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The notion of asymptotic freedom' in gauge theories of 

the strong interactions has lent respectability to the hope 

that hadrons which are composed of heavy quarks may be des- 

cribed by the nonrelativistic SchrGdinger equation. 2 An 

impressive phenomenology of the psion family has been con- 

structed3 following the analogy between (e+e-) positronium 

and (cc) charmonium. In mostversions of the model, the 

interquark potential (which is thought to be mediated by the 

exchange of massless gluons) has been assumed to be a super- 

position of a Coulomb term and a linear confining potential. 4 

However, no compelling derivation of this form from the 

underlying field theory has been given. 5 Since the nature 

of the potential is unknown, it is of some interest to obtain 

general results which permit the properties of the potential 

to be inferred from experiment. In this vein, an introductory 

discussion has been given by Jackson' and several important 

theorems on the order of levels and on leptonic widths of 

vector mesons have been proved by Martin7 and by Grosse. 8 

With the accumulation of many precise experimental results, 

one may contemplate the approximate solution of the inverse 

scattering problem, whereby bound state properties determine 

the potential. 9 

In this short article we compile several scaling formulae 

which exhibit the dependence of level spacings and other 

dimensionful quantities upon the reduced quark mass 1-1 and 

upon the principal quantum number n , for potentials of the 

form 
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V(r) = arE . (1) 

We encountered these formulae in the course of answering 10 

the question: for what form of V(r) are the intervals between 

eigenvalues of the SchrGdinger equation independent of reduced 

mass? Special cases of the relations are widely known, and 

we have found some of the general cases as textbook problems. 

But in spite of the elementary nature of these results, they 

are rather unfamiliar to high-energy physicists. Therefore, 

because they promise considerable utility for the study of 

the quarkonium potential, it appears worthwhile to assemble 

them in one place, together with derivations. 

We first show that for potentials of the form (1) the 

scale of level spacings is given by 

AE 0~ Jo -E/(2+E) . (2) 

In the reduced radial SchrGdinger equation (for u(r) = rR(r), 

where the SchrGdinger wavefunction is Y(rJ = R(r)YQm(9,$)) 

-u"(r) 
21.1 

+ V(r) - E u(r) = 0 
3 

with j4 = c = 1, define the dimensionless parameter 

P = lJPmglmP r . 

Here m 
0 

is a constant with dimensions of mass and the power 

p will be specified below. With the replacement 

(3) 

u(r) E w(p) = w(u m. P '-Pr) I (5) 
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we have 

U” (r) = u2pmo2 (l-p)W’t (p) , (6) 

so that 

-h 2P-1 2(l-P)wll(p) + +2P-1 
mO 2 2(1-p)R(R+l)w(p)/p2 

mO 

+ PEIJ -EP E: (p-1) 
mO - Ew(P) = 0 . 

3 (7) 

We now set 

2p-1 = 'Ep 

and divide (7) by p 2p-1 2(1-p) m. I obtaining 

-3iw" (PI+ a(a+l)wm/2P2+ 1 
E af+, - E w(p) = 0 . 

mO 
i-12p-lm 2-2p 

0 1 

(8) 

(9) 

We havenowisolated the y-dependence in the term E/u 2p-1 
mO 

2-2P; 

thus the scale of energy level spacings is given by AE~,~J. 2p-1 . 

Solving (8) for p = l/(2+&), we obtain eq. (2). Note that 

the quantity a/m0 l+E: must be dimensionless: it is therefore 

convenient to define 

a = Amol+& , (10) 

where A is a dimensionless strength. Thus the strength of 

the Coulomb potential is dimensionless, so that 1-1 must set 

the scale of energy levels. 

According to eq. (4) and (lo), quantities with dimensions 

of length L scale as 
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L Q y-1/(2+E) 
(11) 

The size of a bound state with given quantum numbers is such 

a quantity. The matrix elements of electric and magnetic 

multipole operators scale as 

and" 

<n'lEjln> Q Lj (12) 

<n'IMj[n> s L -/p . (13) 

Since the radiative widths are given by 

r(Ej or Mj) 'L Py 2j+lj,nll Ej or Mjln>12 , 

and 

pY QJAE"JL -E/(2+E) r 

we find 

r(Ej) Q, 1-1 - [2j (~*E)+E]/(~+E) 

and 

r(Mj) Q, 1-1 - [2j (1+~)+(3~+2)3/(2+~) . 

(14) 

(15) 

(16) 

For potentials weaker near r=O than a Coulomb potential, 

i.e. for E>-1, the relative importance of higher multipoles 

decreases as u increases. It is amusing that for -Z<E<-1 

the limit of very large v can lead to a growing importance 

of high multipoles in radiative decays. For the Coulomb 

(17) 
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potential, E=- 1, the j-dependence drops out, and all decay 

rates scale as r Q 1-1. Again this follows from the dimension- 

less nature of the Coulomb coupling constant. 

