The Influence of Natural Sedimentary Layering Upon Solute Transport

Melanie A. Mayes Phil Jardine, Molly Pace *Oak Ridge National Laboratory* Ed Perfect, Larry McKay *University of Tennessee*

IDF site Courtesy Steve Reidel PNNL

Heterogeneous deposits
– Grain (pore) size
– Sedimentary structures
– Arrangement of sedimentary layers

Flow in heterogeneous deposits

even wetting front?

bypassed

IDF site

lateral flow

uneven wetting front

Objective

To determine the influence of heterogeneous sedimentary layering on coupled hydrology and geochemistry of contaminants

- 6 intact sedimentary units

Leveraging

- 3-4 units: EMSP 1999, 2000 and 2002
- 3 units: Tank Farm Vadose Zone Project (CH2MHill Hanford Group) 2004

Methods

Perform quantitative solute transport experiments in intact layered sediment samples

- Determine directionality (anisotropy)
 - Flow bedding parallel (pb)
 - Flow cross bedding (xb)
 - Saturated flow
- Effects of decreasing water content
 - Dispersivity (λ)
- Reactive U(VI) and CoEDTA transport

Ringold Formation White Bluffs

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

January, 1999

Ringold Formation

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Courtesy

PNNL

Bruce Bjornstad

ERDF (May, 2003) Hanford Laminated HL

Hanford flood deposits 200E area, IDF pit (November, 2004)

IDF (November, 2004)

- Hanford Interbedded HI

JT-BATTEL

Hanford Coarse

IDF (November, 2004)

Sharp upper boundary with overlying horizontal sediments

Hanford Dike

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

1

6 Sedimentary Units

clastic dike

cross-bedded sandy loam

laminated silt loam

٨	Name	Formation,	Sedimentary Description	sand/silt/clay
	HC	Hanford, Coarse	Massive coarse sand Few textural layers	93/4/3
Avg. Grain Size	HI	Hanford, Interbeds	Strongly alternating textural layers Interbedded coarse sands, coarse sands with silt/clay matrix	89/8/4
	HL	Hanford, Laminated	Fine-medium sand, clay laminations Similar textural layers	95/4/1
	HD	Hanford, Clastic Dike	Strongly alternating textural layers, cemented Medium sands, silt beds, clay "skins"	84/13/4
	RX	Ringold, Cross-beds	Cross-bedded loamy sand Alternating layers of light and dark mins	57/42/1
	RL	Ringold, Laminated	Alternating textural layers Silt loam, oxides/clays coat bedding planes	42/56/2

Solute Transport Experiments

- Saturated
 - Nonreactive tracers
- Unsaturated
 - Reactive tracers
 - U(VI), CoEDTA
 - Nonreactive tracers

Results and Discussion

- 1. Saturated flow: anisotropy
- 2. Decreasing water content: dispersivity
- **3. Reactivity:** U(VI) and Co(II)EDTA transport

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Mayes et al., 2003; Pace et al., 2003

JT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Mayes et al., 2003; Pace et al., 2003

Relative Volume (V/V_o)

Fit data to convective-dispersive equation Dispersivity λ

Core	D <i>cm</i> ² <i>h</i> ⁻¹	r ²	K s (<i>m</i> s ⁻¹)	
HC pb	101+/- 14.0	0.990	4.41E-05	
HC xb	143+/- 41.3	0.974	8.97E-05 🔨	
HI pb	67.4+/- 8.22	0.992	6.72E-06	Dataset
HI xb	64.1+/- 7.59	0.992	5.76E-06	> varies over
HL pb1	55.7+/- 21.2	0.967	1.39E-05	orders of
HL pb2	40.2+/- 10.1	0.978	1.60E-05	magnitude
HL xb1	9.60+/- 2.18	0.980	5.80 F -06	magintado
HL xb2	9.28+/- 1.74	0.994	1.50E-05	
HD pb	9.66+/- 1.37	0.984	2.87E-07	
HD xb	0.41+/- 0.03	9.998	1.62E-07	
RX pb1	14.9+/- 3.47	0.975	6.86E-06	
RX pb2	2.12+/- 0.41	0.975	8.30E-07	
RX xb	0.68+/- 0.18	0.964	1.22E-06	
RL pb1	2.03+/- 0.26	0.990	2.56E-07	
RL pb2	0.09+/- 0.02	0.964	3.55E-08	Pace et al., 2003:
RL xb	0.10+/- 0.03	0.966	5.25E-08	Mayes et al., 2003

U. S. DEPARTMENT OF ENERGY

A. Anisotropy conductivity (Ks) 5 cm

clastic dike

cross-bedded sandy loam

RX

laminated silt loam

RL

B. Anisotropy dispersivity (λ)

clastic dike

cross-bedded sandy loam

laminated silt loam

2. Dispersivity λ as f(water content)

Conclusions

- Value of leveraging research
- Communication with site contractors
- Improved scope of study
 - Anisotropy is related to sedimentology
 - Increasing dispersivity with decreasing water content (?)
 - Influences on reactive transport
- New ERSP research

thank you!

Research sponsored by: Department of Energy Environmental Remediation Sciences Division Tank Farm Vadose Zone Group, CH2M Hill, Inc. Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle, LLC, under contract DE-AC05-000R22725 with the DOE.