0767-04 (Q-4)	il-d14		91.4% il	0.200 0.200	47 - 138 % Samp	led: 08			10/02/07 23:49	RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene	il-d14	ND	91.4% il		47 - 138 % Samp	led: 08	7100022	10/01/07 15:00		RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene	il-d14	ND ND	91.4% il 	0.200	47 - 138 % Samp mg/l "	led: 08	7100022	10/01/07 15:00		RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene	il-d14	ND ND ND	91.4% il 	0.200 0.200	47 - 138 % Samp mg/l "	led: 08	7100022	10/01/07 15:00		RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene	il-d14	ND ND ND ND	91.4% il	0.200 0.200 0.200	47 - 138 % Samp mg/l "	led: 08	7100022	10/01/07 15:00		RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane	il-d14	ND ND ND ND	91.4% il	0.200 0.200 0.200 0.200	47 - 138 % Samp mg/l "	led: 08	7100022	10/01/07 15:00		RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene	il-d14	ND ND ND ND ND	91.4% il	0.200 0.200 0.200 0.200 0.200	47 - 138 % Samp mg/l " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00		RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine	il-d14	ND ND ND ND ND ND	91.4% il	0.200 0.200 0.200 0.200 0.200 0.400	47 - 138 % Samp mg/l " " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00		RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol	il-d14	ND	91.4% il	0.200 0.200 0.200 0.200 0.200 0.400 0.800	47 - 138 % Samp mg/l " " " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00		RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol	il-d14	ND	91.4% il	0.200 0.200 0.200 0.200 0.200 0.400 0.800 0.200	47 - 138 % Samp mg/l " " " " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00	"" "" "" "" "" "" "" "" "" "" "" "" ""	RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol Total Cresols	1311/8270 " " " " " " " " "	ND N	91.4% il	0.200 0.200 0.200 0.200 0.200 0.400 0.800 0.200 0.400	47 - 138 % Samp mg/l " " " " " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00	" " " " " " " " " " " "	RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol Total Cresols 2,4,6-Trichlorophenol	1311/8270 " " " " " " " " "	ND N	91.4% il	0.200 0.200 0.200 0.200 0.200 0.400 0.800 0.200 0.400	47 - 138 % Samp mg/l " " " " " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00	"	RL3, H8
p-Terpheny PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol Total Cresols 2,4,6-Trichlorophenol Surrogate(s): 2-Fluoroph	1311/8270 " " " " " " " " " " " " " " " " " " "	ND N	91.4% il 49.0%	0.200 0.200 0.200 0.200 0.200 0.400 0.800 0.200 0.400	47 - 138 % Samp mg/l " " " " " " " " " " " " " " " " " "	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00	"	RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol Total Cresols 2,4,6-Trichlorophenol Surrogate(s): 2-Fluorophenol-d6	1311/8270 " " " " " " " " " " " " " " " " " " "	ND N	91.4% il 49.0% 29.8%	0.200 0.200 0.200 0.200 0.200 0.400 0.800 0.200 0.400	### 47 - 138 % Samp mg/l	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00	"	RL3, H8
PQH0767-04 (Q-4) 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol Total Cresols 2,4,6-Trichlorophenol Surrogate(s): 2-Fluorophenol-d6 2,4,6-Tribro	1311/8270 "" "" "" "" "" "" "" "" "" "" "" "" ""	ND N	91.4% il 49.0% 29.8% 90.0%	0.200 0.200 0.200 0.200 0.200 0.400 0.800 0.200 0.400	### 47 - 138 % Samp mg/l	4x " " " " " " " " " " " " " " " " " " "	7100022	10/01/07 15:00	"	RL3, H8

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Semivolatiles per EPA Method 1311/8270

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-05 (Q-5)		So	il		Samp	led: 08	3/16/07 14:	00		RL3, H8
1,4-Dichlorobenzene	1311/8270	ND		0.200	mg/l	4x	7100022	10/01/07 15:00	10/03/07 00:35	
2,4-Dinitrotoluene	"	ND		0.200	"	"	"	"	n	
Hexachlorobenzene	"	ND		0.200	"	"	"	"	n	
Hexachlorobutadiene	"	ND		0.200	"	"	"	"	"	
Hexachloroethane	"	ND		0.200	"	"	"	"	"	
Nitrobenzene	"	ND		0.200	"	"	"	"	"	
Pentachlorophenol	"	ND		0.400	"	"	"	"	"	
Pyridine	"	ND		0.800	"	"	"	"	"	
2,4,5-Trichlorophenol	"	ND		0.200	"	"	"	"	"	
Total Cresols	"	1.42		0.400	"	"	"	"	"	
2,4,6-Trichlorophenol	"	ND		0.200	"	"	"	"	"	
Surrogate(s): 2-Fluorophenol			49.0%		7 - 116 %	"			"	
Phenol-d6			29.6%		1 - 114 %	"			"	
2,4,6-Tribromoph	enol		93.6%		33 - 150 %	"			"	
Nitrobenzene-d5			79.6%		29 - 140 %	"			"	
2-Fluorobiphenyl			74.4%		12 - 135 %	"			"	
p-Terphenyl-d14			84.6%		47 - 138 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		Soi	il	Samj	pled: 08	8/16/07 14:5	50		
pН		EPA 9045B	7.01		pH Units	1x	7080872	08/20/07 10:4	1 08/20/07 12:51	
PQH0767-02	(Q-2)		Soi	il	Samj	pled: 08	8/16/07 13:3	30		
pН		EPA 9045B	6.87		pH Units	1x	7080872	08/20/07 10:4	1 08/20/07 12:51	
PQH0767-03	(Q-3)		Soi	il	Samj	pled: 08	8/16/07 11:2	25		
pН		EPA 9045B	7.13		pH Units	1x	7080872	08/20/07 10:4	1 08/20/07 12:51	
PQH0767-04	(Q-4)		Soi	il	Samj	pled: 08	8/16/07 16:1	15		
pH		EPA 9045B	7.34		pH Units	1x	7080872	08/20/07 10:4	1 08/20/07 12:51	
PQH0767-05	(Q-5)		Soi	il	Samj	pled: 08	8/16/07 14:0	00		
pН		EPA 9045B	7.00		pH Units	1x	7080872	08/20/07 10:4	1 08/20/07 12:51	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Physical Parameters per APHA/ASTM/EPA Methods TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		So	il	San	pled: 0	8/16/07 14:	50		
Corrosivity		EPA 9040B	7.01		pH Units	1x	7080872	08/20/07 10:41	08/20/07 12:51	
Flashpoint		EPA 1010	ND		150 °F	"	7081270	08/27/07 13:48	08/27/07 18:48	
PQH0767-02	(Q-2)		So	il	San	ipled: 08	8/16/07 13:	30		
Corrosivity		EPA 9040B	6.87		pH Units	1x	7080872	08/20/07 10:41	1 08/20/07 12:51	
Flashpoint		EPA 1010	ND		150 °F	"	7081270	08/27/07 13:48	08/27/07 18:48	
PQH0767-03	(Q-3)		So	il	San	ipled: 08	8/16/07 11:	25		
Corrosivity		EPA 9040B	7.13		pH Units	1x	7080872	08/20/07 10:41	1 08/20/07 12:51	
Flashpoint		EPA 1010	ND		150 °F	"	7081270	08/27/07 13:48	08/27/07 18:48	
PQH0767-04	(Q-4)		So	il	San	ipled: 08	8/16/07 16:	15		
Corrosivity		EPA 9040B	7.34		pH Units	1x	7080872	08/20/07 10:41	1 08/20/07 12:51	
Flashpoint		EPA 1010	ND		150 °F	"	7081270	08/27/07 13:48	08/27/07 18:48	
PQH0767-05	(Q-5)		So	il	San	ıpled: 08	8/16/07 14:	00		
Corrosivity		EPA 9040B	7.00		pH Units	1x	7080872	08/20/07 10:41	1 08/20/07 12:51	
Flashpoint		EPA 1010	ND		150 °F	"	7081270	08/27/07 13:48	08/27/07 18:48	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental

Harbor Tank 23 Project Name:

750 S. Rosemont Rd. West Linn, OR 97068 Project Number: P7176.1 Project Manager: David G. Coles

Report Created: 10/11/07 08:06

TCLP Extraction Only

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		Soi	1		Sam	pled: 08/	/16/07 14:5	50		
Extraction		EPA 1311	ND		1.00	N/A	1x	7091053	09/25/07 17:17	09/26/07 18:09	
PQH0767-02	(Q-2)		Soi	1		Sam	pled: 08/	/16/07 13:3	30		
Extraction		EPA 1311	ND		1.00	N/A	1x	7091053	09/25/07 17:17	09/26/07 18:09	
PQH0767-03	(Q-3)		Soi	1		Sam	pled: 08/	/16/07 11:2	25		
Extraction		EPA 1311	ND		1.00	N/A	1x	7091053	09/25/07 17:17	09/26/07 18:09	
PQH0767-04	(Q-4)		Soi	1		Sam	pled: 08/	/16/07 16:1	15		
Extraction		EPA 1311	ND		1.00	N/A	1x	7091053	09/25/07 17:17	09/26/07 18:09	
PQH0767-05	(Q-5)		Soi	1		Sam	pled: 08/	/16/07 14:0	00		
Extraction		EPA 1311	ND		1.00	N/A	1x	7091053	09/25/07 17:17	09/26/07 18:09	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01 (Q-1)		So	il		Samı	oled: 08	3/16/07 14:5	50		
Arsenic	EPA 6020	36.9		0.340	mg/kg wet	1x	7H28047	08/28/07 13:56	08/29/07 14:10	
Cadmium	"	13.9		0.340	"	"	"	"	"	
Mercury	EPA 7471A	2.69		0.390	"	4x	7H28052	08/28/07 16:12	08/29/07 14:53	
Selenium	EPA 6020	1.89		0.340	"	1x	7H28047	08/28/07 13:56	08/29/07 14:10	
Silver	"	1.85		0.340	"	"	"	"	"	
PQH0767-01RE1 (Q-1)		So	il		Samı	oled: 08	3/16/07 14:5	50		
Barium	EPA 6020	493		170	mg/kg wet	50x	7H28047	08/28/07 13:56	08/29/07 14:41	
Chromium	"	261		17.0	"	"	"	"	"	
Lead	"	2820		17.0	"	"	"	"	"	
PQH0767-02 (Q-2)		So	il		Samı	oled: 08	3/16/07 13:3	30		
Arsenic	EPA 6020	11.3		3.97	mg/kg wet	10x	7H28047	08/28/07 13:56	08/29/07 14:15	
Barium	"	617		39.7	"	"	"	"	"	
Cadmium	"	13.7		3.97	"	"	"	"	"	
Chromium	"	185		3.97	"	"	"	"	"	
Lead	"	784		3.97	"	"	"	"	"	
Mercury	EPA 7471A	2.12		0.192	"	2x	7H28052	08/28/07 16:12	08/29/07 14:33	
Selenium	EPA 6020	ND		3.97	"	10x	7H28047	08/28/07 13:56	08/29/07 14:15	
Silver	"	ND		3.97	"	"	"	"	"	
PQH0767-03 (Q-3)		So	il		Samp	oled: 08	3/16/07 11:2	25		
Arsenic	EPA 6020	10.7		4.07	mg/kg wet	10x	7H28047	08/28/07 13:56	08/29/07 14:22	
Barium	"	578		40.7	"	"	"	"	"	
Cadmium	"	5.16		4.07	"	"	"	"	"	
Chromium	"	132		4.07	"	"	"	"	"	
Lead	"	503		4.07	"	"	"	"	n .	
Mercury	EPA 7471A	1.18		0.0974	"	1x	7H28052	08/28/07 16:12	08/29/07 14:28	
Selenium	EPA 6020	ND		4.07	"	10x	7H28047	08/28/07 13:56	08/29/07 14:22	
Silver	"	ND		4.07	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-04	(Q-4)		So	il		Samj	oled: 08	3/16/07 16:1	15		
Arsenic		EPA 6020	14.5		4.50	mg/kg wet	10x	7H28047	08/28/07 13:56	08/29/07 14:29	
Barium		"	632		45.0	"	"	"	"	"	
Cadmium		"	7.66		4.50	"	"	"	"	"	
Chromium		"	176		4.50	"	"	"	"	"	
Lead		"	1040		4.50	"	"	"	"	"	
Mercury		EPA 7471A	2.22		0.172	"	2x	7H28052	08/28/07 16:12	08/29/07 14:36	
Selenium		EPA 6020	ND		4.50	"	10x	7H28047	08/28/07 13:56	08/29/07 14:29	
Silver		"	ND		4.50	"	"	"	"	"	
PQH0767-05	(Q-5)		So	il		Samj	oled: 08	8/16/07 14:0	00		
Arsenic		EPA 6020	12.1		4.72	mg/kg wet	10x	7H28047	08/28/07 13:56	08/29/07 14:35	
Barium		"	845		47.2	"	"	"	"	"	
Cadmium		"	ND		4.72	"	"	"	"	"	
Chromium		"	162		4.72	"	"	"	"	"	
Lead		"	733		4.72	"	"	"	"	"	
Mercury		EPA 7471A	1.64		0.156	"	2x	7H28052	08/28/07 16:12	08/29/07 14:38	
Selenium		EPA 6020	ND		4.72	"	10x	7H28047	08/28/07 13:56	08/29/07 14:35	
Silver		"	ND		4.72	"	"	"	"	"	
PQH0767-06	(Field Rinsate)		W	ater		Samj	oled: 08	3/16/07 13:4	4 5		
Arsenic		EPA 6020	ND		0.00100	mg/l	1x	7H28007	08/28/07 09:11	08/31/07 08:13	
Barium		"	ND		0.0100	"	"	"	"	"	
Cadmium		"	ND		0.00100	"	"	"	"	"	
Chromium		"	ND		0.00100	"	"	"	"	"	
Lead		"	ND		0.00100	"	"	"	"	"	
Mercury		EPA 7470A	ND		0.000200	"	"	7H27015	08/27/07 10:30	08/27/07 14:24	
Selenium		EPA 6020	ND		0.00100	"	"	7H28007	08/28/07 09:11	08/31/07 08:13	
Silver		"	ND		0.00100	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01 (Q-1)		So	il		Samp	oled: 08	3/16/07 14:5	50		
Acetone	EPA 8260B	18.3		0.670	mg/kg wet	1x	7H29025	08/30/07 09:39	08/30/07 14:02	
Benzene	"	8.29		0.0670	"	"	"	"	"	
Bromobenzene	"	ND		0.0670	"	"	"	"	"	
Bromochloromethane	"	ND		0.0670	"	"	"	"	n .	
Bromodichloromethane	"	ND		0.0670	"	"	"	"	n .	
Bromoform	"	ND		0.0670	"	"	"	"	n .	
Bromomethane	"	ND		0.0670	"	"	"	"	"	
2-Butanone	"	7.50		0.670	"	"	"	"	"	
n-Butylbenzene	"	1.62		0.0670	"	"	"	"	"	
sec-Butylbenzene	"	0.838		0.0670	"	"	"	"	"	
tert-Butylbenzene	"	0.0985		0.0670	"	"	"	"	"	
Carbon disulfide	"	ND		0.0670	"	"	"	"	"	
Carbon tetrachloride	"	ND		0.0670	"	"	"	"	"	
Chlorobenzene	"	ND		0.0670	"	"	"	"	"	
Chloroethane	"	ND		0.0670	"	"	"	"	"	
Chloroform	"	ND		0.0670	"	"	"	"	"	
Chloromethane	"	ND		0.335	"	"	"	"	n .	
2-Chlorotoluene	"	0.873		0.0670	"	"	"	"	"	
4-Chlorotoluene	"	ND		0.0670	"	"	"	"	"	
Dibromochloromethane	"	ND		0.0670	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND		0.335	"	"	"	"	n .	
1,2-Dibromoethane	"	ND		0.0670	"	"	"	"	"	
Dibromomethane	"	ND		0.0670	"	"	"	"	"	C
1,2-Dichlorobenzene	"	1.91		0.0670	"	"	"	"	"	
1,3-Dichlorobenzene	"	0.0818		0.0670	"	"	"	"	"	
1,4-Dichlorobenzene	"	0.199		0.0670	"	"	"	"	"	
Dichlorodifluoromethane	"	ND		0.0670	"	"	"	"	n .	
1,2-Dichloroethane	"	2.42		0.0670	"	"	"	"	"	
1,1-Dichloroethene	"	0.190		0.0670	"	"	"	"	"	
trans-1,2-Dichloroethene	"	ND		0.0670	"	"	"	"	"	
1,2-Dichloropropane	"	ND		0.0670	"	"	"	"	"	
1,3-Dichloropropane	"	ND		0.0670	"	"	"	"	n .	
2,2-Dichloropropane	"	ND		0.0670	"	"	"	"	n .	
1,1-Dichloropropene	"	ND		0.0670	"	"	"	"	"	
cis-1,3-Dichloropropene	"	ND		0.0670	"	"	"	"	"	
trans-1,3-Dichloropropene	"	ND		0.0670	"	"	"	"	"	
Ethylbenzene	"	12.1		0.0670	"	"	"	"	"	
Hexachlorobutadiene	"	ND		0.335	"	"	"	"	"	
Methyl tert-butyl ether	"	1.85		0.335	"	"	"	"	n .	
n-Hexane	"	2.90		0.670	"	"	"	"	"	
2-Hexanone	"	ND		0.670	"	"	"	"	"	
Isopropylbenzene	"	2.27		0.0670	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Dil

