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Abstract

● VODE is a new initial value ODE solver for stiff and nonstiff systems. It uses variable-coefficient
Adams-Moulton and BDF methods in Nordsieck form, as taken from the older solvers EPISODE
and EPISODEB, treating the Jacobian as full or banded. Unlike the older codes, VODE hss a
highly flexible user interface that is nearly identical to that of the ODEPACK solver LSODE.

In the process, several algorithmic improvements have been made in VODE, aside from the
new user interface. First, a change in stepsize and/or order that is decided upon at the end of
one successful step is not implemented until the start of the next step, so that interpolations
performed between steps use the more correct data. Secondly, a new algorithm for setting the
initial step size has been included, which iterates briefly to estimate the required second derivative
vector. Efficiency is often greatly enhanced by an added algorithm for saving and reusing the
Jacobian matrix J, as itoccurs in the Newton matrix, under certain conditions. As an option, this
Jacobian-saving feature can be suppressed if the required extra storage is prohibitive. Finally, the
modified Newton iteration is relaxed by a scalar factor in the stiff case, as a partial correction for
the fact that the scalar coefficient in the Newton matrix may be out of date.

Independently, we have studied the fixed-leading-coefficient form of the BDF methods, and have
developed a version of VODE that incorporates it. This version does show better performance on
some problems, but further tuning and testing is needed to make a final evaluation of it.

Like its predecessors, VODE demonstrates that multistep methods with fully variable stepsizes
and coefficients can outperform fixed-stepinterpolatory methods on problems with widely different
active time scales. In one comparison test, on a 1-D diurnal kinetics-transport problem with a
banded internal Jacobian, the run time for VODE was 36% lower than that of LSODE without the
J-saving algorithm, and 49% lower with it. The fixed-leading-coefficient version ran slightly faster,
by another 12% without J-saving and 5% with it.

.——





1 Introduction

.

In the early 1970s, one of the more heavily used ODE initial value solvers was the GEAR package [9],

which uses (in the stiff case) a fixed-coefficient Backward Differentiation Formula (BDF) method.

But it was found that GEAR was unable to cope with certain chemical kinetics problems that

have sharp and frequent time variations in the coefficient functions and solutions. This motivated

a project in which a variable-coefficient form of that BDF method was developed. The result was

a solver called EPISODE [5,14,13], which was nearly identical to GEAR in external appearance,

but quite different internally in the areas of coefficient evaluation and the estimation and control

of local error. (In analogy with the nonstiff Adams method in GEAR, EPISODE was augmented

with a variable-coefficient Adams method, so that nonstiff systems could be handled with a simple

change of an input method flag.) EPISODE was found to be more reliable on these difficult kinetics

problems, but less efficient on smooth stiff problems, because of the frequent changing of the scalar

coefficient in the Newton matrix [4]. Two variants were written soon afterward, mainly for the

method-of-lines solution of PDEs with nonsmooth variations of the type EPSIODE was designed

to accommodate. These variants are EPISODEB, for systems with banded Jacobian matrices [6],

and EPISODEIB, for problems in linearly implicit form with banded Jacobians, both in analogy

to the GEAR variants GEARB and GEARIB.

In an independent development, the considerable experience and user feedback from the GEAR

family of solvers motivated a joint effort among people in the U.S. Department of Energy Labora-

tories to redesign and improve some of the ODE initial value solvers being used heavily. The goal

of the project was a systematized collection of IVP solvers, to be called ODEPACK. The initial

phase was the development of a standard user interface for the solvers. This was accomplished [10],

and the GEAR and GEARB packages were then rewritten as a single solver, LSODE [11]. While

LSODE represents only modest improvements in the internal methods and algorithms of GEAR

and GEARB, it reflects a much greater flexibility with respect to user controls and options, yet
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it is generally easier to use, it is much more portable, and it is far easier to install in a library

environment. These properties of LSODE, and now also of the ODEPACK collection [12], have

received virtually unanimous positive feedback from the user community.

