INSTRUCTIONAL STRATEGIDS FOR PPTTMIZING THE IEARUING PROCESS 4) tanfares Vrum

NASA GRAIVT NGE 65-020-244, SUPP. 3
JUNE 30, 1971

In 1968, the Institute for Mathematical Studies in the Social Sciences underiooks a three-year study of strategies for optimizing the presentation of stimulus material in learning situations. The work included both basic research in theoretical models of optimization methods and application of such principals to a practical course of instruction in the area of computer science.

Summary of Accomplishments
The theoretical work done in the course of this project has been reported in Atkinson (1967), Atkinson and Shiffrin (1968), Shiffrin (1968), and Shiffrin and Atkinson (1969).

Atkinson (1967) was later published in American Psychologist and a reprint is included with this report. A reprint of Shiffrin and Atkinson (1969) is also included.

The main effort of this project was the application of theoretical models of instructional strategies to the design and implementation of a computercontrolled instructional system and to the development of a practical course of instruction in computer programing. The instructional system and the course have been under continuous development for over two years and have existed in two major versions.

The first version of the instructional system was a single-user implementation for the Institute's PDP-l computer system, and the first version of the programming course itself consisted of about 20 lessons. That first version was tested on about a dozen volunteer students, and a subsequent revision was based partially on the performance data collected then and on the comments of the students themselves. The PDP-I version was discussed in considerable detail in semiannual status reports, and is now of interest only from a historical point of view. Thus, details of the first version are not repeated here.

The second major version of the instructional system and the course "Computer-assisted Instruction in Programming: AID" was designed as a timesharing system for the PDP-10 computer. The primary documentation for the present version of the instruction system is found in Friend (1971). The course itself is described in detail in Friend and Atkinson (1971). Copies of both technical reports are included with this report, and together they provide a nearly complete description of the course and instructional system as they now exist. What is not included in the above-mentioned reports is a description of the data collection procedures and the performance data that has been collected to date. A brief description of data collection is given below.

The instructional system is now being used for five different curriculums in widely varied fields of study. The first application was the AID course described above, and the second was a closely related course in computer science, "Introduction to Programming: BASIC," a one-semester course in the fundamentals of programming for inner-city high school students with low reading
ability and no background in algebra. Third, the INSTRUCP system was modified slightly so that it could be used for "Language Arts for the Deaf," a program of grammar instruction designed for junior high school deaf students. Fourth, the U. S. Public Health Service used the INSTRUCT system in developing a set of review-test lessons in dental health for dental-assistant trainees at San Francisco City College. The fifth application is a course in high school algebra, now in the developmental testing stage at Peter Burnett School in San Jose, $\mathrm{California}$. come from a variety of agencies, including National Aeronautics and Space Administration (for the AID course), National Science Foundation (for the BASIC course), the U. S. Office of Education (for the language course), and the U. S. Public Health Service (for the dental health course). Data Collection Procedures

Late in 1970, data collection procedures were added to the instructional system so that detailed, accurate individual response histories could be collected in real time. These data are stored on magnetic tape for later analysis. Considerable effort has gone into insuring that these routines work perfectly so that there is no possibility of collecting "contaminated" or unmanageable data. This is a necessary effort in a project of this size, because the amount of individual response data that will eventually be collected will be enomous, and it would be impossible to sort or edit the data by hand if it were found at a later time that they were not perfectly clean. Each block of data, which is collected as the student works through the lessons, is of variable length depending upon the length of the student's response and contains the following information:

Student number
Date
Teletype number
Course identification
Identification of strand
Lesson number
Problem number
Subproblem number
Trial number
Number of preceding hint requests for current exercise
Answer request
Analysis value (positive for correct response, negative for incorrect response)
Time of day (in hours, minutes and seconds)
Cumulative lesson score
Exact character-by-character response made by student.
This information is packed into 5 to 18 (36 -bit) words of storage and is saved for later analysis. The only information not currently being recorded is the character-by-character response time. Such a precise time measure is ordinarily not used except in analysis of skill learning, and since we are concermed here with concept acquisition it was felt that the grosser time measure would suffice for our purposes.

Several data management programs have been written, including multipleoption sort programs. These programs are of no theoretical interest, but are necessary from an operational point-of-view. There has also been one data analysis program written, a simple item analysis program which gives, for each exercise, the number of students who did the exercise, the number who responded correctly on the first trial, and the computed percentage correct on first trial. A sample of the item analysis of the data collected for the first few lessons of the course is attached as an appendix. For cross-reference by exercise number, a listing of the exercises in these lessons is also included. An interpretation of this analysis has yet to be made, and no further analysis programs have been written.

Over 50 students were enrolled in the course in this past year, including some NASA personnel from the Ames Research Center at Moffett Field, Califormia, and from the Manned Spacecraft Center in Houston, Texas, and some deaf students from Gallaudet College for the Deaf, Washington, D.C. In the interest of providing as wide a data base as possible, data from all of these students have been collected.

A smaller number of students (about 20) have been enrolled in the course "Computer-assisted Instruction in Programing: BASIC" and these data are also being collected for analysis.

References

Atkinson, R. C. Computerized instruction and the learming process. Technical Report No. 122, September 13, 1967, Stanford University, Institute for Mathematical Studies in the Social Sciences. American Psychologist, 1968, 23, 225-239.

Atkinson, R. C., and Shiffrin, R. M. Some speculations on storage and retrieval processes in long-term memory. Technical Report No. 127, February 2, 1968, Stanford University, Institute for Mathematical Studies in the Social Sciences.

Friend, J. INSTRUCT Coders' Manual. Technical Report No. I72, May 1, 1971, Stanford University, Institute for Mathematical Studies in the Social Sciences.

Friend, J., and Atkinson, R. C. Computer-assisted instruction in programming: AID. Technical Report No. 164, January 25, 1971, Stanford University, Institute for Mathematical Studies in the Social Sciences.

Shiffrin, R. M. Search and retrieval processes in long-term memory. Technical Report No. 137, August 15, 1968, Stanford University, Institute for Mathematical Studies in the Social Sciences.

Shiffrin, R. M., and Atkinson, R. C. Storage' and retrieval processes in longterm memory. Psychological Review, 1969, 76, 179-193.

APPENDIX A

SAMPIE OF ITEM ANAIYSIS I

IESSONS LI TO LS

COMPUTER ASSISTED INSTRUCTION IN PROGRAMMING: AID						
ITEM ANALYSIS I(1): FIRST RESPONSE DATA 7-DECEMBER-70 THROUGH 5-APRIL-71 LESSON: 12						
PROBLEM		\% CORRECT FIRST TRY	TOTAL STUDENTS	FIRST TRY CORRECT	HINTS	TELLS
1		85.71	14.	12	0	0
2		82.61	23	19	0	0
3		96.67	30	2.9	0	0
3-1		80.65	31	25	1	0
4		. 00	1	0	0	0
4-1		50.00	30	15	1	0
5		92.31	26	24	0	0
6	;	84.62	26	22	0	0
7		53.85	26	14	0	0
8		70.37	27	19	1	0
10		56.00	25	14	0	0
11		80.00	25	20	0	0
12		88.00	25	22	0	0
13		44.44	27	12	0	0
14		62.96	27	17	0	0
15		34.62	26	9	1	0
15-1		94.44	18	17	0	1
$16-2$		100.00	18	18	0	0
17		73.68	19	14	0	0
18		81.48	27	22	0	0
18-1		92.31	26	24	0	0
18-2		96.15	26	25	0	0
19		65.38	26	17	0	0
20		65.38	26	17	0	0
21-1		92.31	26	24	0	0
21-2		95.65	23	22	0	0
22		100.00	21	21	0	0
23		66.67	3	2	0	0
24		76.92	13	10	0	0

ITEM ANALYSIS I(1): FIRST RESPONSE DATA
7-DECEMBER-70 THROUGH 5-APRIL-71
LESSON: L 3

PROBLEM	\% CORRECT FIRST TRY	TOTAL STUDENTS	FIRST TRY CORRECT	HINTS	TELLS
2	92.00	25	23	0	0
2-1	100.00	1	1	0	0
3	84.62	26	22	0	0
4	88.46	26	23	1	0
4-1	66.67	3	2	0	0
4-2	100.00	3	3	0	0
4-4	100.00	3	3	0	0
4-5	66.67	3	2	0	0
4-6	66.57	3	2	0	0
5	81.48	27	22	0	0
5-1	50.00	2	1	0	0
6	100.00	27	27	0	0
7	44.44	27	12	0	0
8	85.19	27	23	1	0
8-1	100.00	4	4	0	0
8-2	100.00	4	4	0	0
9	74.07	27	20	0	0
10-1	94.74	19	13	0	0
11	88.89	18	16	0	0
11-1	66.67	18	12	0	0
12	94.44	18	17	0	0
12-1	. 00	1	0	0	0
12-2	. 00	1	0	0	0
13	100.00	1	1	0	0
14	100.00	19	19	0	0
15	90.00	20	18	0	0
16	90.91	22	20	0	0
17	72.73	22	16	0	0
18	77.27	22	17	0	0
19	70.83	24	17	0	0
20	80.00	25	20	0	1
20-1	40.00	5	2	0	1
20-2	25.00	4	1	0	1
21	. 00	5	0	0	0
22	41.67	24	10	1	0
23	70.83	24	17	0	1
24	. 00	1	0	0	0
24-1	95.83	24	23	0	0
$24-2$	100.00	24	24	0	0