Batch

Prepared

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Analyzed

Notes

Analyte

Harbor Tank 23 **Coles Environmental** Project Name:

Result

Method

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

MRL Units

TestAmerica - Seattle, WA

MDL*

									,/	
PQH0767-01 (Q-1)		So	il		Samp	led: 08	8/16/07 14:5	0		
p-Isopropyltoluene	EPA 8260B	4.99		0.0670	mg/kg wet	1x	7H29025	08/30/07 09:39	08/30/07 14:02	
4-Methyl-2-pentanone	"	31.1		0.670	"	"	"	"	"	
Methylene chloride	"	11.5		0.670	"	"	"	"	"	
Naphthalene	"	42.4		0.335	"	"	"	"	"	
n-Propylbenzene	"	5.09		0.0670	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		0.335	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		0.335	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		0.0670	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	"	ND		0.0670	"	"	"	"	"	
1,1,1-Trichloroethane	"	ND		0.0670	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		0.0670	"	"	"	"	"	
Trichloroethene	"	9.48		0.0670	"	"	"	"	"	
Trichlorofluoromethane	"	ND		0.0670	"	"	"	"	"	
1,2,3-Trichloropropane	"	ND		0.0670	"	"	"	"	"	
1,3,5-Trimethylbenzene	"	5.69		0.0670	"	"	"	"	"	
Vinyl chloride	"	3.54		0.0670	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			101%		75 - 125 %	"			"	
Toluene-d8			96.4%		75 - 125 %	"			"	
4-BFB			103%		75 - 125 %	"			"	
PQH0767-01RE1 (Q-1)		So	il		Samp	led: 08	8/16/07 14:5	0		
Acetone	EPA 8260B	19.7		6.70	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 14:57	
1,1-Dichloroethane	"	16.4		0.670	"	"	"	"	"	
cis-1,2-Dichloroethene	"	128		0.670	"	"	"	"	"	
Styrene	"	19.2		0.670	"	"	"	"	"	
Tetrachloroethene	"	17.1		0.670	"	"	"	"	"	
Toluene	"	118		0.670	"	"	"	"	"	
Total Xylenes	"	97.5		2.01	"	"	"	"	II .	
Surrogate(s): 1,2-DCA-d4			99.4%		75 - 125 %	Ix			"	
Toluene-d8			94.2%		75 - 125 %	"			"	
4-BFB			103%		75 - 125 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-02 (Q-2)		So	il		Samp	oled: 08	3/16/07 13:3	30		RL
Acetone	EPA 8260B	44.3		6.91	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 15:24	
Benzene	"	5.30		0.691	"	"	"	"	"	
Bromobenzene	"	ND		0.691	"	"	"	"	"	
Bromochloromethane	"	ND		0.691	"	"	"	"	n .	
Bromodichloromethane	"	ND		0.691	"	"	"	"	"	
Bromoform	"	ND		0.691	"	"	"	"	"	
Bromomethane	"	ND		0.691	"	"	"	"	n .	
2-Butanone	"	18.4		6.91	"	"	"	"	"	
n-Butylbenzene	"	ND		0.691	"	"	"	"	"	
sec-Butylbenzene	"	ND		0.691	"	"	"	"	n .	
tert-Butylbenzene	"	ND		0.691	"	"	"	"	n .	
Carbon disulfide	"	ND		0.691	"	"	"	"	n .	
Carbon tetrachloride	"	ND		0.691	"	"	"	"	"	
Chlorobenzene	"	ND		0.691	"	"	"	"	"	
Chloroethane	"	ND		0.691	"	"	"	"	"	
Chloroform	"	ND		0.691	"	"	"	"	"	
Chloromethane	"	ND		3.45	"	"	"	"	"	
2-Chlorotoluene	"	ND		0.691	"	"	"	"	"	
4-Chlorotoluene	"	ND		0.691	"	"	"	"	"	
Dibromochloromethane	"	ND		0.691	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND		3.45	"	"	"	"	"	
1,2-Dibromoethane	"	ND		0.691	"	"	"	"	"	
Dibromomethane	"	ND		0.691	"	"	"	"	"	C
1,2-Dichlorobenzene	"	0.746		0.691	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		0.691	"	"	"	"	n .	
1,4-Dichlorobenzene	"	ND		0.691	"	"	"	"	"	
Dichlorodifluoromethane	II .	ND		0.691	"	"	"	"	"	
1,1-Dichloroethane	"	19.5		0.691	"	"	"	"	n .	
1,2-Dichloroethane	"	2.14		0.691	"	"	"	"	"	
1,1-Dichloroethene	"	ND		0.691	"	"	"	"	"	
cis-1,2-Dichloroethene	"	91.2		0.691	"	"	"	"	"	
trans-1,2-Dichloroethene	n .	ND		0.691	"	"	"	"	"	
1,2-Dichloropropane	n .	ND		0.691	"	"	"	"	"	
1,3-Dichloropropane	n .	ND		0.691	"	"	"	"	"	
2,2-Dichloropropane	n .	ND		0.691	"	"	"	"	"	
1,1-Dichloropropene	"	ND		0.691	"	"	"	"	"	
cis-1,3-Dichloropropene	"	ND		0.691	"	"	"	"	"	
trans-1,3-Dichloropropene	"	ND		0.691	"	"	"	"	n .	
Ethylbenzene	m .	8.90		0.691	"	"	"	"	n	
Hexachlorobutadiene	"	ND		3.45	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		3.45	"	"	"	"	"	
1710th ji tort butyr curer		110		6.91		,,	,,	,,	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-02 (Q-2)		So	oil		Samp	led: 08	3/16/07 13:3	30		RL7
2-Hexanone	EPA 8260B	ND		6.91	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 15:24	
Isopropylbenzene	"	1.17		0.691	"	"	"	"	"	
p-Isopropyltoluene	"	0.787		0.691	"	"	"	"	"	
4-Methyl-2-pentanone	"	20.5		6.91	"	"	"	"	"	
Methylene chloride	"	102		6.91	"	"	"	"	"	
Naphthalene	"	13.4		3.45	"	"	"	"	"	
n-Propylbenzene	"	2.49		0.691	"	"	"	"	"	
Styrene	"	11.3		0.691	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		3.45	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		3.45	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		0.691	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	"	ND		0.691	"	"	"	"	"	
Tetrachloroethene	"	4.53		0.691	"	"	"	"	"	
Toluene	"	86.2		0.691	"	"	"	"	"	
1,1,1-Trichloroethane	"	ND		0.691	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		0.691	"	"	"	"	"	
Trichloroethene	"	8.69		0.691	"	"	"	"	"	
Trichlorofluoromethane	"	ND		0.691	"	"	"	"	"	
1,2,3-Trichloropropane	"	ND		0.691	"	"	"	"	"	
1,2,4-Trimethylbenzene	"	12.2		0.691	"	"	"	"	"	
1,3,5-Trimethylbenzene	"	3.34		0.691	"	"	"	"	"	
Vinyl chloride	"	10.4		0.691	"	"	"	"	"	
Total Xylenes	"	42.7		2.07	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			100%		75 - 125 %	lx			"	
Toluene-d8			93.9%		75 - 125 %	"			"	
4-BFB			102%		75 - 125 %	"			"	
PQH0767-03 (Q-3)		So	oil		Samp	led: 08	3/16/07 11:2	25		RL7
Acetone	EPA 8260B	42.5		7.97	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 15:51	
Benzene	"	3.46		0.797	"	"	"	"	"	
Bromobenzene	"	ND		0.797	"	"	"	"	"	
Bromochloromethane	"	ND		0.797	"	"	"	"	"	
Bromodichloromethane	"	ND		0.797	"	"	"	"	"	
Bromoform	"	ND		0.797	"	"	"	"	"	
Bromomethane	"	ND		0.797	"	"	"	"	"	
2-Butanone	"	13.4		7.97	"	"	"	"	"	
n-Butylbenzene	"	ND		0.797	"	"	"	"	"	
sec-Butylbenzene	"	ND		0.797	"	"	"	"	"	
tert-Butylbenzene	"	ND		0.797	"	"	"	"	"	
Carbon disulfide	"	ND		0.797	"	"	"	"	"	
Carbon tetrachloride	"	ND		0.797	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-03 (Q-3)		So	il		Samı	oled: 08	3/16/07 11:2	25		RL7
Chlorobenzene	EPA 8260B	ND		0.797	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 15:51	
Chloroethane	"	ND		0.797	"	"	"	"	"	
Chloroform	"	ND		0.797	"	"	"	"	"	
Chloromethane	"	ND		3.99	"	"	"	"	"	
2-Chlorotoluene	"	ND		0.797	"	"	"	"	"	
4-Chlorotoluene	"	ND		0.797	"	"	"	"	"	
Dibromochloromethane	"	ND		0.797	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND		3.99	"	"	"	"	"	
1,2-Dibromoethane	"	ND		0.797	"	"	"	"	"	
Dibromomethane	"	ND		0.797	"	"	"	"	"	C
1,2-Dichlorobenzene	"	1.23		0.797	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		0.797	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		0.797	"	"	"	"	"	
Dichlorodifluoromethane	"	ND		0.797	"	"	"	"	"	
1,1-Dichloroethane	"	23.1		0.797	"	"	"	"	"	
1,2-Dichloroethane	"	1.18		0.797	"	"	"	"	"	
1,1-Dichloroethene	"	ND		0.797	"	"	"	"	"	
cis-1,2-Dichloroethene	"	18.6		0.797	"	"	"	"	"	
trans-1,2-Dichloroethene	"	ND		0.797	"	"	"	"	"	
1,2-Dichloropropane	II .	ND		0.797	"	"	"	"	"	
1,3-Dichloropropane	"	ND		0.797	"	"	"	"	"	
2,2-Dichloropropane	"	ND		0.797	"	"	"	"	"	
1,1-Dichloropropene	"	ND		0.797	"	"	"	"	"	
cis-1,3-Dichloropropene	"	ND		0.797	"	"	"	"	"	
trans-1,3-Dichloropropene	"	ND		0.797	"	"	"	"	"	
Ethylbenzene	"	5.80		0.797	"	"	"	"	"	
Hexachlorobutadiene	"	ND		3.99	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		3.99	"	"	"	"	"	
n-Hexane	"	ND		7.97	"	"	"	"	"	
2-Hexanone	"	ND		7.97	"	"	"	"	"	
Isopropylbenzene	"	ND		0.797	"	"	"	"	"	
p-Isopropyltoluene	"	2.02		0.797	"	"	"	"	"	
4-Methyl-2-pentanone	"	24.4		7.97	"	"	"	"	"	
Methylene chloride	"	98.3		7.97	"	"	"	"	"	
Naphthalene	"	10.6		3.99	"	"	"	"	"	
n-Propylbenzene	"	1.67		0.797	"	"	"	"	"	
Styrene	"	ND		0.797	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		3.99	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		3.99	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	n .	ND		0.797	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	n .	ND		0.797	"	"	"	"	"	
Tetrachloroethene	"	18.7		0.797	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-03 (Q-3)		So	il		Samp	led: 08	3/16/07 11:2	25		RL7
Toluene	EPA 8260B	46.0		0.797	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 15:51	
1,1,1-Trichloroethane	"	ND		0.797	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		0.797	"	"	"	"	"	
Trichloroethene	"	17.6		0.797	"	"	"	"	"	
Trichlorofluoromethane	"	ND		0.797	"	"	"	"	"	
1,2,3-Trichloropropane	"	ND		0.797	"	"	"	"	"	
1,2,4-Trimethylbenzene	"	9.53		0.797	"	"	"	"	"	
1,3,5-Trimethylbenzene	"	2.71		0.797	"	"	"	"	"	
Vinyl chloride	"	0.805		0.797	"	"	"	"	"	
Total Xylenes	"	29.2		2.39	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			101%		75 - 125 %	lx			"	
Toluene-d8			94.3%		75 - 125 %	"			"	
4-BFB			101%		75 - 125 %	"			"	
PQH0767-04 (Q-4)		So	il		Samp	led: 08	3/16/0 7 16:1	15		RL7
Acetone	EPA 8260B	23.1		7.05	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 16:19	
Benzene	"	3.79		0.705	"	"	"	"	"	
Bromobenzene	"	ND		0.705	"	"	"	"	"	
Bromochloromethane	"	ND		0.705	"	"	"	"	"	
Bromodichloromethane	"	ND		0.705	"	"	"	"	"	
Bromoform	"	ND		0.705	"	"	"	"	"	