VODE combines these two developments. That is, the EPISODE and EPISODEB solvers, with

their fully variable-step methods, have been combined and rewritten as an initial value ODE solver

called VODE, with a user interface that conforms to the standard developed for ODEPACK. Thus

it has a highly flexible user interface nearly identical to that of LSODE, but it contains variable-

coefficient methods which are more efficient on problems which require frequent and wide changes

in step sizes. In the process, several algorithmic improvements have also been made, as described

below. In addition, we have studied an alternative approach, based on the fixed-leading-coefficient

form of BDF methods [15], and have implemented these in a variant of VODE, described below.

2 Basic Methods

A detailed mathematical description of the

given in [5], and will not be repeated here.

given below.

We write the initial value problem as

Y = f(L Y)>

methods used in EPISODE, and hence in VODE, is

But for the sake of completeness, a brief summary is

y(to) = W, yG RN.

The basic linear multistep formulas for both the stiff and nonstiff cases have the form

KI KS

~ an,i Yn–i + ha ~ /%3,iYn-i = 0.
i=l) i+)

For use on nonstiff problems, the Adarns formula is characterized by K1 = 1 and K2 = q – 1, and

the order q varies between 1 and 12. For stiff problems, the BDF formula has K1 = g and K2 = O,

and the order q varies between 1 and 5. The coefficients ~n,i, ~n,i are computed as functions of the

current and past step sizes hi = i!j – tj–1(~ = n – q + 1, ..., n). The past history is represented by
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the N by q + 1 Nordsieck array,

hqyy)/q!], (2.1)zn = [yn>hnh>...j n

.
.

●

.

the scaled derivatives being those of the corresponding interpolating polynomial associated with

the history data involved in the formula.

As with any implicit method, some iterative scheme must be applied at each step to solve a

nonlinear system

for the advanced value yn (an is a vector involving paat values of yk and jk). VODE offers a choice

between functional iteration (where no matrices are involved) and a modified Newton iteration in

which the Jacobian matrix J = ~j/~y is treated as either full or banded, and as either supplied by

the user or approximated internally by difference quotients. In the Nordsieck representation, the

predicted value of Zn is

Zn(()) = zn-I A, (2.2)

where A is the order q Pascal triangle matrix. The first two columns of this array are the predicted

values of yn and hny~, denoted Yn(0) and ha k(o), rewectively. Then the nonlinear system takes

the form

G(yn) = Y~ – Yn(o)––(hn/~l)[~(tn, yn) – Yn(o)] (2.3)

and the final correction to the Nordsieck array is

Zn = Zn(o) + [W – Yn(0)]t (2.4)

in terms of a vector of coefficients ~ = [G, ~1, .... ql(b = 1)”

Following a successful corrector iteration for yn, the local error is estimated and tested. Re-

gardless of its outcome, a change in step size is considered, either for the current step or the next

one, depending on the error test. Periodically, a change in the order q is also considered, based on

3
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estimated local errors at orders q– 1 and q + 1. The detaila of these parts of the algorithm are

given in [5].

3 Algorithmic Improvements

In the course of rewriting EPISODE and EPISODEB aa VODE, we took the opportunity to correct

some of the known deficiencies in the algorithm, and also to introduce some improvements that

have been inspired by the work of others. Below is a summary of the most significant of these

changes, as far as they have been completed. More modifications of this type are in progress or are

planned, and will be reported later.

3.1 Step/Order Resetting

At the conclusion of a successful step, VODE chooses a step size h’ and an order q’ for the next

step, step n + 1. Either or both of these may be the same aa the values h and q used for step n.

In the original EPISODE family and in LSODE, if either h or g is to be changed, the Nordsieck

array Zn is adjusted accordingly (resealed, and shortened or augmented) immediately following the

decision to make the change. If interpolated values of y(t), with t in (%-1,%), are called for and

are then computed before proceeding, these may be baaed on the wrong interpolating polynomial

and so be slightly in error, as was pointed out by Berzins [1]. On close inspection, one finds that

EPISODE commits no such error if q’ = q + 1, because the augmented column in Z~ is the zero

vector. But in the case ~ = q – 1, the interpolant is incorrect by an amount proportional to the

discarded last column h~y(~)/q!. In particular, in the case of the Adama method of any order or

the BDF method with q = 2 (~ = 1), the interpolant fails to be continuous at tn_ 1.