$24-3$	100.00	24	24	0	0
25	100.00	20	20	0	0
25	100.00	6	6	0	0
27	81.82	11	9	0	0

ITEM ANALYSIS I(1): FIRST RESPONSE DATA
7-DECEMBER-70 THROUGH 9-APRIL-71
LESSON: L4

23	84.21	19	16	0	0
$23-1$	100.00	2	2	0	0
$23-2$	100.00	2	2	0	0
24	90.00	20	18	0	0
$24-1$	78.95	19	15	0	0
25	95.24	21	20	0	0
$25-1$	95.24	21	20	0	0
26	85.00	20	17	0	0
$26-1$	85.00	20	17	0	0
$26-2$	80.00	20	16	0	0
$27-1$	80.00	20	16	0	0
28	100.00	18	18	0	0
29	50.00	4	2	0	0
30	85.71	7	6	0	0

ITEM ANALYSIS I(1): FIRST RESPONSE DATA 7-DECEMRER-70 THROUGH 19-APRIL-71
LESSON: L 5

PROBLEM	\% CORRECT FIRST TRY	TOTAL STUDENTS	FIRST TRY CORRECT	HINTS	TELLS
1	84.62	13	11	0	0
2	84. 62	13	11	0	0
3	92.31	13	12	0	0
4	80.00	15	12	0	0
5	80.00	15	12	1	0
5-1	100.00	15	15	1	0
6	42.86	14	6	0	0
7	87.50	16	14	0	0
7-1	100.00	16	16	0	0
7-2	93.75	16	15	0	0
8	76.47	17	13	0	1
9	70.59	17	12	0	0
10	57.89	19	11	0	1
11	100.00	18	18	0	0
11-1	94.44	18	17	0	0
$11-2$	94.44	18	17	0	0
12-1	94.44	18	17	0	0
13-1	100.00	18	18	0	0
13-2	88.89	18	16	0	0
14-1	100.00	18	18	0	0
15-1	100.00	17	17	0	0
16-1	81.25	16	13	0	1
17-1	100.00	13	13	0	0
18	86.67	15	13	0	0
18-1	53.33	15	8	0	0
18-2	80.00	15	12	0	0
19	100.00	14	14	0	0
19-1	100.00	14	14	0	0
19-2	78.57	14	11	0	0
20	92.86	14	13	0	0
20-1	92.86	14	13	0	0
21	100.00	14	14	0	0
21-1	100.00	14	14	0	0
21-2	100.00	14	14	0	0
22	87.50	16	14	0	0
23	75.00	16	12	0	0
23-1	75.00	4	3	0	0
24	100.00	16	16	0	0
25	81.25	16	13	0	0

26	93.33	15	14	0	0
27	93.75	16	15	0	0
$27-1$	93.75	16	15	0	0
28	82.00	17	0	0	0
$25-1$	87.50	17	16	14	0
$29-2$	81.25	16	13	0	0
$29-3$	94.12	17	16	0	0
$30-1$	100.00	17	17	0	0
$30-2$	94.12	17	16	0	0
$30-3$	56.25	16	9	0	0
$31-1$	70.59	17	12	0	2
$31-2$	90.75	16	15	0	1
32		5	4	0	0
34				0	0

APPENDIX B

SAMPIE OF TEXT OF EXERCISES

IESSONS LI TO L5
($\mathrm{LI}-1-0$)
INTRODUCTION TO PROGRAMMING BY JAMESINE E. FRIEND

IN THE FIRST LESSON YOU WILL LEARN HOW TO USE THIS PROGRAM.
AFTER YOU TYPE YOUR ANSWERS YOU MUST PRESS THE RETURN KEY. CAN YOU FIND THE RETURN KEY?
(L1-2-0) :
WRONG ANSUERS ARE NOT COUNTED. YOU ALWAYS GET ANOTHER CHANCE IF YOUR ANSWER IS WRONG.

WHAT DOES THE COMPUTER PRINT WHEN IT IS READY FOR YOUR ANSWER? A. AN EXCLAMATION POINT !
B. A QUESTION MARK ?
C. AN ASTERISK *

TYPE "A", "B", OR"C". (DON'T FORGET THE RETURN KEY.)
($11-3-0$)
IF MULTIPLE CHOICE PROBLEMS KAVE MORE THAN ONE CORRECT ANSWER, YOU CAN LIST THE CORRECT CHOICES IN ANY ORDER.

SUPPOSE $B, C, A N D$ D ARE THE CORRECT CHOICES FOR A PROBLEM. WHICH OF THESE WOULD BE CORRECT WAYS TO ANSWER?
A. D, B, C, A
B. B, D, C
C. B, C, D
D. D, B, C
($L 1-4-0$)
YOU CAN USE COMMAS AND SPACES BETWEEN THE LETTERS
C. $A C B D$
D. A, B, C, D

```
(Ll-5-0)
    IF YOU MAKE A MISTAKE WHILE YOU ARE TYPING, YOU CAN
"ERASE" THE LINE:
    HOLD DOWN THE CTRL KEY WHILE YOU TYPE THE LETTER "U".
        (" U" STANDS FOR "UNDO THIS LINE*)
THE COMPUTER WILL IGNORE THE ENTIRE LINE AND WILL GIVE YOU A
NEW LINE FOR YOUR ANSWER.
NOW FOR PRACTICE:
    TYPE "UP", ERASE IT WITH CTRL-U,
    AND THEN TYPE "DOWN".
```

($\mathrm{LI}-6-0$)
WHICH OF THE FOLLOWING ANSWERS WILL BE RECORDED AS
"YES"?
A. NO ...ERASED
YE.S
B. YES ...ERASED
NO
C. ANYTHING ... ERASED
ELSE ...ERASED
YES
D. NO ...ERASED
YES ...ERASED
NO $\because-$ ERASED
NEVER
(L1-7-0)
YOU DON'T HAVE TO ERASE THE ENTIRE LINE。
TO ERASE ONE CHARACTER, TYPE THE "RUBOUT" KEY. IF YOU TYPE "RUBOUT" TWICE, YOU WILL ERASE THE LAST TWO CHARACTERS, ETC.

CAUTION: SPACES ARE CHARACTERS JUST LIKE LETTERS AND NUMBERS. IF YOU TYPE A RUBOUT AFTER A SPACE, THE SPACE IS ERASEDI

```
FOR PRACTICE, TYPE "YES" THIS WAY:
```

 YEL (RUBOUT)S
 (L1-8-0)
YOU CAN GET A HINT ANY TIME YOU WANT. JUST TYPE A
QUESTION MARK (?). NOW... DO YOU KNOW HOW TO GET A HINT?
($\mathrm{L} 1-9-0$)
TO GET THE ANSWER TO A PROBLEM, HOLD DOWN THE CTRL KEY WHILE YOU TYPE THE LETTER "T". ("CTRL".STANDS FOR "CONTROL". CONTROL COMMANDS LIKE CTRL-T ARE GIVEN BY HOLDING DOW N THE CTRL KEY WHILE YOU TYPE THE LETTER.)