PQH0767-04 (Q-4)		501	1		Samp	iea: U8	716/07/16:1	.5		KL.
Acetone	EPA 8260B	23.1		7.05 mg/l	kg wet	10x	7H29025	08/30/07 09:39	08/30/07 16:19	
Benzene	"	3.79		0.705	"	"	"	"	"	
Bromobenzene	"	ND		0.705	"	"	"	"	"	
Bromochloromethane	"	ND		0.705	"	"	"	"	"	
Bromodichloromethane	"	ND		0.705	"	"	"	"	"	
Bromoform	"	ND		0.705	"	"	"	"	"	
Bromomethane	"	ND		0.705	"	"	"	"	"	
2-Butanone	"	7.77		7.05	"	"	"	"	"	
n-Butylbenzene	"	ND		0.705	"	"	"	"	"	
sec-Butylbenzene	"	ND		0.705	"	"	"	"	"	
tert-Butylbenzene	"	ND		0.705	"	"	"	"	"	
Carbon disulfide	"	ND		0.705	"	"	"	"	"	
Carbon tetrachloride	"	ND		0.705	"	"	"	"	"	
Chlorobenzene	"	ND		0.705	"	"	"	"	"	
Chloroethane	"	ND		0.705	"	"	"	"	"	
Chloroform	"	ND		0.705	"	"	"	"	"	
Chloromethane	"	ND		3.53	"	"	"	"	"	
2-Chlorotoluene	"	ND		0.705	"	"	"	"	"	
4-Chlorotoluene	"	ND		0.705	"	"	"	"	"	
Dibromochloromethane	"	ND		0.705	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND		3.53	"	"	"	"	"	
1,2-Dibromoethane	"	ND		0.705	"	"	"	"	"	
Dibromomethane	"	ND		0.705	"	"	"	"	"	C
1,2-Dichlorobenzene	"	ND		0.705	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		0.705	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		0.705	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-04 (Q-4)		So	oil		Samp	led: 08	/16/07 16:1	15		RL7
Dichlorodifluoromethane	EPA 8260B	ND		0.705	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 16:19	
1,1-Dichloroethane	"	9.52		0.705	"	"	"	"	"	
1,2-Dichloroethane	"	1.39		0.705	"	"	"	"	"	
1,1-Dichloroethene	"	ND		0.705	"	"	"	"	"	
cis-1,2-Dichloroethene	"	9.63		0.705	"	"	"	"	"	
trans-1,2-Dichloroethene	"	ND		0.705	"	"	"	"	"	
1,2-Dichloropropane	"	ND		0.705	"	"	"	"	"	
1,3-Dichloropropane	"	ND		0.705	"	"	"	"	"	
2,2-Dichloropropane	"	ND		0.705	"	"	"	"	"	
1,1-Dichloropropene	"	ND		0.705	"	"	"	"	"	
cis-1,3-Dichloropropene	"	ND		0.705	"	"	"	"	"	
trans-1,3-Dichloropropene	"	ND		0.705	"	"	"	"	"	
Ethylbenzene	"	6.03		0.705	"	"	"	"	"	
Hexachlorobutadiene	"	ND		3.53	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		3.53	"	"	"	"	"	
n-Hexane	"	ND		7.05	"	"	"	"	"	
2-Hexanone	"	ND		7.05	"	"	"	"	"	
Isopropylbenzene	"	0.733		0.705	"	"	"	"	"	
p-Isopropyltoluene	"	ND		0.705	"	"	"	"	"	
4-Methyl-2-pentanone	"	11.6		7.05	"	"	"	"	"	
Methylene chloride	"	60.8		7.05	"	"	"	"	"	
Naphthalene	"	14.2		3.53	"	"	"	"	"	
n-Propylbenzene	"	1.66		0.705	"	"	"	"	"	
Styrene	"	5.75		0.705	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		3.53	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		3.53	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		0.705	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	"	ND		0.705	"	"	"	"	"	
Tetrachloroethene	"	4.51		0.705	"	"	"	"	"	
Toluene	"	49.9		0.705	"	"	"	"	"	
1,1,1-Trichloroethane	"	ND		0.705	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		0.705	"	"	"	"	"	
Trichloroethene	"	5.71		0.705	"	"	"	"	"	
Trichlorofluoromethane	"	ND		0.705	"	"	"	"	"	
1,2,3-Trichloropropane	"	ND		0.705	"	"	"	"	"	
1,2,4-Trimethylbenzene	"	9.32		0.705	"	"	"	"	"	
1,3,5-Trimethylbenzene	"	2.56		0.705	"	"	"	"	"	
Vinyl chloride	"	0.705		0.705	"	"	"	"	"	
Total Xylenes	"	29.9		2.12	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			103%		75 - 125 %	lx			"	
Toluene-d8			93.5%		75 - 125 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	•	Analyzed	Notes
PQH0767-04 (Q	-4)		Soi	1		Samp	led: 08	3/16/07 16:1	15		RL
4-Bi	FB			100%		75 - 125 %	lx			08/30/07 16:19	
PQH0767-05 (Q	-5)		Soi	il		Samp	led: 08	8/16/07 14:0	00		RL
Acetone		EPA 8260B	22.0		7.55	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 16:46	
Benzene		"	7.35		0.755	"	"	"	"	"	
Bromobenzene		"	ND		0.755	"	"	"	"	"	
Bromochloromethane		"	ND		0.755	"	"	"	"	"	
Bromodichloromethane)	"	ND		0.755	"	"	"	"	"	
Bromoform		"	ND		0.755	"	"	"	"	"	
Bromomethane		"	ND		0.755	"	"	"	"	"	
2-Butanone		"	9.37		7.55	"	"	"	"	"	
n-Butylbenzene		"	0.884		0.755	"	"	"	"	"	
sec-Butylbenzene		"	ND		0.755	"	"	"	"	"	
tert-Butylbenzene		"	ND		0.755	"	"	"	"	"	
Carbon disulfide		"	ND		0.755	"	"	"	"	"	
Carbon tetrachloride		"	ND		0.755	"	"	"	"	"	
Chlorobenzene		"	ND		0.755	"	"	"	"	"	
Chloroethane		"	ND		0.755	"	"	"	"	"	
Chloroform		"	ND		0.755	"	"	"	"	"	
Chloromethane		"	ND		3.78	"	"	"	"	"	
2-Chlorotoluene		"	ND		0.755	"	"	"	"	"	
4-Chlorotoluene		"	ND		0.755	"	"	"	"	"	
Dibromochloromethane		"	ND		0.755	"	"	"	"	"	
1,2-Dibromo-3-chlorop		"	ND		3.78	"	"	"	"	"	
1,2-Dibromoethane	· r · ·	"	ND		0.755	"	"	"	"	"	
Dibromomethane		"	ND		0.755	"	"	"	"	"	C
1,2-Dichlorobenzene		"	0.876		0.755	"	"	"	"	"	
1,3-Dichlorobenzene		"	ND		0.755	"	"	"	"	"	
1,4-Dichlorobenzene		"	ND		0.755	"	"	"	"	"	
Dichlorodifluorometha	ne	"	ND		0.755	"	"	"	"	"	
1,1-Dichloroethane		"	24.0		0.755	"	"	"	"	"	
1,2-Dichloroethane		"	2.85		0.755	"	"	"	"	"	
1,1-Dichloroethene		"	ND		0.755	"	"	"	"	"	
trans-1,2-Dichloroether	10	"	ND		0.755	"	"	"	"	"	
1,2-Dichloropropane	IC .	"	ND		0.755	"	"	"	"	"	
1,3-Dichloropropane		"	ND		0.755	"	"	"	"	"	
2,2-Dichloropropane		"	ND ND		0.755	"	"	"	"	"	
1,1-Dichloropropene		"	ND		0.755	"	"	"	"	"	
cis-1,3-Dichloropropen	e	"	ND ND		0.755	"	"	"	"	"	
trans-1,3-Dichloroproper		"	ND ND		0.755	"	,,	"	"	"	
Ethylbenzene	0110	"	13.3		0.755	"		"	"	"	
Hexachlorobutadiene			13.3 ND		3.78	,,		,,		,,	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-05 (Q-5)		So	il		Samp	led: 08	/16/07 14:0	00		RL7
Methyl tert-butyl ether	EPA 8260B	ND		3.78	mg/kg wet	10x	7H29025	08/30/07 09:39	08/30/07 16:46	
n-Hexane	"	ND		7.55	"	"	"	"	"	
2-Hexanone	"	ND		7.55	"	"	"	"	"	
Isopropylbenzene	"	1.56		0.755	"	"	"	"	"	
p-Isopropyltoluene	"	ND		0.755	"	"	"	"	"	
4-Methyl-2-pentanone	"	17.8		7.55	"	"	"	"	"	
Methylene chloride	"	28.3		7.55	"	"	"	"	"	
Naphthalene	"	23.4		3.78	"	"	"	"	n .	
n-Propylbenzene	"	3.46		0.755	"	"	"	"	"	
Styrene	"	16.5		0.755	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		3.78	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		3.78	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		0.755	"	"	"	"	n .	
1,1,2,2-Tetrachloroethane	"	ND		0.755	"	"	"	"	"	
Tetrachloroethene	"	8.07		0.755	"	"	"	"	n .	
Toluene	"	106		0.755	"	"	"	"	"	
1,1,1-Trichloroethane	"	ND		0.755	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		0.755	"	"	"	"	"	
Trichloroethene	"	4.77		0.755	"	"	"	"	n .	
Trichlorofluoromethane	"	ND		0.755	"	"	"	"	n .	
1,2,3-Trichloropropane	"	ND		0.755	"	"	"	"	"	
1,2,4-Trimethylbenzene	"	17.3		0.755	"	"	"	"	"	
1,3,5-Trimethylbenzene	"	4.69		0.755	"	"	"	"	n .	
Vinyl chloride	"	4.88		0.755	"	"	"	"	"	
Total Xylenes	"	59.7		2.27	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			100%		75 - 125 %	Ix			"	
Toluene-d8			94.8%		75 - 125 %	"			"	
4-BFB			100%		75 - 125 %	"			"	
PQH0767-05RE1 (Q-5)		So	il		Samp	led: 08	/16/07 14:0	00		
cis-1,2-Dichloroethene	EPA 8260B	146		1.51	mg/kg wet	20x	7H29025	08/30/07 09:39	08/30/07 19:03	
Surrogate(s): 1,2-DCA-d4			98.7%		75 - 125 %	lx			"	
Toluene-d8			95.2%		75 - 125 %	"			"	
4-BFB			99.4%		75 - 125 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Acetone Benzene Bromobenzene Bromochloromethane	EPA 8260B	ND ND	ater 		Sam	pled: 08	3/16/07 13:4	15		_
Benzene Bromobenzene Bromochloromethane	"	ND								
Bromobenzene Bromochloromethane				20.0	ug/l	1x	7H27050	08/27/07 10:51	08/27/07 19:03	
Bromochloromethane	"			1.00	"	"	"	"	"	
	"	ND		1.00	"	"	"	"	"	
D 11.11 d		ND		1.00	"	"	"	"	"	
Bromodichloromethane	"	ND		1.00	"	"	"	"	"	
Bromoform	"	ND		1.00	"	"	"	"	"	
Bromomethane	"	ND		2.00	"	"	"	"	"	
2-Butanone	"	ND		10.0	"	"	"	"	"	
n-Butylbenzene	"	ND		1.00	"	"	"	"	"	
sec-Butylbenzene	"	ND		1.00	"	"	"	"	"	
tert-Butylbenzene	"	ND		1.00	"	"	"	"	"	
Carbon disulfide	"	ND		1.00	"	"	"	"	"	
Carbon tetrachloride	"	ND		1.00	"	"	"	"	"	
Chlorobenzene	"	ND		1.00	"	"	"	"	"	
Chloroethane	"	ND		1.00	"	"	"	"	"	
1-Chlorohexane	"	ND		1.00	"	"	"	"	"	
Chloroform	"	ND		1.00	"	"	"	"	"	
Chloromethane	"	ND		5.00	"	"	"	"	"	
2-Chlorotoluene	"	ND		1.00	"	"	"	"	"	
4-Chlorotoluene	"	ND		1.00	"	"	"	"	"	
Dibromochloromethane	"	ND		1.00	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND		5.00	"	"	"	"	"	
1,2-Dibromoethane	"	ND		1.00	"	"	"	"	"	
Dibromomethane	"	ND		1.00	"	"	"	"	"	
1,2-Dichlorobenzene	"	ND		1.00	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND		1.00	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		1.00	"	"	"	"	"	
Dichlorodifluoromethane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloroethane	"	ND		1.00	"	"	"	"	"	
1,2-Dichloroethane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloroethene	"	ND		1.00	"	"	"	"	"	
cis-1,2-Dichloroethene	"	ND		1.00	"	"	"	"	"	
trans-1,2-Dichloroethene	"	ND		1.00	"	"	"	"	"	
1,2-Dichloropropane	"	ND		1.00	"	"	"	"	"	
1,3-Dichloropropane	"	ND		1.00	"	"	"	"	"	
2,2-Dichloropropane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloropropene	"	ND		1.00	"	"	"	"	"	
cis-1,3-Dichloropropene	"	ND		1.00	"	"	"	"	"	
trans-1,3-Dichloropropene	"	ND		1.00	"	"	"	"	"	
Ethylbenzene	"	ND		1.00	"	"	"	"	"	
Hexachlorobutadiene	"	ND		5.00	"	"	"	"	"	
Methyl tert-butyl ether	"	ND ND		2.00	"	"	"	"	"	
n-Hexane	"	ND ND		2.00	"	,,	"	"	"	C

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Not
PQH0767-06 (Field Rinsate)		W	ater		Samp	led: 08	3/16/07 13:4	15		
2-Hexanone	EPA 8260B	ND		10.0	ug/l	1x	7H27050	08/27/07 10:51	08/27/07 19:03	
Isopropylbenzene	"	ND		1.00	"	"	"	"	"	
p-Isopropyltoluene	"	ND		1.00	"	"	"	"	"	
4-Methyl-2-pentanone	"	ND		10.0	"	"	"	"	"	
Methylene chloride	"	ND		5.00	"	"	"	"	"	
Naphthalene	"	ND		5.00	"	"	"	"	"	
n-Propylbenzene	"	ND		1.00	"	"	"	"	"	
Styrene	"	ND		1.00	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		5.00	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		5.00	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		1.00	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	"	ND		1.00	"	"	"	"	"	
Tetrachloroethene	"	ND		1.00	"	"	"	"	"	
Toluene	"	ND		1.00	"	"	"	"	"	
1,1,1-Trichloroethane	"	ND		1.00	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		1.00	"	"	"	"	"	
Frichloroethene	"	ND		1.00	"	"	"	"	"	
Frichlorofluoromethane	"	ND		1.00	"	"	"	"	"	
,2,3-Trichloropropane	"	ND		1.00	"	"	"	"	"	
1,2,4-Trimethylbenzene	"	ND		1.00	,,	"	"	"	"	
1,3,5-Trimethylbenzene	"	ND ND		1.00	,,	,,	"	"	"	
Vinyl chloride	,,	ND ND		1.00	,,	,,	,,	"	"	
	,,	ND ND		1.00	,,	,,	,,	"	,,	
o-Xylene	,,			2.00	"	,,	,,	"	,,	
m,p-Xylene	,	ND			"	,,	,,	"	,	
Total Xylenes		ND		3.00						
Surrogate(s): 1,2-DCA-d4			83.9%		70 - 130 %	"			"	
Toluene-d8			99.2%		75 - 125 %	"			"	
4-BFB			98.6%		75 - 125 %	"			"	
PQH0767-07 (Trip Blank)		W	ater		Samp	led: 08	3/16/07 00:0)0		
Acetone	EPA 8260B	ND		20.0	ug/l	1x	7H27050	08/27/07 10:51	08/27/07 17:36	
Benzene	"	ND		1.00	"	"	"	"	"	
Bromobenzene	"	ND		1.00	"	"	"	"	"	
Bromochloromethane	"	ND		1.00	"	"	"	"	"	
Bromodichloromethane	"	ND		1.00	"	"	"	"	"	
Bromoform	"	ND ND		1.00	"	"	"	"	"	
Bromomethane	"	ND ND		2.00	"	"	"	"	"	
2-Butanone	"	ND ND		10.0	,,	,,	,,	"	"	
	,,			1.00	"	,,	"	,,	"	
n-Butylbenzene	,,	ND ND		1.00	"	,,	"	,,	"	
sec-Butylbenzene	,	ND			"	.,	,,	,,	,,	
tert-Butylbenzene	"	ND		1.00			"	"		
Carbon disulfide	"	ND		1.00	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-07 (Trip Blank)		W	ater		Sam	pled: 08	/16/07 00:0	00		
Carbon tetrachloride	EPA 8260B	ND		1.00	ug/l	1x	7H27050	08/27/07 10:51	08/27/07 17:36	
Chlorobenzene	"	ND		1.00	"	"	"	"	"	
Chloroethane	"	ND		1.00	"	"	"	"	"	
1-Chlorohexane	"	ND		1.00	"	"	"	"	"	
Chloroform	"	ND		1.00	"	"	"	"	"	
Chloromethane	"	ND		5.00	"	"	"	"	"	
2-Chlorotoluene	"	ND		1.00	"	"	"	"	"	
4-Chlorotoluene	"	ND		1.00	"	"	"	"	"	
Dibromochloromethane	"	ND		1.00	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND		5.00	"	"	"	"	"	
1,2-Dibromoethane	n .	ND		1.00	"	"	"	"	n .	
Dibromomethane	"	ND		1.00	"	"	"	"	"	
1,2-Dichlorobenzene	"	ND		1.00	"	"	"	"	n .	
1,3-Dichlorobenzene	"	ND		1.00	"	"	"	"	"	
1,4-Dichlorobenzene	"	ND		1.00	"	"	"	"	"	
Dichlorodifluoromethane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloroethane	"	ND		1.00	"	"	"	"	"	
1,2-Dichloroethane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloroethene	"	ND		1.00	"	"	"	"	"	
cis-1,2-Dichloroethene	"	ND		1.00	"	"	"	"	"	
trans-1,2-Dichloroethene	"	ND		1.00	"	"	"	"	"	
1,2-Dichloropropane	"	ND		1.00	"	"	"	"	"	
1,3-Dichloropropane	"	ND		1.00	"	"	"	"	"	
2,2-Dichloropropane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloropropene	"	ND		1.00	"	"	"	"	"	
cis-1,3-Dichloropropene	"	ND		1.00	"	"	"	"	"	
trans-1,3-Dichloropropene	"	ND		1.00	"	"	"	"	n .	
Ethylbenzene	"	ND		1.00	"	"	"	"	"	
Hexachlorobutadiene	"	ND		5.00	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		2.00	"	"	"	"	"	
n-Hexane	"	ND		2.00	"	"	"	"	"	C
2-Hexanone	"	ND		10.0	"	"	"	"	"	
Isopropylbenzene	"	ND		1.00	"	"	"	"	"	
p-Isopropyltoluene	"	ND		1.00	"	"	"	"	"	
4-Methyl-2-pentanone	"	ND		10.0	"	"	"	"	"	
Methylene chloride	"	ND		5.00	"	"	"	"	"	
Naphthalene	"	ND		5.00	"	"	"	"	"	
n-Propylbenzene	"	ND		1.00	"	"	"	"	"	
Styrene	"	ND		1.00	"	"	"	"	"	
1,2,3-Trichlorobenzene	"	ND		5.00	"	"	"	"	"	
1,2,4-Trichlorobenzene	"	ND		5.00	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		1.00	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	"	ND		1.00	"	"	"	"	"	
1,1,2,2 10000000000000000000000000000000		1,12								

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-07 (Trip Blank)	•	W	ater		Samp	led: 08	3/16/07 00:0	00		
Tetrachloroethene	EPA 8260B	ND		1.00	ug/l	1x	7H27050	08/27/07 10:51	08/27/07 17:36	
Toluene	"	ND		1.00	"	"	"	"	"	
1,1,1-Trichloroethane	"	ND		1.00	"	"	"	"	"	
1,1,2-Trichloroethane	"	ND		1.00	"	"	"	"	"	
Trichloroethene	"	ND		1.00	"	"	"	"	n .	
Trichlorofluoromethane	"	ND		1.00	"	"	"	"	n .	
1,2,3-Trichloropropane	"	ND		1.00	"	"	"	"	n .	
1,2,4-Trimethylbenzene	"	ND		1.00	"	"	"	"	n .	
1,3,5-Trimethylbenzene	"	ND		1.00	"	"	"	"	n .	
Vinyl chloride	"	ND		1.00	"	"	"	"	n .	
o-Xylene	"	ND		1.00	"	"	"	"	n .	
m,p-Xylene	"	ND		2.00	"	"	"	"	n .	
Total Xylenes	"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			80.7%		70 - 130 %	"			"	
Toluene-d8			100%		75 - 125 %	"			"	
4-BFB			100%		75 - 125 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Inductively Coupled Plasma - Mass Spectrometry TCL