This error is fairly easy to correct, and it has been corrected in VODE, by postponing the

adjustment of Zn until step n + 1 is about to be taken, after any interpolations have already been

done. This entails the use of some extra flags in the internal state data, and careful logic to handle

all the combinations of cases. These include step size and/or order changes for step n + 1 forced
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by the user’s stopping conditions or a change in method parameters.

With this change, the interpolated values are guaranteed to be continuous (within roundoff

error), even in the presence of iteration error in the solution for Vn. This can be seen by writing

Zm= zn.lA + en4!.
.

and noting that by construction the vector 4 satisfies

.
f f?j(-l)j = O.
j=o

The value of the interpolant y(t~-1) obtained ikom z~ = [z:, .... ~] is

Y(%-1) = ~ +(–l)j.
j=l)

It follows that this value is the same as that gotten from zn-1 A, and this is the same as that from

Zn––1, namely yn–l. The presence of iteration error is reflected in the vector en = y~ – Y.(o) and

has no effect.

In general, the interpolant will not be C1, and we have not made an attempt to make it C1, as

was done in [1]. Interestingly, in the case of an Adams method of order q > 2, the interpol~t is

always C1, even with iteration error, by virtue of the identity

~~tj(-l)j = O.
j= 1

3.2 Initial Stepsize

In the initial version of VODE, an algorithm for selecting the initial stepsize was taken directly from

the LSODE solver. It involves only the initial conditions, and the initial slope vector YO= f(to, Ye).

Inspired by some of the work on this problem by Watts [19] and by Shampine [18], we have adopted

a new algorithm which uses somewhat more data. Both algorithms start from the following premise:

The desired initial stepsize h should satisfy
.

lJ~2Y/41wlWfs= 1, (3.1)
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where WRMS denotes the weighted root-mean-square norm,

●

with weights w; defined in terms of the relative and absolute tolerances supplied by the user, and

where the second derivative is evaluated at the initial point. The basis for this premise is that this

equation is identical to the local error test to be made at the end of the first step, except that

the second

selection is

derivative is estimated by a difference expression. The difficulty with the initial step

that the initial second derivative is not readily available.

The algorithm in LSODE (and the other ODEPACK solvers) approximates the components of

weighted first-order principal error function, (1/2) y’/ Wi, by the squares of the components of the

weighted zero-th order principal error function, yi /wi. An adjustment has to be made to protect

against the case where the initial ~ vanishes.

The algorithm in VODE, like those in [19] and [18], makes a more genuine attempt to approxi-

mate the initial second derivative vector. This involves an iteration, as follows: If a guessed value

h is available, then the initial second derivative is approximated as

Y = [f(~o + fi, w + fib) – ti]/~.

This value is inserted into equation (3.1) from the error test and that equation is solved for h. This

is the next guess.

To get an initial guess for the iteration, we form some simple lower and upper bounds.

in terms of the machine unit roundoff u and the initial output time tout, a reasonable lower

is 100 times the roundoff level in the initial time t, or

h~ = 100umax{[tOl, Itoutl}.

For an upper bound, we first take a fraction of the first output interval,

hu = 0.1 \tOut– tel.

6
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Then we reduce this value, if necessary, to guarantee that for every i = 1,..., N the corresponding

than ge in yi is not very large in either relative or absolute terms. Specifically we guarantee that

hu satisfies

hu[y~l <0.1 Iy; l + ATOLi,

where ATOL is the input absolute tolerance array (or scalar). The initial guess for the iteration is

taken = the geometric mean

h = (h~hu)l?

The convergence test on the iteration is quite loose, since we only need a crude approximation

to the largest stepsize permissible on the first step. Thus we stop iterating if the new and previous

values of h differ by less than a factor of 2. A maximum of 4 iterations is allowed. In the tests,

no more that 2 have ever been observed. A few special situations are handled separately (such as

when h~ > hu or the norm of y is very small), and the proper sign is attached to h at the end of

the algorithm.