SHOW ME HOW TO USE CTRL-T TO GET THE ANSWER.
($L 1-10-0$)
CTRL-G IS THE THIRD CONTROL COMMAND. IT ALLOWS YOU
TO MOVE AROUND WITHIN THE TEACHING PROGRAM. IT WORKS LIKE THIS:

1. WHEN YOU TYPE CTRL-G, IT MEANS "GO".
2. THE COMPUTER WILL SAY WHERE TO?
3. YOU TELL I I WHAT LESSON OR PROBLEM YOU WANT. FOR EXAMPLE: TO CONTINUE WITH YOUR LAST PROBLEM TYPE THE RETURN KEY
TO GO TO LESSON 5 TYPE "L 5". TO GO TO LESSON 2, PROBLEM 3 TYPE "L 2-3"

IF YOU HAD TYPED CTRL-G, WHICH WOULD YOU TYPE TO GO
TO LESSON 7, PROBLEM 18?

```
A. L I
B. L 7-18
C. LESSON 8, PROBLEM 17
D. L 18-7
E. LESSON 18-PROBLEM 7
```

```
(L1-11-0)
    WOULD YOU LIKE TO PRACTICE USING CTRL-G TO
GET FROM ONE PROBLEM TO ANOTHER?
```

(L1-11-1)
O.K. FOLLOW THESE INSTRUCTIONS TO GO BACK TO
PROBLEM 2 AND THEN GO TO PROBLEM 12:
FIRST, TYPE CTRL-G AND WAIT FOR THE COMPUTER TO
TYPE "WHERE TO?"
SECOND, TYPE "L 1-2" FOR LESSON 1, PROBLEM 2, AND WAIT
UNTIL PROBLEM 2 IS PRINTED.
THIRD, TYPE CTRL-G AND WAIT UNTIL THE COMPUTER
TYPES "WHERE TO?"
FOURTH, TYPE "L 1-12" FOR LESSON 1, PROBLEM 12.
(L1-12-0)
YOU CAN USE CTRL-G TO GET FROM ONE PROBLEM TO ANOTHER.
YOU CAN ALSO USE CTRL-G TO GET SUMMARIES OF LESSONS AND
REVIEWS OF LESSONS.

```
IF YOU WANT: TYPE CTRL-G, THEN TYPE:
1
SUMMARY OF LESSON 4
    S4
REVIEW OF.LESSON 2 R2
LIST OF LESSONS LIST
```

FOR PRACTICE, GET A SUMMARY OF THIS LESSON:
FIRST, TYPE CTRL-G AND WAIT FOR THE COMPUTER TO
TYPE "WHERE TO?"
SECOND, TYPE "S1" FOR SUMMARY OF LESSON 1.

```
(LI-13-0)
    THE FOURTH CONTROL COMMAND IS CTRL-C. CTRL-C
CAUSES THE TEACHING PROGRAM TO STOP. YOU WILL USE CTRL-C
TO STOP THIS PROGRAM WHEN YOU WANT TO QUIT FOR TODAY.
TO SIGN OFF:
    FIRST, TYPE CTRL-C
    SECOND, TYPE THE LETTER K (FOR "KILL"). WAIT
        FOR THE SIGN-OFF MESSAGE (ABOUT 1O SECONDS).
BEFORE YOU PRACTICE SIGNING OFF - DO YOU REMEMBER HOW
TO SIGN ON AGAIN?
(L1-13-1)
DO YOU WANT TO PRACTICE SIGNING OFF AND ON?
(LI-13-2)
OK. GO AHEAD.
(LI-14-0)
DON'T FORGET TO SIGN OFF WHEN YOU ARE THROUGH TODAY.
YOU MUST SIGN OFF AFTER EACH SESSION.
SUMMARY OF CONTROL COMMANDS IN THE TEACHING PROGRAM:
\begin{tabular}{lll} 
COMMAND & NAME & MEANING \\
\(-\cdots--\) & ERASE THIS LINE \\
CTRL-U & UNDO & TELL ME THE ANSWER \\
CTRL-T & TELL & GO TO A DIFFERENT PROBLEM \\
CTRL-G & GO & STOP THE TEACHING PROGRAM
\end{tabular}
FROM LESSON 1, YOU SHOULD HAVE LEARNED HOW TO SIGN ON AND OFF, HOW TO START AND STOP THE TEACHING PROGRAM, HOW TO GET A HINT, AND HOW TO USE CTRL-G.
DO YOU WANT TO REVIEW ANY OF THESE TOPICS?
```

(L1-15-0)
DO YOU WANT TO GO ON TO LESSON 2 NOW?
$(L 2-1-0)$
LESSON 2
USING AID FOR ARITHMETIC
IN THIS COURSE YOU WILL USE TWO DIFFERENT PROGRAMS: 1. THE TEACHING PROGRAM. YOU ARE USING THE TEACHING PROGRAM NOW. THE TEACHING PROGRAM UILL TEACH YOU TO WRITE PROGRAMS USING THE AID LANGUAGE. PROGRAMS, YOU WILL USE THE AID INTERPRETER TO TRY OUT YOUR PROGRAMS.
YOU WILL ONLY BE ABLE TO USE ONE OF THE PROGRAMS AT A TIME SO YOU HAVE TO KNOW HOW TO STOP A PROGRAM AND START ANOTHER.
WHICH PROGRAM ARE YOU USING NOW?
$(12-2-0)$
HOW TO START THE AID INTERPRETER:FIRST, STOP THE TEACHING PROGRAM (TYPE CTRL-C).SECOND, TYPE "L AID" AND THE RETURN KEY.
HOW TO STOP THE AID INTERPRETER:TYPE CTRL-C.
AFTER THE TEACHING PROGRAM IS STOPPED, WHAT SHOULD YOUTYPE TO START THE AID INTERPRETER?
(L2-3-0)
WHICH COMMAND WILL STOP THE AID INTERPRETER?
A. CTRL-H
1

```
(12-3-1)
```

ANY PROGRAM CAN BE STOPPED BY TYPING CTRL-C. TO START A PROGRAM YOU MUST TYPE THE LETTER "L", A SPACE, AND THEN THE NAME OF THE PROGRAM.

YOU SHOULD TYPE "L AID" TO START THE AID INTERPRETER PROGRAM. WHAT WOULD YOU TYPE TO START THE TEACHING PROGRAM?

```
(L2-4-0)
    FOR PRACTICE, START THE AID INTERPRETER,
STOP IT, AND START THE TEACHING PROGRAM AGAIN.
(IF YOU WANT MORE DETAIL, TYPE A QUESTION MARK.)
```

 (12-4-1)
 WHEN YOU STARTED THE AID INTERPRETER, WHAT DID THE
 COMPUTER TYPE?
 (12-5-0)
 THE PROGRAMMING LANGUAGE AID IS EASY TO USE FOR
 ARI THMETIC AND ALGEBRA ("AID" STANDS FOR "ALGEBRAIC
 INTERPRETIVE DIALOGUE , WHICH MEANS, AS NEARLY AS I CAN
 FIGURE IT OUT, THAT IT INTERPRETS YOUR ALGEBRA AND
 THEN TALKS BACK).
    ```
TO GET AID TO EVALUATE
    4.5+6.9-3.2
YOU WILL USE THE COMMAND
    TYPE 4.5 + 6.9 - 3.2
AID WILL THEN DO THE ARITHMETIC AND TYPE THE ANSWER.
NOTICE THAT THE WORD "TYPE" IS FOLLOWED BY A SPACE.
To Evaluate
    1.5+1.5+1.037
WHICH COMMAND DO YOU USE?
    A. TYPE22.5 + 1.7.
    B. PRINT 1.5 + 1.5 + 1.037
    C. 1.5 + 1.5 + 1.037
    D. TYPE 1.5 +1.5 + 1.037
```

```
(L2-6-0)
```

IF YOU WANTED AID TO EVALUATE
6349-2968
WHAT COMMAND WOULD YOU USE?

```
(12-7-0)
    WHICH ARE VALID AID COMMANDS?
        A. EVALUATE (17-15) + 3
        B. PRINT (17-15) + 3
        C. TYPE (17-15) + 3
        N. NONE OF THE ABOVE
```

(12-8-0)
RULES ABOUT AID COMMANDS:
1. WAIT FOR AID TO PRINT AN ASTERISK, *.
2. TYPE AN AID COMMAND.
3. TYPE THE RETURN KEY。
TYPE THE COMMAND WHICH WOULD CAUSE AID TO SUBTRACT 17.65
FROM 45.01.