TestAmerica Tacoma

				TestAme	erica Ta	coma					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		So	il		Sam	pled: 08	3/16/07 14:	50		
Lead		6020 TCLP	0.044		0.040	mg/L	10x	23535	09/25/07 18:53	09/25/07 19:41	
Chromium		"	0.060		0.040	"	"	"	"	"	
PQH0767-02	(Q-2)		So	il		Sam	pled: 08	3/16/07 13:	30		
Lead		6020 TCLP	0.098		0.040	mg/L	10x	23535	09/25/07 18:53	09/25/07 19:47	
Chromium		"	ND		0.040	"	"	"	"	II .	
PQH0767-03	(Q-3)		So	il		Sam	pled: 08	3/16/07 11:	25		
Lead		6020 TCLP	0.15		0.040	mg/L	10x	23535	09/25/07 18:53	09/25/07 19:53	
Chromium		"	0.14		0.040	"	"	"	"	"	
PQH0767-04	(Q-4)		So	oil		Sam	pled: 08	3/16/07 16:	15		
Lead		6020 TCLP	ND		0.040	mg/L	10x	23535	09/25/07 18:53	09/25/07 20:00	
Chromium		"	0.064		0.040	"	"	"	"	II .	
PQH0767-05	(Q-5)		Soil Sampled: 08/16/07 14:00								
Lead		6020 TCLP	ND		0.040	mg/L	10x	23535	09/25/07 18:53	09/25/07 18:32	
Chromium		"	ND		0.040	"	"	"	"	"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by GC/MS TCLP

TestAmerica Tacoma

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-01	(Q-1)		So	il		Samp	led: 08	/16/07 14::	50		
Vinyl chloride		8260B TCLP	ND		0.50	mg/L	500x	23810	09/27/07 23:50	09/27/07 23:50	
1,1-Dichloroether	ne	"	ND		0.50	"	"	"	"	"	
2-Butanone		"	ND		2.5	"	"	"	"	"	
Chloroform		"	ND		0.50	"	"	"	"	"	
Carbon tetrachlor	ide	"	ND		0.50	"	"	"	"	"	
Benzene		"	ND		0.50	"	"	"	"	"	
1,2-Dichloroethar	ne	"	ND		0.50	"	"	"	"	"	
Trichloroethene		"	ND		0.50	"	"	"	"	n .	
Tetrachloroethene	;	"	ND		0.50	"	"	"	"	n .	
Chlorobenzene		"	ND		0.50	"	"	"	"	"	
Surrogate(s):	Fluorobenzene (Sur	r)		98%		80 - 120 %	"			"	
0 ()	Toluene-d8 (Surr)			90%		85 - 120 %	"			"	
	Ethylbenzene-d10			85%		80 - 120 %	"			"	
	4-Bromofluorobenz	ene (Surr)		96%		75 - 120 %	"			"	
	Trifluorotoluene (Si	ırr)		103%		80 - 120 %	"			"	
PQH0767-02	(Q-2)		So	il		Samp	led: 08	/16/07 13:	30		
Vinyl chloride		8260B TCLP	ND		0.50	mg/L	500x	23810	09/28/07 00:12	09/28/07 00:12	
1,1-Dichloroether	ne	"	ND		0.50	"	"	"	"	"	
2-Butanone		"	ND		2.5	"	"	"	"	"	
Chloroform		"	ND		0.50	"	"	"	"	"	
Carbon tetrachlor	ide	"	ND		0.50	"	"	"	"	"	
Benzene		"	ND		0.50	"	"	"	"	"	
DUIZUIU											
	ne	"	ND		0.50	"	"	"	"	"	
1,2-Dichloroethar Trichloroethene	ne	"	ND ND			"	"	"	"	" "	
1,2-Dichloroethar		" " "			0.50						
1,2-Dichloroethar Trichloroethene		" " " "	ND		0.50 0.50	"	"	"	"	"	
1,2-Dichloroethar Trichloroethene Tetrachloroethene Chlorobenzene			ND ND		0.50 0.50 0.50	"	"	"	"	"	
1,2-Dichloroethar Trichloroethene Tetrachloroethene	÷		ND ND		0.50 0.50 0.50	" "	" "	"	"	" " "	
1,2-Dichloroethar Trichloroethene Tetrachloroethene Chlorobenzene	e Fluorobenzene (Sur		ND ND	96%	0.50 0.50 0.50	" " 80 - 120 %	" "	"	"	" " "	
1,2-Dichloroethar Trichloroethene Tetrachloroethene Chlorobenzene	Fluorobenzene (Sur Toluene-d8 (Surr)	r)	ND ND	96% 94%	0.50 0.50 0.50	" " 80 - 120 % 85 - 120 %	" " "	"	"	" " "	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by GC/MS TCLP

TestAmerica Tacoma

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-03	(Q-3)		So	il		Samp	led: 08	/16/07 11:	25		
Vinyl chloride		8260B TCLP	ND		0.50	mg/L	500x	23810	09/28/07 00:34	09/28/07 00:34	
1,1-Dichloroether	ie	"	ND		0.50	"	"	"	"	"	
2-Butanone		"	ND		2.5	"	"	"	"	"	
Chloroform		"	ND		0.50	"	"	"	"	"	
Carbon tetrachlori	ide	"	ND		0.50	"	"	"	"	"	
Benzene		"	ND		0.50	"	"	"	"	"	
1,2-Dichloroethan	ie	"	ND		0.50	"	"	"	"	"	
Trichloroethene		"	ND		0.50	"	"	"	"	"	
Tetrachloroethene	;	"	ND		0.50	"	"	"	"	"	
Chlorobenzene		"	ND		0.50	"	"	"	"	"	
Surrogate(s):	Fluorobenzene (Suri	·)		98%		80 - 120 %	"			"	
0 ()	Toluene-d8 (Surr)			90%		85 - 120 %	"			"	
	Ethylbenzene-d10			82%		80 - 120 %	"			"	
	4-Bromofluorobenze	ene (Surr)		95%		75 - 120 %	"			"	
	Trifluorotoluene (Su	rr)		100%		80 - 120 %	"			"	
PQH0767-04	(Q-4)		So	il		Samp	led: 08	/16/07 16:	15		
Vinyl chloride		8260B TCLP	ND		0.50	mg/L	500x	23810	09/28/07 00:56	09/28/07 00:56	
1,1-Dichloroether	ie	"	ND		0.50	"	"	"	"	"	
2-Butanone		"	ND		2.5	"	"	"	"	"	
Chloroform		"	ND		0.50	"	"	"	"	"	
Carbon tetrachlor	ide	"	ND		0.50	"	"	"	"	"	
Benzene		"	ND		0.50	"	"	"	"	"	
1,2-Dichloroethan	ie	"	ND		0.50	"	"	"	"	"	
Trichloroethene		"	ND		0.50	"	"	"	"	"	
Tetrachloroethene	;	"	ND		0.50	"	"	"	"	"	
Chlorobenzene		"	ND		0.50	"	"	"	"	"	
Surrogate(s):	Fluorobenzene (Surr	·)		97%		80 - 120 %	"			"	
2 ()	Toluene-d8 (Surr)			91%		85 - 120 %	"			"	
	Ethylbenzene-d10			84%		80 - 120 %	"			"	
	4-Bromofluorobenze	ne (Surr)		93%		75 - 120 %	"			"	
	Trifluorotoluene (Su			101%		80 - 120 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by GC/MS TCLP

TestAmerica Tacoma

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQH0767-05	(Q-5)		Soi	1		Samp	led: 08/	/16/07 14:	00		
Vinyl chloride	82	60B TCLP	ND		0.50	mg/L	500x	23810	09/28/07 01:19	09/28/07 01:19	
1,1-Dichloroethene	e	"	ND		0.50	"	"	"	"	"	
2-Butanone		"	ND		2.5	"	"	"	"	"	
Chloroform		"	ND		0.50	"	"	"	"	"	
Carbon tetrachloric	de	"	ND		0.50	"	"	"	"	"	
Benzene		"	ND		0.50	"	"	"	"	"	
1,2-Dichloroethane	e	"	ND		0.50	"	"	"	"	"	
Trichloroethene		"	ND		0.50	"	"	"	"	"	
Tetrachloroethene		"	ND		0.50	"	"	"	"	"	
Chlorobenzene		"	ND		0.50	"	"	"	"	"	
Surrogate(s):	Fluorobenzene (Surr)			97%		80 - 120 %	"			"	
<u> </u>	Toluene-d8 (Surr)			91%		85 - 120 %	"			"	
	Ethylbenzene-d10			84%		80 - 120 %	"			"	
	4-Bromofluorobenzene (Surr)		92%		75 - 120 %	"			"	
	Trifluorotoluene (Surr)			99%		80 - 120 %	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Hydroca	ırbon Idei	ntification pe			thodolog - Portland,	•	aborato	ory Qu	ıality	Contr	ol Res	ults		
QC Batch: 7081079	Soil F	Preparation M	ethod:	EPA 355	0 Fuels									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (Limit	ts) Analyzed	Notes
Blank (7081079-BLK1)								Ext	racted:	: 08/23/07	14:30			
Gasoline Range Hydrocarbons	NWTPH	ND		20.0	mg/kg wet	1x							08/23/07 18:29	
Diesel Range Hydrocarbons	HCID "	ND		50.0	"	"							"	
Heavy Oil Range Hydrocarbons	"	ND		100	"	"							"	
Surrogate(s): 1-Chlorooctadecane		Recovery: 98	2%	Lim	its: 50-150%	ó "							08/23/07 18:29	
Duplicate (7081079-DUP1)				QC Sour	ce: PQH070	67-01		Ext	racted:	08/23/07	14:30			
Gasoline Range Hydrocarbons	NWTPH HCID	DET		16.4	mg/kg wet	1x	9390				2.78%	(50)	08/23/07 18:59	
Diesel Range Hydrocarbons	"	DET		41.0	"	"	58700				4.37%	"	"	
Heavy Oil Range Hydrocarbons	"	DET		81.9	"	"	30600				7.45%	"	"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	NR	Lim	its: 50-150%	ó "							08/23/07 18:59	Z
Duplicate (7081079-DUP2)				QC Sour	ce: PQH07	79-02		Ext	racted:	08/23/07	14:30			
Gasoline Range Hydrocarbons	NWTPH HCID	ND		30.8	mg/kg dry	1x	ND				NR	(50)	08/23/07 19:29	
Diesel Range Hydrocarbons	"	ND		77.1	"	"	ND				3.33%	"	"	
II 0'I D II I	"	ND		154	"	"	ND				51.0%	"	"	R4
Heavy Oil Range Hydrocarbons		ND		134			ND				31.070			

QC Batch: 7081100	Wate	r Preparat	tion Method:	EPA 35	10 Fuels									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7081100-BLK1)								Ext	racted	: 08/23/07	14:00			
Gasoline Range Hydrocarbons	NWTPH HCID	ND		0.125	mg/l	1x							08/23/07 23:29	
Diesel Range Hydrocarbons	"	ND		0.315	"	"							"	
Heavy Oil Range Hydrocarbons	"	ND		0.315	"	"							"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	93.6%	Limits	: 50-150%	"							08/23/07 23:2	9

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Gaso	line Hydro	carbons _l	•		Method - - Portland, (oratory	Quali	ty Co	ontrol F	Result	ts		
QC Batch: 7081533	Soil Pı	eparation	Method:	EPA 503	5 Modified	i								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD ((Limit	ts) Analyzed	Notes
Blank (7081533-BLK1)								Ext	racted:	08/31/07	13:52			
Gasoline Range Hydrocarbons	NW TPH-Gx	ND		1.98	mg/kg wet	1x							09/05/07 12:37	
Surrogate(s): a,a,a-TFT		Recovery:	118%	Lim	its: 50-150%	"							09/05/07 12:37	,
LCS (7081533-BS2)								Exti	racted:	08/31/07	13:52			
Gasoline Range Hydrocarbons	NW TPH-Gx	23.8		3.85	mg/kg wet	1x		24.1	98.8%	(70-130)			09/01/07 14:08	
Surrogate(s): a,a,a-TFT		Recovery:	125%	Lim	its: 50-150%	"							09/01/07 14:08	
Duplicate (7081533-DUP1)				QC Sour	ce: PQH0767	-05		Exti	racted:	08/31/07	13:52			
Gasoline Range Hydrocarbons	NW TPH-Gx	21600		364	mg/kg wet	1x	17800				19.6%	(40)	09/01/07 20:35	
Surrogate(s): a,a,a-TFT		Recovery:	125%	Lim	its: 50-150%	"							09/01/07 20:35	
Duplicate (7081533-DUP2)				QC Sour	ce: PQH1091	-17		Exti	racted:	08/31/07	13:52			
Gasoline Range Hydrocarbons	NW TPH-Gx	155		3.96	mg/kg dry	1x	173				11.5%	(40)	09/02/07 03:01	
Surrogate(s): a,a,a-TFT		Recovery:	99.3%	Lim	its: 50-150%	"							09/02/07 03:01	
Matrix Spike (7081533-MS2))			QC Sour	ce: PQH1091	-19		Exti	racted:	08/31/07	13:52			
Gasoline Range Hydrocarbons	NW TPH-Gx	4.53		5.15	mg/kg dry	1x	ND	32.2	14.1%	(65-130)			09/02/07 05:46	M
Surrogate(s): a,a,a-TFT		Recovery:	103%	Lim	its: 50-150%	"							09/02/07 05:46	

QC Batch: 7I01001	Water 1	Preparation	Method:	708153	33									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Lim	its) Analyzed	Notes
Instrument Blank (710100	1-IBL4)							Exti	acted:	09/01/07	00:00			
a,a,a-TFT	NW TPH-Gx	48.9			ug/l	1x							09/01/07 23:20	
Gasoline Range Hydrocarbons	"	29.7		0.0800	"	"							"	
Instrument Blank (710100	1-IBL5)							Exti	acted:	09/01/07	00:00			
a,a,a-TFT	NW TPH-Gx	48.4			ug/l	1x							09/02/07 03:57	
Gasoline Range Hydrocarbons	"	820		0.0800	"	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

Recovery:

79.8%

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Diesel and H	eavy Rang	e Hydrocar	•				l - Lab	orato	y Qu	ality C	ontr	ol Re	sults	
QC Batch: 7081385	Soil P	reparation M			- Portland, 50 Fuels	OR								
Analyte	Method	Result	MDL*			Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7081385-BLK1)								Ext	racted:	08/29/07	12:45			
Diesel Range Organics	NWTPH-Dx	ND		12.5	mg/kg wet	1x							08/29/07 22:48	
Heavy Oil Range Hydrocarbons	"	ND		25.0	"	"							"	
Surrogate(s): 1-Chlorooctadecane		Recovery: 86	5.7%	Lin	nits: 50-150%	ó "							08/29/07 22:48	
LCS (7081385-BS1)								Ext	racted:	08/29/07	12:45			
Diesel Range Organics	NWTPH-Dx	128		12.5	mg/kg wet	1x		125	103%	(50-150)			08/29/07 22:12	
Heavy Oil Range Hydrocarbons	"	66.3		25.0	"	"		75.5	87.8%	"			"	
Surrogate(s): 1-Chlorooctadecane		Recovery: 94	1.1%	Lin	nits: 50-150%	ó "							08/29/07 22:12	
Duplicate (7081385-DUP1)				QC Sour	ce: PQH070	57-01		Ext	racted:	08/29/07	12:45			
Diesel Range Organics	NWTPH-Dx	108000		6380	mg/kg wet	100x	103000				4.679	% (50)	08/30/07 06:33	
Heavy Oil Range Hydrocarbons	"	97800		12800	"	"	99300				1.539	6 "	"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	NR	Lin	nits: 50-150%	ó "							08/30/07 06:33	2
Duplicate (7081385-DUP2)				QC Sour	ce: PQH118	87-01		Ext	racted:	08/29/07	12:45			
Diesel Range Organics	NWTPH-Dx	401		15.4	mg/kg dry	1x	327				20.49	% (50)	08/29/07 21:36	Q!
Heavy Oil Range Hydrocarbons	"	ND		30.8	"	"	ND				50.49	6 "	"	R4

Limits: 50-150%

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Surrogate(s): 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

08/29/07 21:36

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7081200	Soil Pr	eparation]	Method:	EPA 358	80									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Lim	its) Analyzed	Notes
Blank (7081200-BLK1)								Ext	racted:	08/25/07	10:40			
Aldrin	8081A/8082	ND		201	ug/kg wet	1x							08/29/07 14:05	
alpha-BHC	"	ND		201	"	"							"	
beta-BHC	"	ND		201	"	"							"	
delta-BHC	"	ND		201	"	"							"	
gamma-BHC (Lindane)	"	ND		201	"	"							"	
alpha-Chlordane	"	ND		201	"	"							"	
Chlordane (tech)	"	ND		4500	"	"							"	
gamma-Chlordane	"	ND		201	"	"							"	
4,4'-DDD	"	ND		201	"	"							"	
4,4'-DDE	"	ND		201	"	"							"	
4,4'-DDT	"	ND		201	"	"							"	
Dieldrin	"	ND		201	"	"							"	
Endosulfan I	"	ND		201	"	"							"	
Endosulfan II	"	ND		201	"	"							"	
Endosulfan sulfate	"	ND		201	"	"							"	
Endrin	"	ND		201	"	"							"	
Endrin aldehyde	"	ND		201	"	"							"	
Endrin ketone	"	ND		201	"	"							"	
Heptachlor	"	ND		201	"	"							"	
Heptachlor epoxide	"	ND		201	"	"							"	
Methoxychlor	"	ND		201	"	"							"	
Toxaphene	"	ND		6000	"	"							"	
Surrogate(s): 2,4,5,6-Tetrachlor	ro-m-xylene	Recovery:	107%	Lin	nits: 36-140%	ó "							08/29/07 14:0	5
LCS (7081200-BS1)								Ext	tracted:	08/25/07	10:40			
Aldrin	8081A/8082	979		201	ug/kg wet	1x		1000	97.9%	(64-136)			08/29/07 14:31	
gamma-BHC (Lindane)	"	956		201	"	"		"		(62-140)			"	