3.3 Jacobian Saving

We have added to VODE a device that has been used by several other authors of ODE solvers,

which greatly improves its efficiency on many, if not most, stiff problems. This is an algorithm for

saving and reusing the Jacobian matrix J, as it occurs in the Newton matrix P = 1 – qJ (1 is the

identity matrix and 7 is the scalar hn/f?l ). In the form used in VODE, this algorithm is essentially

the same as what is used in LSODES, the sparse Jacobian variant of LSODE. There the matrix P

and its LU factorization are necessarily stored separately, and so it is natural to reuse an old value

of P rather than recalculate it, if circumstances warrant this. A very similar algorithm is described

in [8] and [17].

In both LSODES and VODE, a decision is made at the start of the step as to whether or not to

update and refactor P. A decision to update may result from the step count (first step, or 20 steps

7



taken since the last update), the change in 7 (by 30% or more), or by a failure of the corrector

iteration to converge on a previous attempt at the current step. If the decision is made to update,

then a saved value of J is used instead of recalculating it, if either

(a) no convergence failure occurred on this step and J is less than 50 steps old, or

.

.

(b) a convergence failure occurred with an old J and the relative change in 7 since the last update

to P exceeds 0.2.

In both cases, the idea is to isolate the situations in which P requires updating because of changes

in -y and not changes in J.

This feature in VODE differs from the corresponding feature of LSODES in two ways. First, the

VODE version is simpler, in that it saves J directly, whereas LSODES saves P and must recover

a new value ~ = 1 – ~J from an old value P = 1 – 7J (with careful consideration of roundoff

effects). Secondly, VODE requires considerable extra storage for this feature, for the saved copy of

J as well as the factors of P, whereas LSODES must separately store the two sparse matrix arrays

anyway. A user with a large problem (even with an ordering that gives a minimal bandwith), may

well be unable to tiord that extra storage without expensive overhead. For this reason, VODE

provides an option to suppress the J-saving feature, i.e. to force an evaluation of J whenever the

decision is made to update P, and to overwrite P on J (and the factors of P on P).

3.4 Linear System Relaxation For Stiff Systems

When the ODE problem is stiff, the nonlinear system (2.3) typically must be solved using a modified

Newton iteration. In this subsection, we discuss a relaxation idea due independently to Petzold

[16] and Burrage et al. [3] for speeding up the convergence of the nonlinear iteration. From (2.3),

the nonlinear system has the general form

G(y) = y+ a– Vf(t,y), (3.2)

8



where 7 = hn/tl, a = Yn[o) – 7Y40) and ~ = %. The Newton iteration with relaxation has the form

solve Fs(m) = –cG(Yn(~)), ~ = o 12
9 9 9“””

Set Y.(m+I) = Y.(m) + s(m),
(3.3)

where c is a scalar to be defined below, and ~ is an approximation to the Newton matrix

P = I – 7J(t, ynto)), with J(t, y) = #(t, y).

Typically, ~ = 1 – ~~, where $ and ~ are close to 7 and J, respectively.

The iteration (3.3) will converge (under suitable conditions on G) if

p(~– cP-@) <1,

and the initial guess yn(o) is close enough to a root of (3.2). Here P(A) denotes the spectral radius

of a matrix A. The modified Newton iteration (3.3) normally converges at a linear rate, with

p(l – c~–l P) an estimate of the rate constant for the iteration. Thus, one would like to choose

the scalar c so that it solves the minimization problem

mi:p(l – CWP).