```
(12-9-0)
FOR PRACTICE, START THE AID INTERPRETER AND TYPE THE
FOLLOWING AID COMMANDS (WAIT FOR AID TO ANSWER AFTER YOU TYPE
EACH COMMAND):
    TYPE 2 + 3
    TYPE 16.001 - 16
    TYPE 15/3
YOU CAN MAKE UP SOME PROBLEMS OF YOUR OWN IF YOU WANT TO TRY
MORE. AFTER YOU ARE THROUGH, START THE TEACHING PROGRAM AGAIN.
(L2-10-0)
    AID SYMBOLS FOR ARITHMETIC OPERATIONS:
        + ADDITION
        - SUBTRACTION
        * MULTIPLICATION
        / DIVISION
WHICH COMMANDS WILL CAUSE AID TO MULTIPLY 3 BY 4?
A. TYPE (3)(4)
B. TYPE 3 X4
C. TYPE 3*4
D. TYPE 3/4
E. TYPE 3*4
```

$(12-11-0)$
WHICH COMMAND WILL CAUSE AID TO
MULTIPLY 25 BY 5 AND DIVIDE BY 3?
A. TYPE $25 \times 5 / 3$
B. TYPE $25 * 5 / 3$
C. TYPE $25(5 / 3)$
N. NONE OF THE ABOUE

```
(12-12-0)
    WHICH WILL CAUSE AID TO SUBTRACT 27 FROM
    THE PRODUCT OF 6 AND .75?
    A. TYPE 6 X .75-27
```

```
B. TYPE 6/.75-27
C. TYPE 6(.75) - 27
No NONE OF THE ABOVE
```

```
(12-13-0)
    WHICH ARE VALID AID COMMANDS?
```

```
A.TYPE(17.01)/32.765)
```

A.TYPE(17.01)/32.765)
B. TYPE 1/2 + .1785-(12/16)
B. TYPE 1/2 + .1785-(12/16)
C. TYPE 2(10)+3(10)+4(10)
C. TYPE 2(10)+3(10)+4(10)
D. TYPE 1/2 + (7* 3/2)
D. TYPE 1/2 + (7* 3/2)
N. NONE OF THE ABOVE

```
N. NONE OF THE ABOVE
```

(L2-14-0)
WHICH ARE VALID AID COMMANDS?
A. TYPE-2 +3
B. TYPE $(3 * 2)+7$
C. TYPE $18 / 36+1.5$
D. TYPE $(1 / 2+1 / 4+1 / 8) / 2$
E. TYPE $2(.5+3 / 2)$
N. NONE OF THE ABOVE
(L2-15-0)
WHICH ARE VALID COMMANDS?
A. TYPE $1.33 * 10(-1)$
B. TYPE 3.1416*4.3
C. TYPE 7.5
D. TYPE $7+0.5$
N. NONE OF THE ABOVE
$(12-16-0)$

1. MULTIPLY 1.23456 BY 6.54321
2. DIVIDE 1.23456 BY 6.54321
3. SUBTRACT 11.221122 DIVIDED BY 55.665566 FROM 33.443344
4. MULTIPLY . 123 BY . 321 AND ADD . 456 DIVIDED BY . 654

WHEN YOU ARE THROUGH, SIARI THE TEACHING PROGRAM AGAIN.

```
(12-16-1)
WHAT ANSWER DID YOU GET FOR THE FIRST PART OF PROBLEM L2-16?
```

```
(L2-16-2)
```

HERE ARE THE SOLUTIONS TO THE OTHER PARTS OF PROBLEM L2-16:
TYPE 1.23456/6.54321
(AID ANSWERS . 188678034)
TYPE 33.443344-11.221122/55.665566
(AID ANSWERS 33.241763)
TYPE . 123*. $321+.456 / .654$
(AID ANSWERS . 736730706)
DID YOU GET THEM ALL RIGHT?
(12-17-0)
WHAT WOULD AID ANSWER TO THIS COMMAND:
TYPE $72 / 12$
(L2-18-0)
AID WILL NOT GIVE FRACTIONS AS ANSWERS. IF YOU GAVE THE COMMAND

TYPE 2/4
AID WOULD ANSWER
.5
IF YOU TYPED
TYPE $5 / 25$
WHAT WOULD AID ANSWER?
$(12-18-1)$

TYPE 14/56
WHAT WOULD AID ANSWER?
(12-18-2)

TYPE $3 * 1 / 4$
WHAT WOULD AID ANSUER?
$(12-19-0)$

| | SUMMARY OF HOW TO USE: | |
| :--- | :--- | :--- |
| | AID INTERPRETER | TEACHING PROGRAM |
| | L AID | LINST |
| START: | CTRL-C | CTRL-C |
| STOP: | CTRL-U | CTRL-U |
| GET A HINT: | NO HINTS | |
| GET THE | | |

```
    ANSWER: NO ANSWERS CTRL-T
    GO TO ANOTHER
    LESSON OR
    PROBLEM: NO LESSONS CTRL-G
        OR PROBLEMS
|
WHICH ARE THE SAME IN BOTH THE TEACHING PROGRAM AND AID?
A. STARTING THE PROGRAM
B. GETTING A HINT
C. ERASING
D. STOPPING THE PROGRAM
```

```
(12-20-0)
```

(12-20-0)
WHICH ARE'TEACHING PROGRAM COMMANDS?
WHICH ARE'TEACHING PROGRAM COMMANDS?
A. CTRL-C
B. OFF
C. TYPE
D. CTRL-H
E. CTRL-G
F.LAID

```
```

(12-21-0)

```
(12-21-0)
USE AID TO DO THESE PROBLEMS:
USE AID TO DO THESE PROBLEMS:
1. FIND THE AREA OF A RECTANGLE WITH WIDTH 1.72375
1. FIND THE AREA OF A RECTANGLE WITH WIDTH 1.72375
    AND LENGTH 12.001325.
    AND LENGTH 12.001325.
2. SUPPOSE A SQUARE OF WIDTH .637825 IS CUT FROM THE ABOVE
2. SUPPOSE A SQUARE OF WIDTH .637825 IS CUT FROM THE ABOVE
    RECTANGLE. FIND THE AREA OF THE SQUARE.
    RECTANGLE. FIND THE AREA OF THE SQUARE.
3. FIND THE AREA OF THE REMAINING PART OF THE RECTANGLE.
3. FIND THE AREA OF THE REMAINING PART OF THE RECTANGLE.
WHEN YOU ARE THROUGH START THE TEACHING PROGRAM AGAIN.
WHEN YOU ARE THROUGH START THE TEACHING PROGRAM AGAIN.
(L2-21-1)
WHAT WAS THE AREA OF THE UNCUT RECTANGLE?
```

(L2-21-2)
What was the area of the rectangle after the square WAS REMOVED?

```
(12-22-0)
DO YOU WANT A SUMMARY OF LESSON 2?
```

(12-23-0)
IN LESSON 2 YOU SHOULD HAVE LEARNED THE DIFFERENCE
BETVEEN THE TEACHING PROGRAM AND THE AID INTERPRETER. YOU
SHOULD KNOW HOW TO START AND STOP THE AID INTERPRETER, AND HOW
TO USE THE "TYPE" COMMAND. YOU SHOULD ALSO KNOW THE SYMBOLS
TO USE FOR ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION.
DO YOU WANT TO REUIEW ANY OF THESE TOPICS?
(12-24-0)
READY FOR LESSON 3?

```
(L3-1-0)
            LESSON 3
        ORDER OF ARITHMETIC OPERATIONS
START AID AND TYPE THESE COMMANDS:
    TYPE (16 - 4) - 3
    TYPE 16-(4-3)
THEN START THE TEACHING PROGRAM AGAIN.
DO YOU REMEMBER HOW TO GET AID STARTED AND STOPPED?
(L3-2-0)
    AID EVALUATES EXPRESSIONS INSIDE PARENTHESES FIRST.
        TYPE 7 * (3 + 2)
WHAT WILL AID ANSWER?
```

($13-2-1$)
THE COMMAND
TYPE $7 *(3+2)$
WILL CAUSE AID TO
FIRST, ADD 3 AND 2
SECOND, MULTIPLY THAT SUM BY7.
WHAT WILL AID ANSWER?

```
(L3-3-0)
    WHAT UILL AID ANSWER TO THIS COMMAND?
        TYPE (7* 3) + 2
```

```
(L3-4-1)
```

WHICH EXPRESSION WILL AID EVALUATE FIRST IN THIS COMMAND?

TYPE 12/(6-2)
A. $12 / 6$
B. $6-2$
C. $2 / 5$
(L3-4-2)
AND WHAT UILL AID ANSWER TO THE ABOVE COMMAND?
($13-4-3$)
TYPE (18/6)-2
WHICH EXPRESSION WILL AID EVALUATE FIRST?
A. $18 / 4$
B. $6-2$
C. $18 / 6$
(L3-4-4)
....AND THE ANSWER TO THE COMMAND?
(L3-4-5)
WHAT WILL AID ANSWER TO THE FOLLOWING COMMANDS?
$(L 3-4-6)$
(L3-5-0)

WHAT WILL AID ANSUER TO THIS COMMAND? TYPE 1/(100/10)

```
(L3-5-1)
```

TYPE $33 /(77 / 7)$
($13-6-0$)
WHAT GILL AID ANSWER? TYPE 27-(5*4)
($13-7-0$)
IF YOU WERE USING AID, WHAT COMMAND WOULD YOU USE
TO GET AID TO
FIRST SUBTRACT 4 FROM 7
THEN DIVIDE THAT QUANTITY BY 11?
($13-8-0$)
WHAT COMMARD WOULD YOU USE TO GET AID TO

```
(13-8-2)
```

WHAT COMMAND WOULD YOU USE TO GET AID TO
FIRSI SUBTRACT 4 FROM 10 , THEN SUBTRACT 3?
(L3-9-0)
WHAT COMMAND YOU USE TO GET AID TO ADD 778 AND 921
AND THEN MULTIPLY BY 607?
($13-10-0$)
LOOK AT THESE THREE COMMANDS. AID WILL GIVE
THE SAME ANSWER TO TWO OF THEM. WHICH TWO?
TYPE $3+(2$ * 4)
TYPE $(3+2) * 4$
TYPE $3+2 * 4$
START AID AND TRY THE THREE COMMANDS.
($23-10-1$)
DID AID GIVE THE ANSWERS YOU EXPECTED?