Probability densities /Y(s) 12 have dimensions of inverse 

volume L -3 so scale as 

IY(&) I2 ‘L p3i(2+E) . 

Such quantities are of interest, for example, in the decays 

of massive vector mesons V which are 3 Sl bound states of a 

quark and antiquark, for which 12 

r(v + R+R-) = 16*c2e 2 Q /Y(O) 12/M(U2 , 

where e Q is the quark charge and M(V) is the vector meson 

mass. For E>-1, the scale of M(V) will itself be set by 

for the low-lying levels. 13 Consequently we find 

r(v -f R+R-) ‘L j.i -(1+2&)/(2+E) I E > -1 . - 

(18) 

(19) 

(20) 

Again for the Coulomb potential the width is proportional 

to p . 

The ratios of radiative to leptonic widths are of concern 

for massive states: 

r(Ej)/r(v -t a+C) 2, u U-2j) U+d/(2+d, E , -1 ; - 

.r(Mj)/r(V + $+R-) fb p-(1+21) (1+E)/(2+E), E , -1, 
- 

(21) 

(22) 

Since j > 1, - the exponents in (21) and (22) are both negative 

for E > -1. Hence leptonic decays will dominate over radiative 
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For E < -1, relation (20) is only expected to hold for 

the ground state. For the excited states M(V*)QJAEQ~ -E/ (2+E) 
I 

and 

r(v* j R+a-j ~ U(3+2d/(2+~) ,&C-l . 

In this case the radiative transitions take on an increasing 

importance as 1-I increases, because 

VW/W* -+ %+a-) fb 1-I -(2j+3) (1+E)/(2+&) 
I 

and 

r(Mj)/r(V* -+ R+R-) Q 1-I -(2j+5)(1+&)/(2+E) . 

For potentials which vary more slowly than any power of 

r , eq. (2) indicates that AE varies more slowly than any 

power of 1-I . The potential 

V(r) =Cln(r/rO) 

(23) 

(24) 

(25) 

(26) 

gives rise to level spacings which are 10 strictly independent 

of 1-I . The length-scaling arguments following from eq. (11) 

are valid with E = 0 for the logarithmic potential (26). The 

limit E = 03 corresponds to a square well if we take m. 
-1 

to be its size ao: 

V(r) = lim X r ( 1 
E 

E-t.= ao ao 

(27) -I 
w I r>a 0 ; 
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The scaling properties of some of the quantities we have 

discussed are summarized in Table I for several commonplace 

potentials. We show in Fig. 1 the dependence of the leptonic 

widths of ground-state vector mesons upon the vector meson 

mass. If nonrelativistic considerations were valid (a hypothesis 

we do not believe for p,w,$), we would conclude from eq. (20) 

that the effective power of the potential is 

~(leptonic widths) = -0.40 + 0.10 . (28) 

Application of this kind of result to more massive quarkonium 

states is an attractive future possibility. 

We now turn to an exploration of the dependence of physically 

interesting quantities upon the principal quantum number n . 

This discussion is much less extensive than the preceding one. 

It is motivated by the observation 10 that for a logarithmic 

potential of the form (26) the s-wave wavefuctions obey 

IYn(0)j2 s n-l . Relations of this kind are of interest, for 

example, in the interpretation of leptonic widths of vector 

mesons. We will show by means of the semiclassical (WKB) 

approximation 14 that for power-law potentials of the form (1) 

IYn(0) I2 % n2(E-1)/(2+E), E , 0 , 

and 

IYn(0) I2 2, n(E-2)/(2+E), -2 < E < 0 . 

(29) 

(30) 

for large n . 
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The s-wave WKB bound-state wavefunction is 
r 

u(r) = N 
bu(E-V(r))]' 

dr'[2u(E-V(r'))]' I 
o 

where N is a normalization constant. The quantization 

condition is that: 

rO 
dr' pu(E-V(r'))]' = (n - -$)r , n=1,2,... 

0 
For a power-law potential (l), the integral in (32) can be 

performed exactly, 15 yielding 

IEn/ = a2'E(2p) 
2E 

[E(E) (n-g)] 2+E , 

where 

(31) 

(32) 

(33) 

(34) 

and 

E(s) = 
2 1 E 1 A7 r (I-$) 

r (-+k ) 
-2<&<O . (35) 

The behavior of IY,(O) ( 2 for E>O may be obtained by noting 16 

that 

lY(0)12 = +$ 2 
0 

. 

Consequently 

IY(0) I2 = $ l 

where u(r), given by Eq. 

condition 

41~1 dr[u(r)12 asrEm , 
0 

31), satisfies the normalization 

(36) 

(37) 
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'0 
1 = 4lT dr b(r)12 . (38) 

0 

The integral in (37)is elementary if we make the approximation 

that the average value of the sin2 term is 3; one then obtains 

I'+'(o) I2 = (2l~E)" N2 (&>O) . (39) 

A similar trick applies to the evaluation of N2, and gives 
E-2 

N2 = (2~)~ E 2s al's-& N(E) , 

where 

and 

N(E) = E>O 

r (i-2) 
N(E) = -- -2<E<O 

r 

. 