200 (.001200 201)										
Aldrin	8081A/8082	979		201 ι	ıg/kg wet	1x	 1000	97.9% (64-136)	 	08/29/07 14:31
gamma-BHC (Lindane)	"	956		201	"	"	 "	95.6% (62-140)	 	"
4,4'-DDT	"	1040		201	"	"	 "	104% (65-130)	 	"
Dieldrin	"	1020		201	"	"	 "	102% (70-135)	 	"
Endrin	"	1040		201	"	"	 "	104% (65-135)	 	"
Heptachlor	"	1010		201	"	"	 "	101% (42-139)	 	"
Surrogate(s): 2,4,5,6-Tetrachl	loro-m-xylene	Recovery: 10	17%	Limit	s: 36-140%	<i>"</i>				08/29/07 14:31

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Organochlorine Pesticides and PCBs per EPA Methods 8081A/8082 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7081200	Soil Pr	eparation N	Method: E	PA 358	30			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) RPD (Limits) Analyzed Notes
LCS Dup (7081200-BSD1)								Extracted: 08/25/07 10:40
Aldrin	8081A/8082	1000		201	ug/kg wet	1x		1000 100% (64-136) 2.46% (50) 08/29/07 14:57
gamma-BHC (Lindane)	"	990		201	"	"		" 99.0% (62-140) 3.44% " "
4,4'-DDT	"	1070		201	"	"		" 107% (65-130) 2.95% " "
Dieldrin	"	1040		201	"	"		" 104% (70-135) 2.47% " "
Endrin	"	1030		201	"	"		" 103% (65-135) 0.804% " "
Heptachlor	"	1030		201	"	"		" 103% (42-139) 2.50% " "
Surrogate(s): 2,4,5,6-Tetrachloro-	m-xylene	Recovery: 1	108%	Lim	its: 36-140%	"		08/29/07 14:57

QC Batch: 7081488	Soil P	reparation	Method:	EPA 35	80									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7081488-BLK1)								Ext	racted:	08/30/07	17:30			
Aroclor 1016	8081A/8082	ND		999	ug/kg wet	1x							09/01/07 06:04	
Aroclor 1221	"	ND		2010	"	"							"	
Aroclor 1232	"	ND		999	"	"							"	
Aroclor 1242	"	ND		999	"	"							"	
Aroclor 1248	"	ND		999	"	"							"	
Aroclor 1254	"	ND		999	"	"							"	
Aroclor 1260	"	ND		999	"	"							"	
Surrogate(s): Decachlorobiphenyl		Recovery:	103%	Lin	nits: 16-149%	"							09/01/07 06:04	
LCS (7081488-BS1)								Ext	racted:	08/30/07	17:30			
Aroclor 1016	8081A/8082	11100		999	ug/kg wet	1x		10000	111%	(57-135)			09/01/07 05:26	
Aroclor 1260	"	10600		999	"	"		"	106%	(60-135)			"	
Surrogate(s): Decachlorobiphenyl		Recovery:	118%	Lin	nits: 16-149%	"							09/01/07 05:26	-
LCS Dup (7081488-BSD1)								Ext	racted:	08/30/07	17:30			
Aroclor 1016	8081A/8082	10500		999	ug/kg wet	1x		10000	105%	(57-135)	4.91%	6 (25)	09/01/07 05:45	
Aroclor 1260	"	10600		999	"	"		"	106%	(60-135)	0.6389	% (27)	"	
Surrogate(s): Decachlorobiphenyl		Recovery:	117%	Lin	nits: 16-149%	"							09/01/07 05:45	_

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Chlorinated Herbicides per EPA Method 8151A Modified - Laboratory Quality Control Results

			TestA	merica -	Portland,	OR								
QC Batch: 709005	58 Other	wet Prepar	ation Metho	od: EP	A 3510/6	00								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (Limi	ts) Analyzed	Notes
Blank (7090058-BLK1)								Ext	racted:	09/04/07	11:26			
2,4-D	8151mod	ND		20.0	ug/l	1x							09/05/07 10:51	
2,4-DB	n	ND		20.0	"	"							"	C8
2,4,5-T	"	ND		20.0	"	"							"	
2,4,5-TP (Silvex)	"	ND		20.0	"	"							"	
Dalapon	"	ND		20.0	"	"							"	C8
Dicamba	"	ND		20.0	"	"							"	
Dichlorprop	"	ND		20.0	"	"							"	
Dinoseb	"	ND		20.0	"	"							09/05/07 22:09	
MCPA	"	ND		2000	"	"							09/05/07 10:51	
МСРР	n .	ND		2000	"	"							"	
Surrogate(s): 2,4-Dichlorop	henylacetic acid	Recovery:	108%	Limi	ts: 30-140%	<u> </u>							09/05/07 10:51	!
LCS (7090058-BS1)								Ext	racted:	09/04/07	11:26			
2,4-D	8151mod	30.2		20.0	ug/l	1x		20.0	151%				09/05/07 11:15	L
2,4-DB	"	38.5		20.0	ug/i	"		"	192%				"	C8, L
2,4,5-T	"	28.7		20.0	"	"		"	143%				"	L L
2,4,5-TP (Silvex)	"	26.5		20.0	"	"		"	132%				"	L
Dalapon	"	26.0		20.0	"	"		"		(25-105)			"	C8, L
Dicamba	"	22.9		20.0	"	"		"	115%	(55-110)			"	L L
Dichlorprop	"	25.2		20.0	,,	"		,,	126%	(75-140)			"	L
Dinoseb	"	22.1		20.0	,,	"		"	111%				09/05/07 22:33	
MCPA	"	2010		2000	"	"		2000	101%	(20-130)			09/05/07 11:15	
MCPP	"	2390		2000	"	,,		2000		(20-120)			"	
Surrogate(s): 2,4-Dichlorop	phenylacetic acid		133%		ts: 30-140%	ć "			120/0	(20-120)		-	09/05/07 11:15	
	•							_						
LCS Dup (7090058-BSI		22.5		20.0	п	1				09/04/07		(20)	00/05/07 11 40	т.
2,4-D	8151mod	32.5		20.0	ug/l	1x		20.0	163%				09/05/07 11:40	L
2,4-DB	,,	36.8		20.0					184%	(50-155)	4.49%		,,	C8, L
2,4,5-T	"	31.3		20.0	"	"		"	157%	(45-135)			"	L
2,4,5-TP (Silvex)	"	29.4		20.0	"	"		"	147%	(45-125)			"	L
Dalapon	"	26.9		20.0	"	"		"	135%	(25-105)			"	C8, L
Dicamba	"	25.0		20.0	"	"		"	125%	(55-110)			"	L
Dichlorprop	"	27.3		20.0	"	"		"	137%	(75-140)	8.10%	"	"	
Dinoseb	"	24.3		20.0	"	"		"	122%	(20-130)	9.41%	"	09/05/07 22:58	
MCPA	"	2260		2000	"	"		2000	113%	"	11.6%	"	09/05/07 11:40	
MCPP	"	2600		2000	"	"		"	130%	(20-120)	8.18%	"	"	L

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Surrogate(s): 2,4-Dichlorophenylacetic acid

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

09/05/07 11:40

Limits: 30-140%

Recovery: 115%

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7081295	Other of	dry Prepara	ntion Metho	od: EF	PA 3580									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	its) Analyzed	Notes
Blank (7081295-BLK1)								Exti	acted	: 08/28/07	14:30			
Acenaphthene	EPA 8270C	ND		99.0	mg/kg wet	1x							08/30/07 07:48	-
Acenaphthylene	"	ND		99.0	"	"							"	
Anthracene	"	ND		99.0	"	"							"	
Benzo (a) anthracene	"	ND		99.0	"	"							"	
Benzo (a) pyrene	"	ND		99.0	"	"							"	
Benzo (b) fluoranthene	"	ND		99.0	"	"							"	
Benzo (ghi) perylene	"	ND		99.0	"	"							"	
Benzo (k) fluoranthene	"	ND		99.0	"	"							"	
Benzoic Acid	"	ND		300	"	"							"	
Benzyl alcohol	"	ND		300	"	"							"	
4-Bromophenyl phenyl ether	"	ND		99.0	"	"							"	
Butyl benzyl phthalate	"	ND		99.0	"	"							"	
4-Chloro-3-methylphenol	"	ND		99.0	"	"							"	
4-Chloroaniline	"	ND		600	"	"							"	
Bis(2-chloroethoxy)methane	"	ND		99.0	"	"							"	
Bis(2-chloroethyl)ether	"	ND		99.0	"	"							"	
Bis(2-chloroisopropyl)ether	"	ND		99.0	"	"							"	
2-Chloronaphthalene	"	ND		99.0	"	"							"	
2-Chlorophenol	"	ND		99.0	"	"							"	
4-Chlorophenyl phenyl ether	"	ND		99.0	"	"							"	
Chrysene	"	ND		99.0	"	"							"	
Di-n-butyl phthalate	"	ND		300	"	"							"	
Di-n-octyl phthalate	"	ND		99.0	"	"							"	
Dibenzo (a,h) anthracene	"	ND		99.0	"	"							"	
Dibenzofuran	"	ND		99.0	"	"							"	
1,2-Dichlorobenzene	"	ND		300	"	"							"	
1,3-Dichlorobenzene	"	ND		300	"	"							"	
1,4-Dichlorobenzene	"	ND		300	"	"							"	
3,3'-Dichlorobenzidine	"	ND		300	"	"							"	
2,4-Dichlorophenol	"	ND		99.0	"	"							"	
Diethyl phthalate	"	ND		99.0	"	"							"	
2,4-Dimethylphenol	"	ND		300	"	"							"	
Dimethyl phthalate	"	ND		99.0	"	"							"	
4,6-Dinitro-2-methylphenol	"	ND		300	"	"							"	
2,4-Dinitrophenol	"	ND		600	"	"							"	
2,4-Dinitrotoluene	"	ND		150	"	"							"	
2,6-Dinitrotoluene	"	ND		150	"	"							"	
Bis(2-ethylhexyl)phthalate	"	ND		600	"	"							"	
Fluoranthene	"	ND		99.0	"	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

TestAmerico THE LEADER IN ENVIRONMENTAL TESTING

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica - Portland, OR

Analyte M Blank (7081295-BLK1)	lethod	Result	MDL*	MRL										
Rlank (7081295-RLK1)				WIKL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Diank (7001275 DEIXI)								Ext	racted:	08/28/07	14:30			
Fluorene	PA 8270C	ND		99.0	mg/kg wet	1x							08/30/07 07:48	
Hexachlorobenzene	"	ND		99.0	"	"							"	
Hexachlorobutadiene	"	ND		300	"	"							"	
Hexachlorocyclopentadiene	"	ND		300	"	"							"	
Hexachloroethane	"	ND		300	"	"							"	
Indeno (1,2,3-cd) pyrene	"	ND		99.0	"	"							"	
Isophorone	"	ND		99.0	"	"							"	
2-Methylnaphthalene	"	ND		99.0	"	"							"	
2-Methylphenol	"	ND		99.0	"	"							"	
3-,4-Methylphenol	"	ND		99.0	"	"							"	
Naphthalene	"	ND		99.0	"	"							"	
2-Nitroaniline	"	ND		99.0	"	"							"	
3-Nitroaniline	"	ND		300	"	"							"	
4-Nitroaniline	"	ND		99.0	"	"							"	
Nitrobenzene	"	ND		99.0	"	"							"	
2-Nitrophenol	"	ND		99.0	"	"							"	
4-Nitrophenol	"	ND		300	"	"							"	
N-Nitrosodi-n-propylamine	"	ND		99.0	"	"							"	
N-Nitrosodiphenylamine	"	ND		99.0	"	"							"	
Pentachlorophenol	"	ND		300	"	"							"	
Phenanthrene	"	ND		99.0	"	"							"	
Phenol	"	ND		99.0	"	"							"	
Pyrene	"	ND		99.0	"	"							"	
1,2,4-Trichlorobenzene	"	ND		300	"	"							"	
2,4,5-Trichlorophenol	"	ND		99.0	"	"							"	
2,4,6-Trichlorophenol	"	ND		99.0	"	"							"	
Surrogate(s): 2-Fluorobiphenyl		Recovery:	98.6%	Lim	its: 33-126%	"							08/30/07 07:4	18
2-Fluorophenol			85.1%		20-127%	"							"	
Nitrobenzene-d5			97.6%		25-131%	"							"	
Phenol-d6			95.8%		13-138%	"							"	
p-Terphenyl-d14 2,4,6-Tribromophenol			89.2% 97.3%		38-142% 46-124%	,,							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7081295	Other	dry Prepa	aration Meth	od: E	PA 3580									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limi	ts) Analyzed	Note
LCS (7081295-BS1)								Ext	racted:	08/28/07	14:30			
Acenaphthene	EPA 8270C	507		99.0	mg/kg wet	1x		500	101%	(46-120)			08/31/07 11:28	
4-Chloro-3-methylphenol	"	859		99.0	"	"		1000	85.9%	(36-138)			"	
2-Chlorophenol	"	887		99.0	"	"		"	88.7%	(18-137)			"	
1,4-Dichlorobenzene	"	511		300	"	"		500	102%	(7-135)			"	
2,4-Dinitrotoluene	"	476		150	"	"		"	95.3%	(49-125)			"	
4-Nitrophenol	"	950		300	"	"		1000	95.0%	(40-148)			"	
N-Nitrosodi-n-propylamine	"	560		99.0	"	"		500	112%	(20-138)			"	
Pentachlorophenol	"	865		300	"	"		1000	86.5%	(22-129)			"	
Phenol	"	833		99.0	"	"		"	83.3%	(37-122)			"	
Pyrene	"	430		99.0	"	"		500	86.0%	(26-143)			"	
1,2,4-Trichlorobenzene	"	506		300	"	"		"	101%	(25-129)			"	
Surrogate(s): 2-Fluorobiphenyl		Recovery:	103%	Lin	its: 33-126%	"							08/31/07 11:2	8
2-Fluorophenol			92.5%		20-127%	"							"	
Nitrobenzene-d5			103%		25-131%	"							"	
Phenol-d6			101%		13-138%	"							"	
p-Terphenyl-d14			85.7%		38-142%	"							"	
2,4,6-Tribromophenol	!		102%		46-124%	"							"	
LCS Dup (7081295-BSD1)								Ext	racted:	08/28/07	14:30			
Acenaphthene	EPA 8270C	485		99.0	mg/kg wet	1x		500	96.9%	(46-120)	4.42%	(60)	08/31/07 12:11	
4-Chloro-3-methylphenol	"	814		99.0	"	"		1000	81.4%	(36-138)	5.38%	ó "	"	
2-Chlorophenol	"	911		99.0	"	"		"	91.1%	(18-137)	2.64%	ó "	"	
1,4-Dichlorobenzene	"	523		300	"	"		500	105%	(7-135)	2.26%	, "	"	
2,4-Dinitrotoluene	"	431		150	"	"		"	86.3%	(49-125)	9.94%	ó "	"	
4-Nitrophenol	"	915		300	"	"		1000	91.5%	(40-148)	3.75%	ó "	"	
N-Nitrosodi-n-propylamine	"	575		99.0	"	"		500	115%	(20-138)	2.70%	ó "	"	
Pentachlorophenol	"	849		300	"	"		1000		(22-129)			"	
Phenol	"	902		99.0	"	,,		"		(37-122)			"	
Pyrene	"	414		99.0	"	.,		500		(26-143)			"	
1,2,4-Trichlorobenzene	"	485		300	"			"		(25-143)			"	
			96.0%		nits: 33-126%				, 5., 70	(20 127)	107	_	08/31/07 12:1	1
Surrogate(s): 2-Fluorobiphenyl 2-Fluorophenol		Recovery:	96.0% 97.3%	Lin	uts: 33-126% 20-127%								08/31/0/ 12:1	1
2-Fluorophenoi Nitrobenzene-d5			98.6%		25-131%								"	
Phenol-d6			106%		13-138%								"	
p-Terphenyl-d14			80.8%		38-142%								"	
2,4,6-Tribromophenol	!		91.0%		46-124%								"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