```
WHICH TWO OF THESE COMMANDS WOULD HAVE THE SAME ANSWER?
    TYPE 42/(3/12)
    TYPE 42/3/12
    TYPE (42/3)/12
```

START AID AND TRY THEM.
$(L 3-11-0)$
WHEN YOU DON'T USE PARENTHESES, AID HAS ITS OWN RULES
FOR DOING ARITHMETIC. THEY ARE:
1. DO ALL MULTIPLICATION AND DIVISION FIRST.
STARTING AT THE LEFT, AND WORKING TOWARDS THE RIGHT.
2. DO ADDITION AND SUBTRACTION NEXT,
STARTING AT THE LEFT, AND WORKING TOWARDS THE RIGHT.
THUS THE COMMAND
TYPE $1 / 4+3 * 2$
IS DONE IN THE FOLLOWING WAY:
FIRST, AID STARTS AT THE LEFT, DIVIDES 1 BY 4 AND
GETS . 25.
SECOND ${ }^{\text {G }}$ AID MULTIPLIES 3 BY 2 AND GETS 6.
THIRD, AID RETURNS TO THE LEFT, AND ADDS . 25° AND 6.
TYPE $2+7 * 3-1$
WHICH OPERATION WILL AID DO FIRST?
A. ADDITION
B. SUBTRACTION
C. MULTIPLICATION
D。 DIVISION

```
(13-11-1)
    AID DOES THE MULIIPLICATION FIRST, SO
    2+7*3-1
=2+21-1
= ???
```

```
(L3-12-1)
    TYPE 16-6/2 + 4
WHEN AID EVALUATES THIS COMMAND,
WHICH OPERATION WILL BE DONE FIRST?
A. ADDITTON
B. SUBTRACTION
C. MULIPLICATION
D. DIVISION
```

$(L 3-12-2)$
WHAT WILL AID ANSWER TO THE ABOVE COMMAND?
($23-13-0$)
WHAT ANSWER WILL AID GIVE?
TYPE $14+8 * 2 / 4$
($13-13-1$)
TYPE $14+8 * 2 / 4$
WHICH EXPRESSION WILL AID EVALUATE FIRST?
A. $14+8$
B. $8 * 2$
C. $2 / 4$

AID DOES THE MULTIPLICATION FIRST BECAUSE THE * IS TO THE LEFT OF THE / AFTER AID MULTIPLIES 8*2 IT WILL D THE DIVISION, THEN START LOOKING FOR ADDITION OR SUBTRACTION. WHAT ANSWER WILL AID GET?

```
(13-14-0)
    WHAT UYLL AID ANSWER TO THIS COMMAND?
        TYPE 2*3-1/2
```

(L3-15-0)
WHAT WILL AID ANSWER?
TYPE, $100 / 10 / 2$
($L 3-16-0$)
WHAT ANSWER WILL AID GIVE?
TYPE $6+9 / 3 * 4-1$

```
    (L3-17-0)
PUT PARENTHESES AROUND NEGATIVE NUMBERS.
    FOR EXAMPLE, THE COMMAND TO AID TO MULTIPLY }
    BY NEGATMVE 2 IS URITTEN
        TYPE 3 * (-2)
    TYPE THE COMMAND WHICH WILL CAUSE AID TO EVALUATE
20 DIVIDED BY NEGATIVE 4.
```

 (\(13-18-0\))
 WHAT WILL AID ANSWER?
 TYPE \(4+(-2)\)
    ```
(L3-20-0)
    YOU CAN USE PARENTHESES GHENEVER YOU WANT TO
TO MAKE EXPRESSIONS EASIER TO READ.
WHICH OF THESE NILL CAUSE AID TO FIRST MULTIPLY }
BY 12, THEN ADD 5?
A. TYPR (3*12) + 5
B. TYPE 3*12+5
C. TYPE 3*(12 + 5)
D. TYPE (3*12) + (5)
N. NONE ,
```

(L3-20-1)
WHICH OF THESE WILL CAUSE AID TO
FIRST DIVIDE 225 BY 15. AND THEN SUBTRACT 11。
A. TYPE 225/(15-11)
B. TYPE $((225) /(15))-11$
C. TYPE (225/15) - 11
D. TYPE 225/15-11
N. NONE
$(13-20-2)$
-.ADD 3 TIMES NEGATIVE 5 TO 64 DIVIDED BY 8.
A. TYPE $(3 *(-5))+64 / 8$
B. TYPE $(3 *-5)+64 / 8$
C. TYPE $3 *((-5)+64) / 8$
D. TYPE TYPE ($3 *(-5)+(64 / 8)$
N. NONE

TYPE 2*3/6-1/2
MEANS THE SAME AS
A。 TYPE (2*3)/6-(1/2)
B. TYPE $2 *(3 / 6-1 / 2)$
C. TYPE (2*3)/6-1/2
N. NONE

```
(23-22-0)
    TYPE 100/10/10/2
COULD BE WRITTEN
A. TYPE (100/10)/(10/2)
B. TYPE (100/(10/10))/2
C. TYPE (100/(10/10/2))
N. NONE
```

$(13-23-0)$
TYPE 10/7-5-2
COULD BE WRITTEN
A. TYPE 10/(7-5) - 2
B. TYPE $(10 / 7)-(5-2)$
C. $\operatorname{TYPE}(10 / 7)-5-2$
N. NONE

(L3-24-0)

USE AID TO FIND THE ANSWERS TO THESE PROBLEMS:

1. MULTIPLY THE SUM OF 47.3 AND 3.5 BY NEGATIVE 4.29.
2. SUBTRACT 1117 DIVIDED BY 22 FROM 161.
3. DIVIDE 43 DIVIDED BY 3.4 BY 56.

$$
(13-24-1)
$$

$(23-24-2)$

PART 2?

```
(13-24-3)
```

?
PART 3?
(L3-25-0)
DO YOU WANT A SUMMARY OF LESSON 3?

```
(13-26-0)
IN LESSON 3 YOU SHOULD HAVE LEARNED HOW TO USE
PARENTHESES IN AID COMMANDS. YOU SHOULD ALSO HAVE LEARNED
THE ORDER IN WHICH AID WILL DO ARITHMETIC OPERATIONS IF
THERE ARE NO PARENTHESES.
DO YOU WANT TO REVIEN LESSON 3?
```

($13-27-0$)
READY FOR LESSON 4?

```
(L4-1-0)
```

LESSON
EXPONENTS, SCIENTIFIC NOTATION
EXPONEMTS ARE USUALLY URITTEN AS LITTLE NUMBERS TO THE RIGHT
and slightly above the base something like this:
3
4
BECAUSE THIS IS HARD TO TYPE AND DIFFICULT FOR THE COMPUTER TO
UNDERSTAND, WE WILL USE AN UP-ARROW:
$4 \uparrow 3$
EXAMPLES:
$4 \uparrow 3$ MEANS $4 * 4 * 4$ (WHICH IS 64)
$7 \uparrow 2$ MEANS $7 * 7$ (WHICH IS 49)
THE COMMAND
TYPE $5 \uparrow 2$
IUEANS THE SAME AS
A. TYPE $5 * 2$
B. TYPE $5 * 5$
C. TYPE $5 * 5 * 5$
N. NONE
$(24-1-1)$
TYPE 6个A
MEANS THE SAME AS
A. TYPE 6* $6 * 6 * 6 * 6$
B. TYPE $6 * 4$
C. TYPE 6*6*6*6
N. NONE
$(L 4-2-0)$

```
WHAT WOULD AID ANSWER TO THIS COMMAND?
    TYPE 2^3
(24-2-1)
WHAT WILL AID ANSWER?
        TYPE STE
(14-2-2)
WHAT WILL AID ANSWER TO THIS COMMAND?
        TYPE 10个3
(14-2-3)
    TYPE 10个4
WHAT WILL AID ANSWER?
(L4-3-0)
WHAT WILL AYD ANSWER?
    TYPE 17^1
(14-4-0)
WHAT WILL AID ANSWER?
    TYPE &7\uparrow0
```

```
(L4-5-1)
```

```
IN THE EXPRESSION (-4) ^7, THE NUMBER 7 IS CALLED WHAT?
```