(40) 

(41) 

(42) 

Combining (39) and (40), and using Eq. (33) to express E in 

terms of n , we find 

lY(0)12 = (2ua)2'E 
2(E-1) 

(n-%) 2+E: G(E) ' E>O p 
(43) 

where 

G(E) = 
(44) 
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For E<O, it was remarked some time ago 17 that the WKB 

approximation is improved by replacing R(R+l) + (JL++)~. This 

adds a repulsive S-wave potential l/(8pr2) to V(r) and thus 

imposes a lower cutoff on the r-integral in (37). This cutoff 

can be shown unimportant in the evaluation of N2, but for (37) 

we find a result parallel to (39): 

IY(o) I2 = i g N2(8p[al)2’E 
- r(2;;++ 

. (45) 

Combining (45) with (40), (42), (33), and (35), one can then 

arrive at a result parallel to (43), which yields (30). 

For E-+O both (29) and (30) imply that /Y(O)12 should 

behave as n-l for large n. This is precisely the behavior 

found in Ref. (10) for the potential V(r) c\, In r. 

We plot in Fig. 2 the values of /Yn(0)12 for +(3095), 

do (36841, and $(4414), which we regard as lS, 2S, and 4s or 

5s levels of the charmonium system. Blithely applying our 

semiclassical result (29) and (30) to.the power-law fits shown 

in Fig. 2, we find 

E = 0.01 f 0.14 (4s assignment): 
(47) 

& = 0.05 2 0.13 (5s assignment). 

As was the case for our discussion of the experimental mass 

dependence of IY(0) 12, this is purely an illustrative application. 

We look forward to data which will permit the use of (29) and 

(30) within their justified range. 
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Within the semiclassical context, it is possible in 

principle to find the shape of the potential given the dependence 

of the bound state energies on the principal quantum number n. 

The result applicable to our three-dimensional problem (cf. 

Ref. 18) is 

s V 
2 r(V) = - 

m 
g(E) * 

EO 
4s) 

(48) 

where E o is the zero-point energy. Eq. (48) is obtained by 
-+ differentiating (32) with respect to E, multiplying by (V-E) , 

and integrating with respect to E. 

If the known energy levels satisfied the relation 

E-Eo=Cnq , (49) 

we would then find 

V - EO 2, ,w (2-q) . (50) 

Eqs. (49) and (50) are equivalent to Eqs. (1) and (33), but 

with the present sketchy knowledge of the energy levels for 

charmonium, it is very hard to determine q without independent 

information on E 0 ! The use of information on the behavior of 

/Y(O) 12is clearly superior. 

To summarize: the dependence of level spacings, transition 

rates, bound state sizes, and other quantities on quark masses 

and on principal quantum numbers can be exploited very simply 

to gain an idea of the structure of the quark-antiquark force. 
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We have collected some of these simple results in the hope that 

they will be of help in interpreting data on the new heavy 

particles, and in refreshing the reader (as these results 

refreshed us!) on some elementary properties of the quantum 

mechanics of bound states. 

We are grateful to K. Gottfried, H. Lipkin, B. Margolis, 

and T. Yamanouchi for discussions, and to R. Cahn and 

J.D. Jackson for comments on the manuscript. 
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TABLE I. Scaling properties of some physical 

quantities in various potentials. 

Potential E AE length r(m) r (Ml) r (V+e+e-) 
scale 

Coulomb 

Logarithmic 

Linear 

Harmonic 
Oscillator 

Square 
Well 

-1 IJ 

0 0 1-I 

1 y-l/3 

2 3/2 

-1 m lJ 

u 1-1 lJ 

y-1/2 P -1 1-1 -2 yw 

p/3 11-5/3 y-3 2 

y-l/4 v -2 lJ--7/2 1-1-5/4 

0 -3 -5 -2 
1-I lJ 1-1 1-I 
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FIGURE CAPTIONS 

Fig. 1 Leptonic widths of the vector mesons divided by 

the square of the effective quark charge, 

eQ2 = l/2, l/18, l/9, 4/9 for Pi wI 4, $. The 

solid line is a "best fit" proportional to Mp with 

P =-0.12 ? 0.11. For a closely related plot see 

Ref. 6. 

Fig. 2 Square of the wave function at the origin deduced 

from leptonic widths of the psions. Possible 

mixing between the 23Sl (3684) and 33Dl(3772) 

levels has been neglected. The solid line is a 

best fit proportional to np, with p = -0.98 * 0.20, 

assuming the conventional 4s assignment for 

q(4414). The dashed line, which refers to an 

alternative 5s assignment for $(4414), corresponds 

to p = -0.92 k 0.18. 
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