OC Databa 7100069

Harbor Tank 23 **Coles Environmental** Project Name:

Cail Duamanation Mathada

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Pesticides per EPA Method 1311/8081A - Laboratory Quality Control Results
TestAmerica - Portland, OR

EDA 1211/2510

QC Batch: 7100068	Soil P	reparation	Method:	EPA 131	1/3510									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt R	% REC	Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7100068-BLK1)								Extra	cted:	10/02/07	15:20			
gamma-BHC (Lindane)	1311/8081A	ND		0.000400	mg/l	1x							10/03/07 14:23	
Chlordane (tech)	"	ND		0.00500	"	"							"	
Endrin	"	ND		0.000400	"	"							"	
Heptachlor	"	ND		0.000400	"	"							"	
Heptachlor epoxide	"	ND		0.000400	"	"							"	
Methoxychlor	"	ND		0.000400	"	"							"	
Toxaphene	"	ND		0.0500	"	"							"	
Surrogate(s): 2,4,5,6-Tetrachlo	oro-m-xylene	Recovery:	83.0%	Limi	ts: 30-140%	"							10/03/07 14:23	
LCS (7100068-BS1)								Extra	cted:	10/02/07	15:20			
gamma-BHC (Lindane)	1311/8081A	0.00118		0.000500	mg/l	1x		0.0012594	4.1%	(50-150)			10/03/07 12:40	
Endrin	"	0.00127		0.000500	"	"		" 1	02%	"			"	
Heptachlor	"	0.00107		0.000500	"	"		" 85	5.7%	"			"	
Heptachlor epoxide	"	0.00122		0.000500	"	"		" 97	7.7%	"			"	
Methoxychlor	"	0.00115		0.000500	"	"		" 9	1.7%	"			"	
Surrogate(s): 2,4,5,6-Tetrachlo	oro-m-xylene	Recovery:	81.8%	Limi	ts: 30-140%	"							10/03/07 12:40	
LCS (7100068-BS2)								Extra	cted:	10/02/07	15:20			
Chlordane (tech)	1311/8081A	0.00772		0.00500	mg/l	1x		0.0100 7	7.2%	(50-150)			10/03/07 14:49	
Surrogate(s): 2,4,5,6-Tetrachlo	oro-m-xylene	Recovery:	73.8%	Limi	ts: 30-140%	"							10/03/07 14:49	
LCS (7100068-BS3)								Extra	cted:	10/02/07	15:20			
Toxaphene	1311/8081A	0.00567		0.0500	mg/l	1x		0.0100 50	6.7%	(50-150)			10/05/07 11:44	
Surrogate(s): 2,4,5,6-Tetrachlo	oro-m-xylene	Recovery:	72.6%	Limi	ts: 30-140%	"							10/05/07 11:44	
Duplicate (7100068-DUP1	D			QC Source	e: PQH076	7-02		Extra	cted:	10/02/07	15:20			
gamma-BHC (Lindane)	1311/8081A	ND		0.000400	mg/l	1x	ND				NR	(0)	10/03/07 19:38	
Endrin	"	ND		0.000400	"	"	ND				NR	"	"	
Heptachlor	"	ND		0.000400	"	"	ND				NR	"	"	
Heptachlor epoxide	"	ND		0.000400	"	"	ND				NR	"	"	
Methoxychlor	"	ND		0.000400	"	"	ND				NR	"	"	
Surrogate(s): 2,4,5,6-Tetrachlo	oro-m-xylene	Recovery:	161%	Limi	ts: 30-140%	"							10/03/07 19:38	Z

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Pesticides per EPA Method 1311/8081A - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7100068	Soil P	reparation	Method:	EPA 131	1/3510								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limi	its) Analyzed	Notes
Matrix Spike (7100068-MS1	1)			QC Sourc	e: PQH076	7-02		Extracted	: 10/02/07	15:20			
gamma-BHC (Lindane)	1311/8081A	0.00110		0.00200	mg/l	5x	ND	0.00100 110%	(50-150)			10/03/07 20:04	
Endrin	"	0.00102		0.00200	"	"	ND	" 102%	"			"	
Heptachlor	"	0.000828		0.00200	"	"	ND	" 82.8%	, "			"	
Heptachlor epoxide	"	0.000941		0.00200	"	"	ND	" 94.1%	, "			"	
Methoxychlor	"	0.000648		0.00200	"	"	ND	" 64.8%	ó "			"	
Surrogate(s): 2,4,5,6-Tetrachloro	-m-xylene	Recovery:	144%	Limi	ts: 30-140%	5 "						10/03/07 20:04	ZX

TestAmerica - Portland, OR

Howard Holmes, Project Manager

TestAmerico THE LEADER IN ENVIRONMENTAL TESTING

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Semivolatiles per EPA Method 1311/8270 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7100022	Soil P	reparation]	Method:	EPA 131	1/3510									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Note
Blank (7100022-BLK1)								Ext	racted:	10/01/07	15:00			
1,4-Dichlorobenzene	1311/8270	ND		0.0500	mg/l	1x							10/02/07 17:56	
2,4-Dinitrotoluene	"	ND		0.0500	"	"							"	
Hexachlorobenzene	"	ND		0.0500	"	"							"	
Hexachlorobutadiene	"	ND		0.0500	"	"							"	
Hexachloroethane	"	ND		0.0500	"	"							"	
Nitrobenzene	"	ND		0.0500	"	"							"	
Pentachlorophenol	"	ND		0.100	"	"							"	
Pyridine	"	ND		0.200	"	"							"	
Total Cresols	"	ND		0.100	"	"							"	
2,4,5-Trichlorophenol	"	ND		0.0500	"	"							"	
2,4,6-Trichlorophenol	"	ND		0.0500	"	"							"	
Surrogate(s): 2-Fluorophenol		Recovery: 4	18.3%	Lim	its: 7-116%	"							10/02/07 17:5	56
Phenol-d6			31.3%		1-114%	"							"	
2,4,6-Tribromophenol		9	06.5%		33-150%	"							"	
Nitrobenzene-d5			33.5%		29-140%	"							"	
2-Fluorobiphenyl			77.3%		12-135%	"							"	
p-Terphenyl-d14		8	88.1%		47-138%	"							"	
LCS (7100022-BS1)								Ext	racted:	10/01/07	15:00			
1,4-Dichlorobenzene	1311/8270	0.266		0.0500	mg/l	1x		0.400	66.6%	(5-102)			10/02/07 18:41	
2,4-Dinitrotoluene	"	0.309		0.0500	"	"		"	77.2%	(41-128)			"	
Hexachlorobenzene	"	0.283		0.0500	"	"		"	70.7%	(43-124)			"	
Hexachlorobutadiene	"	0.300		0.0500	"	"		"	75.0%	(5-151)			"	
Hexachloroethane	"	0.258		0.0500	"	"		"	64.4%	(5-134)			"	
Vitrobenzene	"	0.289		0.0500	"	"		"	72.3%	(30-128)			"	
Pentachlorophenol	"	0.331		0.100	"	"		"		(40-134)			"	
Pyridine	"	0.190		0.200	"	"		"		(1-130)			"	
2,4,5-Trichlorophenol	"	0.354		0.0500	"	"		"		(48-128)			"	
Total Cresols	"	0.663		0.100	"	"		1.20		(5-117)			"	
2,4,6-Trichlorophenol	"	0.322		0.0500	"	"				(39-126)			"	
Surrogate(s): 2-Fluorophenol			47.5%		its: 7-116%	,,		00	20.070	(3) 120)			10/02/07 18:4	11
Surrogate(s): 2-rtuoropnenoi Phenol-d6			30.6%	Lim	lus: /-110% 1-114%								"	. 1
2,4,6-Tribromophenol	,		96.7%		33-150%								"	
Nitrobenzene-d5			79.7%		29-140%	"							"	
2-Fluorobiphenyl			79.5%		12-135%	"							"	
p-Terphenyl-d14			87.0%		47-138%	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

TCLP Semivolatiles per EPA Method 1311/8270 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7100022	Soil P	reparation	Method:	EPA 131	1/3510									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Duplicate (7100022-DUP1)				QC Sourc	e: PQH076	7-01		Ext	racted:	10/01/07	15:00			RL3
1,4-Dichlorobenzene	1311/8270	ND		0.200	mg/l	4x	ND				NR	(50)	10/02/07 22:17	
2,4-Dinitrotoluene	"	ND		0.200	"	"	ND				NR	"	"	
Hexachlorobenzene	"	ND		0.200	"	"	ND				NR	"	"	
Hexachlorobutadiene	"	ND		0.200	"	"	ND				NR	"	"	
Hexachloroethane	"	ND		0.200	"	"	ND				NR	"	"	
Nitrobenzene	"	ND		0.200	"	"	ND				NR	"	"	
Pentachlorophenol	"	ND		0.400	"	"	ND				NR	"	"	
Pyridine	"	ND		0.800	"	"	ND				NR	"	"	
Total Cresols	"	1.79		0.400	"	"	1.84				2.67%	ó "	"	
2,4,5-Trichlorophenol	"	ND		0.200	"	"	ND				NR	"	"	
2,4,6-Trichlorophenol	"	ND		0.200	"	"	ND				NR	"	"	
Surrogate(s): 2-Fluorophenol		Recovery:	52.7%	Lin	nits: 7-116%	"							10/02/07 22:17	,
Phenol-d6		•	29.7%		1-114%	"							"	
2,4,6-Tribromophenol	!		94.2%		33-150%	"							"	
Nitrobenzene-d5			84.0%		29-140%								"	
2-Fluorobiphenyl			81.8%		12-135%								"	
p-Terphenyl-d14			83.8%		47-138%	"							"	
Matrix Spike (7100022-MS1)				QC Sourc	e: PQH076	7-01		Ext	racted:	10/01/07	15:00			RL3
1,4-Dichlorobenzene	1311/8270	0.293		0.500	mg/l	10x	ND	0.400	73.2%	(14-100)			10/02/07 21:31	
2,4-Dinitrotoluene	"	0.282		0.500	"	"	ND	"	70.4%	(36-131)			"	
Hexachlorobenzene	"	0.238		0.500	"	"	ND	"	59.5%	(39-128)			"	
Hexachlorobutadiene	"	0.293		0.500	"	"	ND	"	73.3%	(9-122)			"	
Hexachloroethane	"	0.279		0.500	"	"	ND	"	69.7%	(1-118)			"	
Nitrobenzene	"	0.330		0.500	"	"	ND	"	82.4%	(11-153)			"	
Pentachlorophenol	"	0.312		1.00	"	"	ND	"	77.9%	(17-154)			"	
Pyridine	"	0.214		2.00	"	"	ND			(1-110)			"	
Total Cresols	"	2.63		1.00	"	"	1.84			(1-132)			"	
2,4,5-Trichlorophenol	"	0.330		0.500	"	"	ND			(43-132)			"	
2,4,6-Trichlorophenol	"	0.333		0.500	"	"	ND			(34-133)			"	
Surrogate(s): 2-Fluorophenol			54.7%		nits: 7-116%	"				,7			10/02/07 21:31	
Phenol-d6			31.0%	Liii	1-114%	"							"	
2,4,6-Tribromophenol	!		93.9%		33-150%								"	
Nitrobenzene-d5			84.7%		29-140%								"	
2-Fluorobiphenyl			84.1%		12-135%	"							"	
p-Terphenyl-d14			90.5%		47-138%	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Convention	nal Chemistr	y Parame	-	APHA/E America -			- Labo	oratory Quality Control Results
QC Batch: 7080872	Soil Pre	paration I	Method:	General F	reparati	on		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	e Spike % (Limits) % (Limits) Analyzed Notes
Duplicate (7080872-DUP1)				QC Source	: PQG097	8-05		Extracted: 08/20/07 10:41
pH	EPA 9045B	9.44			oH Units	1x	9.45	0.106% (25) 08/20/07 12:51

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Harbor Tank 23 Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Physica	al Paramete	rs per AP		M/EPA N America -			iborato	ry Qua	ality Co	ntrol Re	sults		
QC Batch: 7080872	Soil Pre	eparation N	Method:	General F	reparati	on							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% (Liı	mits) %	(Limit	s) Analyzed	Notes
Duplicate (7080872-DUP1)				QC Source	: PQG097	8-05		Extr	acted: 08	/20/07 10:4	1		
Corrosivity	EPA 9040B	9.44		1	oH Units	1x	9.45			0.10	6% (20)	08/20/07 12:51	

QC Batch: 7081270	Other v	vet Prepara	tion Meth	od: EPA	1010							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits) % RPD	(Limi	its) Analyzed	Notes
LCS (7081270-BS1)								Extracted	1: 08/27/07 13:48	3		
Flashpoint	EPA 1010	125			°F	1x		127 98.49	% (95-105)		08/27/07 18:48	
Duplicate (7081270-DUP1)				QC Source:	PQH07	67-01		Extracted	1: 08/27/07 13:48	3		
Flashpoint	EPA 1010	ND		150	°F	1x	ND			(20)	08/27/07 18:48	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

TCLP Extraction Only - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 7091053 Soil Preparation Method: EPA 1311

Analyte Method Result MDL* MRL Units Dil Source Spike % (Limits) % (Limits) Analyzed Notes

Blank (7091053-BLK1) Extracted: 09/25/07 17:17

Extraction EPA 1311 ND --- 1.00 N/A 1x -- -- -- -- -- 09/26/07 18:09

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

QC Batch: 7H27015 V Analyte Method Blank (7H27015-BLK1) Mercury EPA 7-	od R		ethod: MDL*	EPA 74	70A Units	Dil	Source	Spike % Amt REC	(Limits)	-% (Lir	nits) Analyzed	
Blank (7H27015-BLK1)			MDL*	MRL	Units	Dil	Source	Spike %	(Limits)	_%_ (Lir	nits) Analyzed	
,	/470A						Result	Amt REC	` ′	RPD (211	ines, maryzeu	Notes
Mercury EPA 7-	470A							Extracted:	08/27/07	10:30		
		ND		0.000200	mg/l	1x					08/27/07 15:24	
LCS (7H27015-BS1)								Extracted:	08/27/07	10:30		
Mercury EPA 7-	'470A 0.	00458		0.000200	mg/l	1x		0.0050091.6%	(80-120)		08/27/07 15:26	
LCS Dup (7H27015-BSD1)								Extracted:	08/27/07	10:30		
Mercury EPA 7-	'470A 0.	00468		0.000200	mg/l	1x		0.0050093.5%	(80-120)	2.06% (20) 08/27/07 15:29	
Duplicate (7H27015-DUP1)				QC Source:	: BQH061	1-01		Extracted:	08/27/07	10:30		
Mercury EPA 7-	470A	ND		0.000200	mg/l	1x	ND			54.0% (20	08/27/07 16:01	R4
Matrix Spike (7H27015-MS1)				QC Source:	: BQH061	1-01		Extracted:	08/27/07	10:30		
Mercury EPA 74	'470A 0.	00536		0.000200	mg/l	1x (0.0000707	0.00500 106%	(75-125)		08/27/07 15:31	

QC Batch: 7H28007	Water	Preparation	Method:	EPA 3	020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Lim	its) Analyzed	Notes
Blank (7H28007-BLK1)								Extr	acted:	08/28/07	9:11			
Silver	EPA 6020	ND		0.00100	mg/l	1x							08/31/07 07:31	
Lead	"	ND		0.00100	"	"							"	
Barium	"	ND		0.0100	"	"							"	
Chromium	"	ND		0.00100	"	"							"	
Cadmium	"	ND		0.00100	"	"							"	
Arsenic	"	ND		0.00100	"	"							"	
Selenium	"	ND		0.00100	"	"							09/05/07 06:10	
LCS (7H28007-BS1)								Extr	acted:	08/28/07	9:11			
Barium	EPA 6020	0.0800		0.0100	mg/l	1x		0.0800	100%	(80-120)			08/31/07 07:37	
Selenium	"	0.0720		0.00100	"	"		"	90.0%	"			09/05/07 06:16	
Arsenic	"	0.0691		0.00100	"	"		"	86.4%	"			08/31/07 07:37	
Cadmium	"	0.0717		0.00100	"	"		"	89.7%	"			"	
Lead	"	0.0751		0.00100	"	"		"	93.8%	"			"	
Chromium	"	0.0807		0.00100	"	"		"	101%	"			"	
Silver	"	0.0777		0.00100	"	"		"	97.2%	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