(24-6-0)
AID WILL DO EXPONENTIATION BEFORE IT DOES
MULTIPLICATION, DIVISION, ADDITION OR SUBTRACIION.
WHAT WOULD AID ANSWER?
TYPE $5 * 2 \uparrow 3$
(L4-6-1)
LET'S GO THROUGH A PROBLEM STEP-BY-STEP.
WHICH EXPRESSION IS EVALUATED FIRSI IN THIS COMMAND?
TYPE 32/4 个2
A. $4 * 2$
B. $32 / 4$
C. $4 \uparrow 2$
N. NONE
(L4-6-2)
($14-6-3$)

SO THE VALUE OF $32 / 4 \uparrow 2$ IS THE SAME AS THE VALUE OF 32/???
(L4-6-4)
*
THEN WHAT WOULD AID ANSWER TO THIS COMMAND? TYPE 32/4 T2
(L4-6-5)

WHAT WOULD AID ANSWER TO THIS COMMAND? TYPE $10 \uparrow 3 * 2$
(L4-6-6)

THERE IS AN EASY WAY TO DO PROBLEMS THAT KAVE EXPONENTIATION
AND ALSO SOME OTHER OPERATION: IMAGINE THAT THERE ARE
PARENTHESES AROUND THE TERM WITH THE EXPONENTIATION.
FOR EXAMPLE,
TO DO $3 \uparrow 4+2 \quad$ DO $(3 \uparrow 4)+2$
TO DO $625 / 5 \uparrow 2$ DO $625 /(5 \uparrow 2)$
TO DO $4 \uparrow 2+2 \uparrow 4$ DO $(4 \uparrow 2)+(2 \uparrow 4)$
WHAT IS THE VALUE OF $5 \uparrow 2 / 2$?

```
WHAT WOULD AID ANSWER?
    TYPE 10ヶ3/10\uparrow2
(L4-6-8)
WHAT WOULD AID ANSWER?
    TYPE 10ヶ3 - 10ヶ2
    ;
(L4-7-0)
WHAT WILL AID ANSWER?
    TYPE 12*10T2
(24-8-0)
WHAT WILL AID ANSWER?
    TYPE 2*10\uparrow0 + 7
(L4-9-0)
USE PARENTHESES IF YOU WANT AID TO DO THE ARITHMETIC
OPERATIONS IN AN UNUSUAL ORDER. FOR EXAMPLE, IF YOU WANT AID
TO ADD BEFORE IT DOES EXPONENTIATION USE PARENTHESES LIKE
THIS:
    TYPE (5+3)\uparrow2
WHAT WILL AID ANSWER?
```

(L4-9-1)

```
(L4-10-0)
    TYPE 2*3*2/5
MEANS THE SAME AS
    A. TYPE ((2*3) T2)/5
    B. TYPE (2*3) \uparrow(2/5)
    C.TYPE 2*(3 T2)/5
    D. TYPE 2* (3 \uparrow(2/5))
    N. NONE
```

$(24-10-1)$
TYPE (4/6) $\uparrow 2+10 \uparrow 4$
MEANS THE SAME AS
A. TYPE $(4 / 6 \uparrow 2)+(10 \uparrow 4)$
B. TYPE $4 /(6 \uparrow 2)+10 \uparrow 4$
C. TYPE $4 / 6 \uparrow 2+10 \uparrow 4$
N. NONE
($14-11-0$)
TYPE $312 * 5 /(7-4) \uparrow 3$
MEANS THE SAME AS
A. TYPE $3 \uparrow(2 * 5) / 7-4 \uparrow 3$
B. TYPE ($3 \uparrow 2 * 5) /(7-4 \uparrow 3)$
C. TYPE $(3+2 * 5) /((7-4) \uparrow 3)$
N. NONE

```
(L4-12-0)
USE AID TO EVALUATE EACH OF THE FOLLOWING. USE
EXPONENTIATION WHEREVER POSSIBLE.
```

1. 4 SQUARED TIMES 3.1416
2. THE SUM OF 4 CUBED AND 6
```
3. THE SUM OF THE SQUARES OF 1, 2, 3, 4, 5, 6, 7 AND }
```

```
(14-12-1)
WHAT ANSWER DID AID GIVE FOR PART I OF PROBLEM L4-12?
(L4-12-2)
WHAT ANSWER DID AID GIVE FOR PART 2?
(L4-12-3)
WHAT ANSWER DID YOU GET FOR PART 3?
(L4-13-0)
FRACTIONAL EXPONENTS ARE USED FOR ROOTS.
    9个(1/2) MEANS THE SQUARE ROOT OF 9
    9个(1/3) MEANS THE CUBE ROOT OF }
    ETC.
WHAT WILL AID ANSWER TO THIS COMMAND?
    TYPE 16T(1/2)
```

(14-14-0)
WHAT AID COMMAND WOULD YOU USE TO FIND THE SQUARE
ROOT OF 17?

```
(14-15-0)
WHAT WILL AID ANSWER?
    TYPE 10+9\uparrow(1/2)
(L4-16-0)
NEGATIVE EXPONENTS ARE USED TO MEAN THE RECIPROCAL,
FOR EXAMPLE
    5\uparrow(-2) MEANS 1/(5\uparrow2)=1/25=.04
    5\uparrow(-3) MEANS 1/(5 {3)=1/125=.008
WHAT WILL AID ANSWER?
    TYPE 10\uparrow(-2)
(L4-17-0)
WHAT WILL AID ANSWER?
    TYPE 2 个(-2)
```

$(14-17-1)$
TYPE $10 \uparrow(-3)$
($14-17-2$)
TYPE 17ヶ(-6)
IS THE SAME AS
A. TYPE (17-6) $\uparrow 1$
B. TYPE (17个6)/1
C. TYPE $1 /(6 \uparrow 17)$
D. TYPE $1 /(17 \uparrow 6)$
N. NONE

(14-20-1)

```
TYPE 3*10个(-3)
```

(L4-21-0)
WHAT WILL AID ANSWER? TYPE $3.5 * 10 \uparrow(-2)$

USE AID TO EUALUATE EACH OF THESE EXPRESSIONS:

1. THE SQUARE ROOT OF 2.25
2. 1.5 SQUARED
3. 10 TIMES 10 TIMES 10 TIMES 10 TIMES 10 (IS THERE MORE THAN ONE WAY TO WRITE THIS COMMAND?)
4. THE SQUARE ROOT OF THE SUM OF 14 SQUARED AND 5 SQUARED
($24-22-1$)
HERE ARE THE ANSWERS FOR PROBLEM L4-22
5. 1.5
6. 2.25
7. 100000
8. 14.8660687

DID YOU GET THEM ALL RIGHT?
(24-22-2)
DO YOU WANT ME TO SHOW YOU THE CORRECT COMMANDS?

$$
(14-22-3)
$$

THE CORRECT COMMANDS FOR PROBLEM L4-22 ARE

1. TYPE $2.25 \uparrow(1 / 2)$
2. TYPE $1.5 \uparrow 2$
3. TYPE $10 * 10 * 10 * 10 * 10$

TYPE $10 \uparrow 5$
4. TYPE $(14 \uparrow 2+5 \uparrow 2) \uparrow(1 / 2)$

DO YOU WANT TO START AID AND TRY THEM AGAIN?
($14-23-0$)
SCIENTIFIC NOTATION IS SOMETIMES USED TO WRITE LARGE NUMBERS。

SCIENTIFIC NOTATION DECIMAL FORM

$3.0 * 10 \uparrow 4 \quad 30000$
$4.56 * 10 \uparrow 6 \quad 4560000$
WHAT IS THE DECIMAL FORM OF $1.6 * 10 \uparrow 3$?

TO EVALUATE 1.6*10ヶ3 MOVE THE DECIMAL POINT IN 1.6 3 PLACES TO THE RIGHT. TRY AGAIN.
(L4-23-2)

WHAT IS THE VALUE OF $1.31 * 10 \uparrow 5 ?$
($\mathrm{L} 4-24-0$)
THE SCIENTIFIC NOTATION FOR 9300 IS $9.3 * 10 \uparrow 3$

WHAT IS THE SCIENTIFIC NOTATION FOR 93000000?
(14-24-1)

GIVE THE SCIENTIFIC NOTATION FOR 780100

```
    (L4-25-0)
    SCIENTIFIC NOTATION IS ALSO USED TO WRITE SMALL
    NUMBERS. FOR EXAMPLE,
        SCIENTIFIC NOTATION DECIMAL FORM
        ----------------------------------
        2. 5*10\uparrow(-3)
        7.1*10\uparrow(-7) .00000071
    WHAT IS THE DECIMAL FORM OF 3.4*10\uparrow(-4)?
```

WHAT IS THE VALUE OF $4.302 * 10 \uparrow(-3) ?$
(L4-26-0)
GIVE THE SCIENTIFIC NOTATION FOR .00894
(14-26-1)

GIVE THE SCIENTIFIC NOTATION FOR . 002.
($14-26-2$)

WHAT IS THE SCIENTIFIC NOTATION FOR . 0000101
(L4-27-0)
AID SOMETIMES GIVES ANSWERS IN DECIMAL FORM, SOMETIMES
IN SCIENTIFIC NOTATION DEPENDING UPON THE SIZE OF THE NUMBER.
IF YOU USE THE COMMAND
TYPE $10 * 10$
AID WILL GIVE THE ANSWER, 100, IN DECIMAL FORM.
IF YOU USE THE COMMAND
TYPE $10 * 10 * 10 * 10 * 10 * 10$
AID WILL GIVE THE ANSWER, $1 * 10 \uparrow 6$, IN SCIENTIFIC NOTATION.
START AID AND EXPERIMENT TO FIND OUT WHAT RULES AID USES TO DECIDE WHETHER TO USE DECIMAL FORM OR SCIENTIFIC NOTATION.
(L4-27-1)
IF YOU USED THIS COMMAND
TYPE $1 / 100$
WOULD AID GIVE THE ANSWER IN DECIMAL FORM OR IN SCIENTIFIC NOTATION?
(L4-28-0)
FROM NOW ON, YOU CAN WRITE NUMBERS IN EITHER DECIMAL FORM OR IN SCIEMTIFIC NOTATION, WHICHEVER YOU PREFER.

WOULD YOU LIKE A SUMMARY OF LESSON 4?
;
($14-29-0$)
IN THIS LESSON YOU SHOULD HAVE LEARNED ABOUT
EXPONENTIATION AND ABOUT THE ORDER IN WHICH AID
DOES ARITHMETIC IF THERE IS EXPONENTIATION IN THE EXPRESSION. YOU SHOULD ALSO HAVE LEARNED HOW TO READ AND WRITE NUMBERS IN SCIENTIFIC NOTATION.

DO YOU WANT TO REVIEW ANY OF THE TOPICS FROM THIS LESSON?
(L4-30-0)
READY FOR LESSON 5?

(L5-1-0)

LESSON 5
THE "SET" COMMAND. THE "DELETE" COMMAND.
SO FAR, THE ONLY AID COMMAND YOU HAVE USED IS THE "TYPE" COMMAND. THERE ARE MANY MORE AID COMMANDS; IN THIS LESSON YOU WILL LEARN ABOUT THE "SET" COMMAND AND THE "DELETE" COMMAND。

```
THE COMMAND
```

 SET \(X=5.25\)
 CAUSES THE VALUE OF X TO BECOME 5.25. WHAT WILL BE THE VALUE
OF Y AFTER THIS COMMAND:
$\operatorname{SET} Y=17.01$
($15-2-0$)
THE AID VARIABLES ARE SINGLE LETTERS A, B, C,..., Z 。
HOW MANY VARIABLES DOES AID HAVE?
(L5-3-0)
THESE TWO COMMANDS
SET N = 350
TYPE 2*N
WILL CAUSE AID TO GIVE 700 AS THE ANSWER.
WHAT WILL AID ANSWER AFTER THESE COMMANDS?
SET $B=1.5$
TYPE $3 * B$
($15-4-0$)

```
SET \(C=0.5\)
```

TYPE $1 / 2+3 * C$
(L5-5-0)
TYPE CORRECTLY THE COMMAND WHICH IS WRONG.
SET $P=3$
$S E T Q=5$
TYPE P*10-Q

($15-5-1$)

WHAT ANSWER WILL AID GIVE AFTER THE ABOVE COMMANDS?

(L5-7-0)
For each of the following, give the value of X. SET $X=-35 / 7$

```
SET M = 12
SET N = 4
SET X = M/N
```

$(15-7-2)$

```
SET R = 3
SET S = 12-R
SET }X=R*
```

```
(L5-8-0)
RULES ABOUT THE "SET" COMMAND:
&. THERE MUST bE A SPACE AFTER THE WORD "SET". (OTHER SPACES
    ARE OPTIONAL.)
2. THERE MUST BE AN EQUAL SIGN.
3. THE VARIABLE MUST BE A SINGLE LETTER.
4. YOU CAN USE A VARIABLE TO THE RIGHT OF THE EQUAL SIGN IF IT
    HAS A VALUE ALREADY, FOR EXAMPLE, YOU MAY USE:
        SET X = Y+2
    IF Y WAS GIVEN A VALUE IN A PREVIOUS COMMAND.
WHICH ARE CORRECT AID COMMANDS?
    A. SET X-2
    B. SETX=2
    C. SET X=2*3
    D. SET PI = 3.1416
    N. NONE
```

(L5-9-0)
WHICH ARE VALID AID COMMANDS?
A. $\operatorname{SETX}=2+3+4$
B. SET Y TO $2+3.1416 \uparrow 2$
C. SET VAR $=-10$
D. SET $B=9$
N. NONE

WHAT COMMAND WILL CAUSE AID TO SET M EQUAL TO S PLUS 9? (ASSUME S ALREADY HAS A VALUE.)

$(25-11-2)$

GIVE THE COMMAND WHICH WILL CAUSE L TO BE EQUAL TO M DIVIDED BY S.

$$
(L 5-12-0)
$$

START AID AND TYPE THESE COMMANDS. SET $X=5$ (WAIT UNTIL AID TYPES AN ASTERISK) TYPE $6+X$ (WAIT UNTIL AID TYPES THE ANSWER) THEN START THE TEACHING PROGRAM AGAIN。
$(25-12-1)$

```
(L5-13-0)
START AID AND TYPE THESE COMMANDS. (P STANDS FOR PI)
    SET P=3.14159265
    TYPE P{2
    TYPE Pr3
    TYPE P个4
    TYPE P^5
(L5-13-1)
WHAT VALUE DID AID GIVE FOR P个2 ?
(L5-13-2)
WHAT VALUE DID AID GIVE FOR PT3?
(15-14-0)
SUPPOSE THE LENGTH OF A RECTANGLE IS 9.3 AND ITS WIDTH
IS 4.7. THESE COMMANDS WILL CALCULATE ITS AREA:
    SET L = 9.3
    SET W=4.7
    TYPE L*W
START AID AND USE THESE COMMANDS TO CALCULATE THE
AREA OF THE RECTANGLE.
```

WHAT IS THE AREA OF THE RECTANGLE ACCORDING TO AID?

```
(L5-15-0)
SUPPOSE YOU WANT TO FIND THE VALUE OF THIS LONG
EXPRESSION:
((5+34/73) थ +(42-50\uparrow2)/19)/(5+34/73)
USING THE "SET" COMMAND WILL SIMPLIFY IT FOR YOU:
    SET A=5+34/73
    SET B=(42-50\uparrow2)/19
    TYPE (A42+B)/A
START AID AND USE THE COMMANDS ABOVE TO FIND
THE VALUE OF THE EXPRESSION.
```

(25-15-1)
WHAT ANSWER DID AID GIVE?
(L5-16-0)
WHAT IS THE VALUE OF THIS EXPRESSION?
$(13 \uparrow(-2)+65) \uparrow 3 /(29 \cdot 1-7 / 1.03+13 \uparrow(-2)+65)$
START AID AND TRY TO FIND THE ANSWER, USING
THE "SET" COMMAND TO SIMPLIFY IT.
$(15-16-1)$

```
(15-17-0)
AN ACCOUNTANT FOR AN INTERNATIONAL COMPANY MUST
CALCULATE THE TOTAL MILEAGE EACH COMPANY CAR IS DRIVEN
PER WEEK. MANY OF THE CARS ARE EUROPEAN AND THEPR
ODOMETERS GIVE DISTANCE IN KILOMETERS RATHER THAN MILES.
IMAGINE YOU ARE DOING THESE CALCULATIONS AND MUST CONVERT
KILOMETERS TO MILES USING THE CONVERSION:
    | KILOMETER = 0.6214 MILES.
ONE CAR WAS DRIVEN }693\mathrm{ KILOMETERS IN THE PAST WEEK.
START AID AND FIND HOW MANY MILES IT WAS DRIVEN,
-USING THE FOLLOWING COMMANDS:
    SET C = 0.6214
    SET K = 693
    TYPE C*K
```