			Test	America -	Seattle,	WA								
QC Batch: 7H28007	Water	Preparation	Method:	EPA 3	020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Duplicate (7H28007-DUP1)				QC Source	e: PQH07	67-06		Exti	acted:	08/28/07	09:11			
Arsenic	EPA 6020	ND		0.00100	mg/l	1x	ND				NR	(20)	08/31/07 08:07	
Barium	"	ND		0.0100	"	"	ND					"	"	
Chromium	"	ND		0.00100	"	"	ND				3.21%	ó "	"	
Selenium	"	ND		0.00100	"	"	ND					"	"	
Silver	"	ND		0.00100	"	"	ND					(50)	"	
Lead	"	ND		0.00100	"	"	ND				5.31%	6 (20)	"	
Cadmium	"	ND		0.00100	"	"	ND				NR	"	"	
Matrix Spike (7H28007-MS1	.)			QC Source	e: PQH07	67-06		Extr	acted:	08/28/07	09:11			
Selenium	EPA 6020	0.0579		0.00100	mg/l	1x	ND	0.0800	72.3%	(78-120)			09/05/07 06:40	M
Cadmium	"	0.0727		0.00100	"	"	ND	"	90.9%	(80-120)			08/31/07 08:01	
Lead	"	0.0766		0.00100	"	"	0.000580	"	95.1%	"			"	
Barium	"	0.0813		0.0100	"	"	ND	"	102%	(53-142)			"	
Chromium	"	0.0833		0.00100	"	"	0.000920	"	103%	(80-120)			"	
Arsenic	"	0.0697		0.00100	"	"	ND	"	87.1%	(75-125)			"	
Silver	"	0.0792		0.00100	"	"	ND	"	99.0%	(21-142)			"	
Post Spike (7H28007-PS1)				QC Source	e: PQH07	67-06		Exti	acted:	08/28/07	09:11			
Silver	EPA 6020	0.195			ug/ml	1x	ND	0.200	97.4%	(75-125)			08/31/07 07:55	
Selenium	"	0.0704			"	"	0.0000800	"	35.2%	"			09/05/07 06:22	S
Arsenic	"	0.176			"	"	0.0000300	0.199	88.2%	"			08/31/07 07:55	
Chromium	"	0.218			"	"	0.000920	0.201	108%	"			"	
Barium	"	0.199			"	"	0.000190	0.200	99.3%	"			"	
Cadmium	"	0.175			"	"	-0.0000600	"	87.6%	"			"	
Lead	"	0.182			"	"	0.000580	0.201	90.2%	"			"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7H28	047 Soil Pr	eparation N	Iethod: H	EPA 305	60B								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% (L RPD (L	Limits) Analyzed	Notes
Blank (7H28047-BLK	1)							Ext	racted:	08/28/07	13:56		
Chromium	EPA 6020	ND		0.500	mg/kg wet	1x						08/29/07 11:59	
Silver	"	ND		0.500	"	"						"	
Selenium	"	ND		0.500	"	"						"	
Arsenic	"	ND		0.500	"	"						"	
Cadmium	"	ND		0.500	"	"						"	
Barium	"	ND		5.00	"	"						"	
Lead	"	ND		0.500	"	"						"	
LCS (7H28047-BS1)								Ext	racted:	08/28/07	13:56		
Silver	EPA 6020	40.2		0.500	mg/kg wet	1x		40.0	101%	(80-120)		08/29/07 12:05	
Cadmium	"	40.4		0.500	"	"		"	101%	"		"	
Barium	"	42.0		5.00	"	"		"	105%	"		"	
Selenium	"	39.1		0.500	"	"		"	97.7%	"		"	
Chromium	"	39.9		0.500	"	"		"	99.8%	"		"	
Lead	"	38.9		0.500	"	"		"	97.3%	"		"	
Arsenic	"	40.2		0.500	"	"		"	100%	"		"	
Duplicate (7H28047-D	UP1)			QC Sour	e: BQH063	34-02		Ext	racted:	08/28/07	13:56		
Lead	EPA 6020	20.0		0.631	mg/kg dry	1x	20.8				3.94% ((30) 08/29/07 12:52	
Silver	"	ND		0.631	"	"	ND				((50) "	R
Barium	"	147		6.31	"	"	180				20.1% ((30) "	
Selenium	"	ND		0.631	"	"	ND					" "	R
Arsenic	"	3.02		0.631	"	"	3.34				10.3%	" "	
Cadmium	"	ND		0.631	"	"	ND				1.65%	" "	R
Chromium	"	23.6		0.631	"	"	22.8				3.16%	" "	
Matrix Spike (7H2804	7-MS1)			QC Sour	e: BQH063	34-02		Ext	racted:	08/28/07	13:56		
Chromium	EPA 6020	82.6		0.675	mg/kg dry	1x	22.8	54.0	111%	(30-163)		08/29/07 12:17	
Barium	"	214		6.75	"	"	180	"	62.3%	(20-160)		"	
Selenium	"	52.0		0.675	"	"	ND	"	96.2%	(61-120)		"	
Cadmium	"	56.9		0.675	"	"	0.379	"	105%	(80-120)		"	
Arsenic	"	56.5		0.675	"	"	3.34	"	98.5%	(57-125)		"	
Silver	"	53.5		0.675	"	"	ND	"		(54-126)		"	
Lead	,,	75.3		0.675	"	.,	20.8	"		(29-166)		"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica - Seattle, WA

			1 CSt2	America - St	Jattic, WF	1								
QC Batch: 7H28047	Soil Pro	eparation M	Iethod:	EPA 3050B										
Analyte	Method	Result	MDL*	MRL 1	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Lim	its) Analyzed	Notes
Post Spike (7H28047-PS1)				QC Source:	BQH0634-0	02		Exti	acted:	08/28/07	13:56			
Chromium	EPA 6020	0.138		u	g/ml	1x	0.0362	0.100	102%	(75-125)			08/29/07 12:11	
Cadmium	"	0.103			"	"	0.000600	"	102%	"			"	
Lead	"	0.131			"	"	0.0329	"	97.5%	"			"	
Selenium	"	0.0973			"	"	0.000270	"	97.0%	"			"	
Silver	"	0.0995			"	"	0.0000800	"	99.4%	"			"	
Arsenic	"	0.109			"	"	0.00530	0.0995	104%	"			"	
Post Spike (7H28047-PS2)				QC Source:	BQH0634-0	02		Exti	acted:	08/28/07	13:56			
Barium	EPA 6020	0.389		u	g/ml 2	2x	0.285	0.100	103%	(75-125)			08/29/07 12:46	

QC Batch: 7H28052	Soil Pro	eparation M	Iethod:	EPA 7471A			
Analyte	Method	Result	MDL*	MRL Units	Dil	Source Result	Spike % (Limits) RPD (Limits) Analyzed Not
Blank (7H28052-BLK1)							Extracted: 08/28/07 16:12
Mercury	EPA 7471A	ND		0.100 mg/kg wet	1x		08/29/07 12:58
LCS (7H28052-BS1)							Extracted: 08/28/07 16:12
Mercury	EPA 7471A	0.597		0.100 mg/kg wet	1x		0.667 89.6% (80-120) 08/29/07 13:00
LCS Dup (7H28052-BSD1)							Extracted: 08/28/07 16:12
Mercury	EPA 7471A	0.620		0.100 mg/kg wet	1x		0.667 93.0% (80-120) 3.70% (20) 08/29/07 13:02
Duplicate (7H28052-DUP1)				QC Source: BQH06	34-02		Extracted: 08/28/07 16:12
Mercury	EPA 7471A	ND		0.127 mg/kg dry	1x	ND	25.5% (30) 08/29/07 13:30
Matrix Spike (7H28052-MS1	.)			QC Source: BQH06	34-02		Extracted: 08/28/07 16:12
Mercury	EPA 7471A	0.829		0.128 mg/kg dry	1x	0.0583	0.855 90.2% (70-130) 08/29/07 13:05
Matrix Spike Dup (7H28052-	-MSD1)			QC Source: BQH06	34-02		Extracted: 08/28/07 16:12
Mercury	EPA 7471A	0.856		0.132 mg/kg dry	1x	0.0583	0.877 90.9% (70-130) 3.10% (30) 08/29/07 13:07

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7H29025	Soil Pro	eparation M	1ethod: I	EPA 503	60B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7H29025-BLK1)								Exti	acted:	08/30/07	09:39			
m,p-Xylene	EPA 8260B	ND		0.200	mg/kg wet	1x						(08/30/07 13:35	
o-Xylene	"	ND		0.100	"	"							"	
Acetone	"	ND		1.00	"	"							"	
Benzene	"	ND		0.0200	"	"							"	
Bromobenzene	"	ND		0.100	"	"							"	
Bromochloromethane	"	ND		0.100	"	"							"	
Bromodichloromethane	"	ND		0.100	"	"							"	
Bromoform	"	ND		0.100	"	"							"	
Bromomethane	"	ND		0.100	"	"							"	
2-Butanone	"	ND		1.00	"	"							"	
n-Butylbenzene	"	ND		0.100	"	"							"	
sec-Butylbenzene	"	ND		0.100	"	"							"	
tert-Butylbenzene	"	ND		0.100	"	"							"	
Carbon disulfide	"	ND		0.100	"	"							"	
Carbon tetrachloride	"	ND		0.100	"	"							"	
Chlorobenzene	"	ND		0.100	"	"							"	
Chloroethane	"	ND		0.100	"	"							"	
Chloroform	"	ND		0.100	"	"							"	
Chloromethane	"	ND		0.500	,,	"							"	
2-Chlorotoluene	"	ND		0.100	,,	"	 						"	
4-Chlorotoluene	,,	ND		0.100	"	,,							"	
Dibromochloromethane	,,	ND ND		0.100	"	,,							"	
	,,	ND ND			,,	,,							,,	
1,2-Dibromo-3-chloropropane				0.500	,,	"							"	
1,2-Dibromoethane		ND		0.0500	,,								"	
Dibromomethane		ND		0.100	,,								"	
1,2-Dichlorobenzene		ND		0.100		"								
1,3-Dichlorobenzene		ND		0.100	"								"	
1,4-Dichlorobenzene	"	ND		0.100	"	"								
Dichlorodifluoromethane	"	ND		0.100	"	"							"	
1,1-Dichloroethane	"	ND		0.100	"	"							"	
1,2-Dichloroethane	"	ND		0.100	"	"							"	
1,1-Dichloroethene	"	ND		0.100	"	"							"	
cis-1,2-Dichloroethene	"	ND		0.100	"	"							"	
trans-1,2-Dichloroethene	"	ND		0.100	"	"							"	
1,2-Dichloropropane	"	ND		0.100	"	"							"	
1,3-Dichloropropane	"	ND		0.100	"	"							"	
2,2-Dichloropropane	"	ND		0.100	"	"							"	
1,1-Dichloropropene	"	ND		0.100	"	"							"	
cis-1,3-Dichloropropene	"	ND		0.100	"	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7H29025	Soil Pr	eparation N	lethod: F	EPA 5030	В									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7H29025-BLK1)								Ext	racted:	08/30/07	09:39			
trans-1,3-Dichloropropene	EPA 8260B	ND		0.100 m	ng/kg wet	1x							08/30/07 13:35	
Ethylbenzene	"	ND		0.100	"	"							"	
Hexachlorobutadiene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		0.0500	"	"							"	
n-Hexane	"	ND		1.00	"	"							"	
2-Hexanone	"	ND		1.00	"	"							"	
Isopropylbenzene	"	ND		0.100	"	"							"	
p-Isopropyltoluene	"	ND		0.100	"	"							"	
4-Methyl-2-pentanone	"	ND		1.00	"	"							"	
Methylene chloride	"	ND		1.00	"	"							"	
Naphthalene	"	ND		0.500	"	"							"	
n-Propylbenzene	"	ND		0.100	"	"							"	
Styrene	"	ND		0.100	"	"							"	
1,2,3-Trichlorobenzene	"	ND		0.500	"	"							"	
1,2,4-Trichlorobenzene	"	ND		0.500	"	"							"	
1,1,1,2-Tetrachloroethane	"	ND		0.100	"	"							"	
1,1,2,2-Tetrachloroethane	"	ND		0.100	"	"							"	
Tetrachloroethene	"	ND		0.100	"	"							"	
Toluene	"	ND		0.100	"	"							"	
1,1,1-Trichloroethane	"	ND		0.100	"	"							"	
1,1,2-Trichloroethane	"	ND		0.100	"	"							"	
Trichloroethene	"	ND		0.100	"	"							"	
Trichlorofluoromethane	"	ND		0.100	"	"							"	
1,2,3-Trichloropropane	"	ND		0.100	"	"							"	
1,2,4-Trimethylbenzene	"	ND		0.100	"	"							"	
1,3,5-Trimethylbenzene	"	ND		0.100	"	"							"	
Vinyl chloride	"	ND		0.100	"	"							"	
Total Xylenes	"	ND		0.300	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery: 92	.7%	Limits	s: 75-125%	"							08/30/07 13:3	5
Toluene-d8		94	.8%		75-125%	"							"	
4-BFB		10	01%		75-125%	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.

West Linn, OR 97068

Project Number: P7176.1

Report Created: David G. Coles 10/11/07 08:06

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7H29025	Soil P	reparation	Method:	EPA 503	30B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
LCS (7H29025-BS1)								Ext	racted:	08/30/07	7 09:39			
o-Xylene	EPA 8260B	2.27		0.100	mg/kg wet	1x		2.00	113%	(70-130)			08/30/07 12:06	
m,p-Xylene	"	4.55		0.200	"	"		4.00	114%	"			"	
Benzene	"	2.38		0.0200	"	"		2.00	119%	(75-125)			"	
Chlorobenzene	"	2.32		0.100	"	"		"	116%	"			"	
1,2-Dibromoethane	"	2.27		0.0500	"	"		"	113%	(70-130)			"	
1,2-Dichloroethane	"	2.21		0.100	"	"		"	111%	(0-200)			"	
1,1-Dichloroethene	"	2.51		0.100	"	"		"	125%	(69-128)			"	
Ethylbenzene	"	2.27		0.100	"	"		"	114%	(70-130)			"	
Methyl tert-butyl ether	"	2.38		0.0500	"	"		"	119%	"			"	
Trichloroethene	"	2.40		0.100	"	"		"	120%	(75-125)			"	
Total Xylenes	"	6.82		0.300	"	"		6.00	114%	(70-130)			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	90.5%	Lim	nits: 75-125%	"							08/30/07 12:00	6
Toluene-d8			89.7%		75-125%	"							"	
4-BFB			100%		75-125%	"							,,	
LCS Dup (7H29025-BSD1)								Ext	racted:	08/30/07	09:39			
o-Xylene	EPA 8260B	2.29		0.100	mg/kg wet	1x		2.00	114%	(70-130)	0.7919	% (20)	08/30/07 12:34	
m,p-Xylene	"	4.64		0.200	"	"		4.00	116%	"	1.91%	ó "	"	
Benzene	"	2.39		0.0200	"	"		2.00	120%	(75-125)	0.2939	% "	"	
Chlorobenzene	"	2.38		0.100	"	"		"	119%	"	2.59%	ó "	"	
1,2-Dibromoethane	"	2.32		0.0500	"	"		"	116%	(70-130)	2.14%	ó "	"	
1,2-Dichloroethane	"	2.27		0.100	"	"		"	113%	(0-200)	2.45%	6 (200)	"	
1,1-Dichloroethene	"	2.50		0.100	"	"		"	125%	(69-128)	0.1209	% (20)	"	
Ethylbenzene	"	2.33		0.100	"	"		"	117%	(70-130)	2.69%	6 "	"	
Methyl tert-butyl ether	"	2.38		0.0500	"	"		"	119%	"	0.0840	%"	"	
Trichloroethene	"	2.40		0.100	"	"		"	120%	(75-125)	0.0416	%"	"	
Total Xylenes	"	6.93		0.300	"	"		6.00	115%	(70-130)	1.54%	6 (30)	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	91.1%	Lim	its: 75-125%	"							08/30/07 12:34	4
Toluene-d8		-	90.4%		75-125%	"							"	
4-BFB			100%		75-125%	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd.Project Number:P7176.1Report Created:West Linn, OR 97068Project Manager:David G. Coles10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7H27050	Water 1	Preparation	Method:	EPA 5	030B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	its) Analyzed	Notes
Blank (7H27050-BLK1)								Ext	racted:	08/27/07	10:00			
Acetone	EPA 8260B	ND		20.0	ug/l	1x							08/27/07 12:51	
Benzene	"	ND		1.00	"	"							"	
Bromobenzene	"	ND		1.00	"	"							"	
Bromochloromethane	"	ND		1.00	"	"							"	
Bromodichloromethane	"	ND		1.00	"	"							"	
Bromoform	"	ND		1.00	"	"							"	
Bromomethane	"	ND		2.00	"	"							"	
2-Butanone	"	ND		10.0	"	"							"	
n-Butylbenzene	"	ND		1.00	"	"							"	
sec-Butylbenzene	"	ND		1.00	"	"							"	
tert-Butylbenzene	"	ND		1.00	"	"							"	
Carbon disulfide	"	ND		1.00	"	"							"	
Carbon tetrachloride	"	ND		1.00	"	"							"	
Chlorobenzene	"	ND		1.00	"	"							"	
Chloroethane	"	ND		1.00	"	"							"	
1-Chlorohexane	"	ND		1.00	"	"							"	
Chloroform	"	ND		1.00	"								"	
Chloromethane	"	ND		5.00	"								"	
2-Chlorotoluene	"	ND		1.00	"	"							"	
4-Chlorotoluene	"	ND		1.00	"	"							"	
Dibromochloromethane	"	ND		1.00	"	"							"	
1,2-Dibromo-3-chloropropane	"	ND		5.00	"	"							"	
1,2-Dibromoethane	"	ND		1.00	"	"							"	
Dibromomethane	"	ND		1.00	"	"							"	
1,2-Dichlorobenzene	"	ND		1.00	"	,,							"	
1,3-Dichlorobenzene	"	ND		1.00	"	,,							"	
1,4-Dichlorobenzene	"	ND		1.00	"	,,							"	
Dichlorodifluoromethane	"	ND		1.00	"	,,							"	
1,1-Dichloroethane	"	ND		1.00	"	,,							"	
1,2-Dichloroethane	"	ND		1.00	"	,,							"	
1,1-Dichloroethene	"	ND		1.00	"	"							"	
cis-1,2-Dichloroethene	"	ND		1.00	"								"	
trans-1,2-Dichloroethene	"	ND		1.00	"	"							"	
1,2-Dichloropropane	"	ND		1.00	"	,,	 						"	
1,3-Dichloropropane	"	ND		1.00	"	,,			_				"	
2,2-Dichloropropane	"	ND ND		1.00	"	"							"	
1,1-Dichloropropene	"	ND ND		1.00	"	"							"	
	"	ND ND		1.00	"	,,							,,	
cis-1,3-Dichloropropene				1.00	,,	,,							,,	
trans-1,3-Dichloropropene	••	ND		1.00										

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7H27050	Water	Preparation	Method:	EPA 50	30B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7H27050-BLK1)								Ext	racted	: 08/27/07	10:00			
Ethylbenzene	EPA 8260B	ND		1.00	ug/l	1x							08/27/07 12:51	
Hexachlorobutadiene	"	ND		5.00	"	"							"	
Methyl tert-butyl ether	"	ND		2.00	"	"							"	
n-Hexane	"	ND		2.00	"	"							"	•
2-Hexanone	"	ND		10.0	"	"							"	
Isopropylbenzene	"	ND		1.00	"	"							"	
p-Isopropyltoluene	"	ND		1.00	"	"							"	
4-Methyl-2-pentanone	"	ND		10.0	"	"							"	
Methylene chloride	"	ND		5.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
n-Propylbenzene	"	ND		1.00	"	"							"	
Styrene	"	ND		1.00	"	"							"	
1,2,3-Trichlorobenzene	"	ND		5.00	"	"							"	
1,2,4-Trichlorobenzene	"	ND		5.00	"	"							"	
1,1,1,2-Tetrachloroethane	"	ND		1.00	"	"							"	
1,1,2,2-Tetrachloroethane	"	ND		1.00	"	"							"	
Tetrachloroethene	"	ND		1.00	"	"							"	
Toluene	"	ND		1.00	"	"							"	
1,1,1-Trichloroethane	"	ND		1.00	"	"							"	
1,1,2-Trichloroethane	"	ND		1.00	"	"							"	
Trichloroethene	"	ND		1.00	"	"							"	
Trichlorofluoromethane	"	ND		1.00	"	"							"	
1,2,3-Trichloropropane	"	ND		1.00	"	"							"	
1,2,4-Trimethylbenzene	"	ND		1.00	"	"							"	
1,3,5-Trimethylbenzene	"	ND		1.00	"	"							"	
Vinyl chloride	"	ND		1.00	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Total Xylenes	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery: 92	2.8%	Limits	: 70-130%	"							08/27/07 12:5	51
Toluene-d8		10	01%		75-125%	"							"	
4-BFB		99	0.8%		75-125%	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batch: 7H27050	Water	· Preparat	ion Method:	EPA 5	030B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	its) Analyzed	No
LCS (7H27050-BS1)								Ext	racted:	08/27/07	10:00			
Benzene	EPA 8260B	20.5		1.00	ug/l	1x		20.0	102%	(80-120)			08/27/07 11:42	
Chlorobenzene	"	22.1		1.00	"	"		"	110%	"			"	
1,2-Dibromoethane	"	22.9		1.00	"	"		"	114%	(75-125)			"	
1,2-Dichloroethane	"	19.8		1.00	"	"		"	99.0%	"			"	
1,1-Dichloroethene	"	21.7		1.00	"	"		"	108%	"			"	
Methyl tert-butyl ether	"	21.6		2.00	"	"		"	108%	(75-126)			"	
Toluene	"	22.0		1.00	"	"		"	110%	(75-125)			"	
Trichloroethene	"	21.6		1.00	"	"		"	108%	"			"	
Total Xylenes	"	66.7		3.00	"	"		60.0	111%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	92.5%	Limi	ts: 70-130%	"							08/27/07 11:4	2
Toluene-d8			103%		75-125%	"							"	
4-BFB			96.1%		75-125%	"							"	
LCS Dup (7H27050-BSD1)								Ext	racted:	08/27/07	10:00			
Benzene	EPA 8260B	18.9		1.00	ug/l	1x		20.0	94.5%	(80-120)	8.12%	6 (20)	08/27/07 12:14	
Chlorobenzene	"	20.7		1.00	"	"		"	103%	"	6.69%	ó "	"	
1,2-Dibromoethane	"	23.0		1.00	"	"		"	115%	(75-125)	0.4369	% "	"	
1,2-Dichloroethane	"	19.0		1.00	"	"		"	94.8%	"	4.44%	ó "	"	
1,1-Dichloroethene	"	18.7		1.00	"	"		"	93.7%	"	14.5%	ó "	"	
Methyl tert-butyl ether	"	20.6		2.00	"	"		"	103%	(75-126)	4.98%	ó "	"	
Toluene	"	20.7		1.00	"	"		"	104%	(75-125)	6.08%	ó "	"	
Trichloroethene	"	19.6		1.00	"	"		"	97.8%	"	9.77%	ó "	"	
Total Xylenes	"	61.3		3.00	"	"		60.0	102%	"	8.47%	ó "	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	93.6%	Limi	ts: 70-130%	"							08/27/07 12:1	4
Toluene-d8			104%		75-125%								"	
4-BFB			99.0%		75-125%	"							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

ND

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

10% "

Harbor Tank 23 **Coles Environmental** Project Name:

ND

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Inducti	vely Couple	d Plasma -	-	estAmeric	•		aborato	ry Qu	ality	Contro	ol Re	sults		
QC Batch: 23535	Soil Pro	eparation M	lethod:	3010A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Matrix Spike Dup (74615D)				QC Source	e: PQH07	67-05		Ext	racted:	09/25/07	18:53			
Lead	6020 TCLP	46.5		0.20	mg/L	50x	ND	50.0	93%	(50-150)	1%	(20)	09/25/07 18:51	
Chromium	"	47.3		0.20	"	"	ND	"	95%	"	3%	"	"	
Matrix Spike (74615S)				QC Source	e: PQH07	67-05		Ext	racted:	09/25/07	18:53			
Lead	6020 TCLP	47.2		0.20	mg/L	50x	ND	50.0	94%	(50-150)			09/25/07 18:45	
Chromium	"	46.0		0.20	"	"	ND	"	92%	"			"	
Duplicate (74615X)				QC Source	e: PQH07	67-05		Ext	racted:	09/25/07	18:53			
Lead	6020 TCLP	ND		0.040	mg/L	10x	ND				4%	(20)	09/25/07 18:39	

0.040

TestAmerica - Portland, OR

Chromium

Howard Holmes, Project Manager

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Volatile Organic Compounds by GC/MS TCLP - Laboratory Quality Control Results

TestAmerica Tacoma

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Note
Duplicate (580-238	10-4)			QC Sourc	e: 580-23	810-3		Ext	racted:	09/27/07	21:37			
Vinyl chloride	8260B TCLP	ND		0.50	mg/L	500x	ND				NC%	(20)	09/27/07 21:37	
1,1-Dichloroethene	"	ND		0.50	"	"	ND				NC%	(15)	"	
2-Butanone	"	ND		2.5	"	"	ND				NC%	(20)	"	
Chloroform	"	ND		0.50	"	"	ND				NC%	"	"	
Carbon tetrachloride	"	ND		0.50	"	"	ND				NC%	"	"	
Benzene	"	ND		0.50	"	"	ND				NC%	(12)	"	
1,2-Dichloroethane	"	ND		0.50	"	"	ND				NC%	(20)	"	
Trichloroethene	"	ND		0.50	"	"	ND				NC%	(13)	"	
Tetrachloroethene	"	ND		0.50	"	"	ND				NC%	(20)	"	
Chlorobenzene	"	ND		0.50	"	"	ND				NC%	(13)	"	
Surrogate(s): Fluorob	penzene (Surr)	Recovery:	98%	Limi	ts: 80-120	% "							09/27/07 21:37	
Toluene	2-d8 (Surr)	-	92%		85-120	0% "							"	
	nzene-d10		86%		80-120	0% "							"	
	ofluorobenzene (Surr)		100%		75-120								"	
Trifluor	otoluene (Surr)		103%		80-120)% "							"	
Matrix Spike (580-	23810-5)			QC Sourc	e: 580-23	810-3		Ext	racted:	09/27/07	21:59			
Vinyl chloride	8260B TCLP	2.59		0.50	mg/L	500x	ND	2.50	103%	(50-145)			09/27/07 21:59	
1,1-Dichloroethene	"	2.47		0.50	"	"	ND	"	99%	(70-130)			"	
2-Butanone	"	14.1		2.5	"	"	ND	12.5	113%	(30-150)			"	
Chloroform	"	2.53		0.50	"	"	ND	2.50	101%	(65-135)			"	
Carbon tetrachloride	"	2.51		0.50	"	"	ND	"	100%	(65-140)			"	
Benzene	"	2.58		0.50	"	"	ND	"	103%	(80-120)			"	
1,2-Dichloroethane	"	2.38		0.50	"	"	ND	"	95%	(70-130)			"	
Γrichloroethene	"	2.57		0.50	"	"	ND	"	103%	(75-125)			"	
Γetrachloroethene	"	2.42		0.50	"	"	ND	"	97%	(45-150)			"	
Chlorobenzene	"	2.69		0.50	"	"	ND	"	108%	(80-120)			"	
Surrogate(s): Fluorob	penzene (Surr)	Recovery:	97%	Limi	ts: 80-120	% "							09/27/07 21:59	
	e-d8 (Surr)		96%		85-120	0% "							"	
	nzene-d10		92%		80-120								"	
	ofluorobenzene (Surr)		98%		75-120								"	
Trifluor	rotoluene (Surr)		107%		80-120	0% "							"	

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Coles Environmental Project Name: Harbor Tank 23

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Notes and Definitions

Report Specific Notes:

- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- C8 Calibration Verification recovery was above the method control limit for this analyte. A high bias may be indicated.
- H Sample analysis performed past method-specified holding time.
- H8 The sample was extracted past the holding time.
- Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- Q9 Hydrocarbon pattern most closely resembles weathered diesel.
- R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
- RL1 Reporting limit raised due to sample matrix effects.
- RL3 Reporting limit raised due to high concentrations of non-target analytes.
- RL7 Sample required dilution due to high concentrations of target analyte.
- S3 Post digestion spike is out of acceptance limits for this analyte
- Z2 Surrogate recovery was above the acceptance limits. Data not impacted.
- The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.
- Unable to calculate surrogate recovery due to matrix interference.
- ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- Wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Howard Holmes, Project Manager

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

THE LEADER IN ENVIRONMENTAL TESTING

TestAmeric

Harbor Tank 23 **Coles Environmental** Project Name:

750 S. Rosemont Rd. Project Number: P7176.1 Report Created: West Linn, OR 97068 Project Manager: David G. Coles 10/11/07 08:06

Signature

Electronic - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

Howard Holmes, Project Manager

11720 North Creek Plowy N Sante 400, Bulle J. WA 98011-8244

2000 Wilhternational Airport Rd Ste A10, Anchorage, AX 99502-1119

11922 E. First Ave. Spokane, WA 99206-5302

425-420-9200 FAX 420-9210 [] 509-924-9200 FAX 924-9290

9405 SW Nimbus Ave. Beaverton, OR 97008-7245

563-906-9200 FAX 966-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT										Work (Work Order #: PAH 57(())									
CHEM EMPI/CEC				INVOICE TO SOME A SOME													TURNAROUND REQUEST			
REPORT TO DAVID 6. COLES				OFRCO/EMRI Attn John Oxford													in Business Days			
REPORT TO: DAVID & COLES ADDRESS: 750 5 Rosemont Rd				4150 N. Suttle Rd												Organse & Inorganse Aculoses				
West finn, OR 97068				Portland De. 07217 503-286-8										6-83	32 1 1 1 1 1 1 1 1 1					
PHONE 503-636-3102 FAX: dealercec@ 1				Comcast Net PO NUMBER												Petroieup	Hydrocarpon Analy			
PROJECT NAME. HUT BOY Tout 23			PRESERVATIVE											\Box \mathcal{Z}		3 2 1	<1			
PROJECT NUMBER: P 7/76.															<u></u>		æ — ∴		·	
S.				REQUESTED ANALYSES													OTHER	Specify:		
AMPLED BY: D. 6. Coles J. J. B. Norville			3.2	-		これを から もうエルはら							3		* Tarmeria	* Turnirmani deginate less than regulard men incur Bost: Charges.				
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE-TIME		Parts Holling		127.7 2×4	200	2002		33.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15/2 15/2 15/2 15/2 15/2 15/2 15/2 15/2		FEL T		MATRAS (W.S. O)		LOCATION COMMENTS	ה. מוסאי ז		
Q-1	8/16/07	1450	V	_/	· /	V	~	V	V	1	1	V	1			5	3			
Q-2		/330	\ \ \	 -	V	V	 	V	V	·/	 V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, √	_	 		<u> </u>			
Q-3		1125	V	V		/	V	/	1	V	V	1	V 		<u> </u>				!	
Q-4		1615	1	/	V	V	V	V	V	<i>\</i>	' <i>/</i>	1	! /	 					' <u> </u>	
Q-5		1400	V	/		1	1	V	V	√ 	∕ ∟	<u>.</u>	! / /	! 	! i	$oxedsymbol{\Psi}$	Ψ			
Field Rinsate		1345	· 		<u>!</u>	<u> </u>	1	ν	! 	ļ ———	: 		! /		 	W	5			
<i>TB</i>	₩					<u> </u>		V	! :		! 	į .	+	! -						
78	· 							 			! 	<u> </u>	<u> </u>	 	<u> </u>		 			
<u> </u>		· · · ·	: 				 	·	 	 	<u> </u> 	-	 	!						
12 021	Cue.					,	·	70 mi			_/	<u></u>			<u>-</u> .				ak .	
TEASED BY CAUCH	وحريل	. m. 🗸 25				DATE	8/17	107		RECEIVED	w	Ga	12	e) ck	W		74	DATE	スピュー	
TARSED BY		F.R.R. CE	<u></u>			DATE	8/12	75 76 F		PRINT NAM		U		_ ·		FIRM	1/	F TIME		
INT NAME CL-618	3 Servo	*IRM		<u> </u>		DME	120	5-		PRINT S'AM	F					FIRM		DATE		
See attached fist of parameters/analytical methods &-6xandlor-Dx, as necessary & URAGE OF																				

organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, herbicides, and polychlorinated biphenyls (PCBs). Finally, each sample will be analyzed using the Hydrocarbon Identification (HCID) method. Samples that contain detectable concentrations of petroleum hydrocarbons based on analysis with the HCID method will be analyzed using the NWTPH-Gx and/or NWTPH-Dx method.

All analytical methods will follow standard U.S. Environmental Protection Agency (EPA) procedures as outlined in Test Methods for Evaluating Solid Wastes - Physical/Chemical Methods (SW-846) as updated. The analytical methods expected for use during this project are as follows:

<u>Parameter</u>	Analytical Method
Ignitability	EPA Method 1010
рН	EPA Method 9045B
Corrosivity	EPA Method 9040C (aqueous)
	EPA Method 9045D (other)
Toxicity	EPA Method 1311/6020 and
	7040 (aqueous) and 7041 (solids) (RCRA 8 Metals)
	EPA Method 1311/8260B (organics)
Metals	EPA Method 6020 and 7040 (aqueous) and 7041
	(solids) plus TCLP if conc. >20 times characteristic
	values from 40 CFR 261.24
VOCs	EPA Method 8260B
SVOCs	EPA Method 8270C
Pesticides	EPA Method 8081A
Herbicides	EPA Method 8151 Modified
PCBs	EPA Method 8082
Hydrocarbon Identification	NWTPH-HCID
Gasoline-Range TPH	NWTPH-G extended
Diesel-Range TPH	NWTPH-D extended
Oil-Range TPH	NWTPH-D extended

Method Reporting Limits for these analytical method can be found in Appendix E

B2.5 Decontamination Procedures

All core sampling equipment will be washed with a detergent (Alconox) and rinsed with distilled water between sampling locations to prevent cross-contamination. All stainless steel spoons or trowels used for sample collection will be similarly decontaminated prior to each sample by using Alconox, followed by a distilled water rinse.

B2.6 Investigative Derived Waste (IDW)

Investigative derived waste (IDW) will be managed in a manner that is consistent with the U.S. Environmental Protection Agency (EPA) Guide to Management of Investigation Derived-