($15-17-1$)

HOW MANY MILES WAS THE CAR DRIVEN ACCORDING TO AID?

```
(L5-18-0)
IN THE COMPUTER MEMORY THERE ARE 26 AID STORAGE
LOCATIONS ARE LABELLED "A","B", "C",..."Z". WHEN A "SET"
COMMAND IS USED, AID DOES THE FOLLOWING:
    1. aid calculates the value of the
        EXPRESSION FOLLOWING THE EQUAL SIGN.
    2. AID FINDS THE STORAGE LOCATION GIVEN
            BY THE LETTER ON THE LEFT OF THE EQUAL
            SIGN. IF NO STORAGE LOCATION IS ALREADY
            NAMED BY THAT LETTER, THEN AID NAMES
            AN EMPTY ONE WITH THAT LETTER.
    3. AID WRITES THE NEW VALUE OF THE VARIABLE
            INTO ITS STORAGE LOCATION AND WIPES OUT
```

```
    ANY OLD CONTENTS OF THAT LOCATION. THIS
    MEANS THAT YOU CAN CHANGE THE VALUE OF A
    VARIABLE, (RE-DEFINE IT) BY USING THE
    *SET" COMMAND A SECOND TIME.
    LOOK AT THESE THREE "SET" COMMANDS:
        SET R = 4
        SET S = 3.5
        SETR=S*2
    WHAT IS THE VALUE OF R AFTER THE FIRST COMMAND?
|
(15-18-1)
    ;
WHAT IS THE VALUE OF R AFTER THE SECOND COMMAND?
(L5-18-2)
WHAT IS THE VALUE OF R AFTER THE THIRD COMMAND?
(L5-19-0)
WHAT GILL BE THE VALUE OF Y AFTER THE FIRST
OF THESE COMMANDS?
    SET Y = 3
    SET }X=Y+
    SET Y = X*10
(15-19-1)
```

WHAT WILL BE THE VALUE OF Y AFTER THE SECOND COMMAND?

```
(15-19-2)
```

WHAT IS Y AFTER THE THIRD COMMAND?
(L5-20-0)
WHAT IS M EQUAL TO AFTER THE FIRST COMMAND BELOW?

```
SET M = 2
SET M = M+1
```

(L5-20-1)

WHAT IS THE VALUE OF M AFTER THE SECOND COMMAND?
(L5-21-0)
WHAT IS THE VALUE OF A AFTER THE FIRST COMMAND BELOW?

SET A $=5$
SET $B=10$ $\operatorname{SET} A=A+B$
$(15-21-1)$

```
(15-21-2)
```

WHAT IS A AFTER THE THIRD COMMAND?

```
(15-22-0)
THE AID COMMAND:
    DELETE A
REMOVES THE VALUE OF A AND ITS LABEL FROM THE
STORAGE LOCATION IT HAD BEEN ASSIGNED. AS
FAR AS AID IS CONCERNED, THERE IS NO VALUE OR
LOCATION CORRESPONDING TO A ANYMORE.
SUPPOSE YOU NO LONGER NEED THE VARIABLE
X IN A CALCULATION. WHAT COMMAND WDULD YOU
GIVE AID TO REMOVE X AND ITS VALUE FROM THE
COMPUTER'S MEMORY?
```

(L5-23-0)
"DELETE" MUST BE FOLLOWED BY A SPACE.
WHICH OF THE FOLLOWING ARE CORRECT?
A. DELETE X
B. DELETE 2
C. DELETEB
D. DELETE M
N. NONE
(L5-23-1)
A AND D ARE CORRECT IN THE ABOVE PROBLEM. B SHOULD USE A LETTER VARIABLE, NOT A NUMBER.

```
(L5-24-0)
```

WHICH ARE VALID AID COMMANDS?
A. DELETED
B. DELETE PI
C. DELETE W
(L5-25-0)
YOU MAY USE THE "DELETE" COMMAND TO
DELETE SEVERAL VARIABLES AT ONCE. FOR
EXAMPLE:
DELETE A, B, C
A SPACE AFTER "DELETE", AND COMMAS BETWEEN THE VARIABLES ARE REQUIRED. SUPPOSE YOU HAVE BEEN USING M, P, T AND W AS VARIABLES. AFTER THE COMMAND:

DELETE W, P
WHICH VARIABLES WILL AID STILL HAVE AVAILABLE?
(15-26-0)
TYPE A SINGLE COMMAND WHICH WILL ELIMINATE THE VARIABLES K AND Y FROM AID STORAGE.

```
(15-27-0)
THE "TYPE" COMMAND, LIKE THE "DELETE"
COMMAND, MAY ALSO BE USED WITH SEVERAL EXPRESSIONS
SEPARATED BY COMMAS AS BELOW:
    TYPE 1/16,2/16,3/16
THIS COMMAND WILL CAUSE AID TO TYPE:
    1/16= .0625
    2/15= .125
```

```
(15-27-1)
```


WHAT IS THE SECOND RESULT THAT AID WILL TYPE?

```
-(15-28-0)
    WHICH ARE VALID AID COMMANDS?
    A. TYPE. }3+\mp@subsup{X}{0, 4+X}{
    B. TYPE 供N AND MNN/2
    C. TYPE A-B-C;B-A-C;C-A-B
    D. TYPE 3*X, (3*X) RN N
    N. NONE
```

(15-29-0)
CAUTION: YOU CANNOT COMBINE SEVERAL "SET" COMMANDS
THE WAY YOU CAN COMBINE "DELETE" OR "TYPE" COMMANDS.

THESE COMMANDS WILL CALCULATE THE
AREA AND CIRCUMFERENCE OF A CIRCLE OF RADIUS 3:

SET $P=3.1416$
SET R=3
TYPE $P * R+2$
TYPE $2 * P * R$
USE AID TO DO THE CALCULATION BUT TRY TO DO IT WITH ONE "TYPE" COMMAND INSTEAD OF TWO.
$(15-29-2)$

WHAT IS THE AREA OF THE CIRCLE ACCORDING TO AID?

```
(15-29-3)
```

WHAT IS THE CIRCUMFERENCE GIVEN BY AID?

$$
(L 5-30-0)
$$

1 CENTIMETER $=.3937$ INCHES. SIGN ON
TO AID AND CONVERT THE FOLLOWING LENGTHS TO CENTIMETERS:
6.9 INCHES
7.445 INCHES
23.9753 INCHES
($15-30-1$)
FROM THE ABOVE CALCULATIONS, 6.9 INCHES = ??? CENTIMETERS.

```
7.445 INCHES = ??? CENTIMETERS.
```

```
(15-30-3)
```

```
23.975 INCHES = ??? CENTIMETERS.
```

($55-31-0$)
TO FIND THE NEW AMOUNT IN A SAVINGS
ACCOUNT. CALCULATE THE INTEREST AND ADD IT
TO THE LAST BALANCE START AID AND
CALCULATE THE INTEREST AND THE NEW BALANCE AFTER
ONE YEAR FOR AN ACCOUNT WI TH AN INTEREST RATE OF
4.5 PERCENT PER YEAR AND A PREVIOUS BALANCE OF $\$ 3274.86$.
(ASK FOR A YINT IF YOU NEED ONE.)
$(15-31-1)$
WHAT IS THE INTEREST ON THE ABOVE ACCOUNT
TO THE NEAREST PENNY?
$(L 5-31-2)$
WHAT IS THE NEW BALANCE IN THE ACCOUNT?

```
(L5-32-0)
```

DO YOU WANT TO SEE A SUMMARY OF THIS
LESSON?

```
(L5-33-0)
IN THIS LESSON YOU SHOULD HAVE LEARNED ABOUT THE
VARIABLES AID USES, HOW TO SET THE VALUE OF A VARIABLE
BY USING THE "SET" COMMAND, AND HOW TO DELETE VARIABLES.
YOU SHOULD ALSO HAVE LEARNED HOW TO COMBINE SEVERAL
"TYPE" OR "DELETE" COMMANDS INTO ONE COMMAND.
DO YOU WANT TO REVIEW ANY OF LESSON 5?
```

```
( \(15-34-0\) )
DO YOU WANT TO GO ON TO LESSON SIX?
```