Since this is impractical in the general setting, we choose c to solve the following more tractable

problem. Suppose ~(t, y) = Ay for a matrix A whose eigenvalues all have negative real part. In

this case, P = I – 7A and ~ = 1 – 3A. If J is an eigenvalue of A, then

i=l-d~
/9-A

is an eigenvalue of 1 – c~–l P, letting d ‘= c(7/?)~ P = 1/7 and ~ = 1/$. In general, We dO not

know the eigenvalues of A, so we choose d to minimize

max
Re(A)<O

~_d/?-A

j-A

The solution of this problem is given by

d== d’ - 2/(1+$,

9
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which then gives the optimal value for c as

(3.4)

*

Note that when -y = ~ we have c = 1. Thus, c attempts to speed up the convergence only when

the iteration is using an old Newton matrix approximation from a previous step.

4 A Fixed-Leading-Coefficient Variant

In this section, we discuss the fixed-leading-coefficient (FLC) form of the BDF methods and the

relevant details of implementing them in the VODE solver. We have based our FLC solver on the

work of Jackson and Sacks-Davis [15]. To be consistent with the fully variable-coefficient (VC)

implementation already in VODE, we will use a Nordsieck form of the FLC methods. We first

describe the FLC method formulas, and then discuss the necessary modifications to VODE for the

FLC variant.

In the FLC methods, the prediction stage is based on the polynomial w;(t) of degree q or less

that satisfies

W; (t~.j)= !/n-i, (~=l,’””, q)

(.J:(tn_J= fn–l,

N for each i and ~n-l = j(t~–1, Yn–1where yn–i E R ). Note that@(t) satisfies the same interpo-

lator conditions as that for the VC methods. However, the interpolator conditions for the FLC

corrector polynomial differ from those satisfied by the VC corrector. The FLC corrector w:(t) of

degree q satisfies the g + 2 conditions
.

w: (tn)= yn

d: (tn)= fn

W:(tn–ihn) =w:(tn–ihn), (i= l,”” ”,q),

10
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where hn = tn – tn–l. Thus, the FLC corrector w:(t) interpolates ~(t) at evenly spaced past

points rather than interpolating the computed values {yn–i } at the grid points {tn-i } as the VC

corrector does.

The predicted values are given by

Yn(o) = & (GJandYn(o) = L(o) = % (La)”

Using the above formulas, one can derive the relationship

CYo(yn – yn(o))+ hn (fn – fn(q) = o, (4.1)

where CYO= – z~=l l/~. Equation (4.1) can be further reduced to the form

This last equation differs from the analogous relationship for the VC methods in that the leading

coefficient CYodepends only on the order q, and not upon the previous grid points tn+.

The Nordsieck history array z. is the same as that given in (2.1), with the prediction found

using (2.2). TO obtain Zn from z.(o), one uses the analogous formula for the VC methods, namely

(2.4). However, the components of the row vector 4 in the FLC version of (2.4) are different than

those in the VC methods. In particular, 11 = –q for the FLC methods, and depends only on the

method order and not upon the previous grid points &i as in the VC methods. & a result, the

Jacobian matrix P = 1 – 7J in the Newton iteration should change less with stepsize changes than

in the VC formulas. Thus, the FLC methods have the potential to be more efficient in terms of

Jacobian evaluations and factorization than the VC methods on problems for which the stepsize

varies smoothly,

GEAR.

i.e. that class of problems for which the solver EPISODE is less efficient than

When the order of the method is changed, the history array z. must be adjusted. A decrease

in order is handled in exactly the same way as for the VC methods. The array z. must be modified

11



to become an array z; which is based on the polynomial w~+l (t) of degree q – 1 which is defined

by

4+l(~n-i) = %-i, (i= 0)””“,9-4

w+,(%) = L.
.

This amounts to adding scalar multiples of the last column of Zn to itself, and can be written in

.
the form

where d is a row vector of the form d = [d., dl, d2, -”. ,4-1], with da = dl = O and a is the Z.

array minus its last column.

An order increase for the FLC methods also requires a modification of the

that for the VC methods. In this case, Z. must be modified to become an array

Zn array, unlike

z; based on the

polynomial w~+l (t) of degree q + 1 defined by

‘;+l(tn-~) = Yn-~, (i= 0,.”. ,9)

~~+~(tn) = ~n.

This can be accomplished in a way similar to the order decrease, and is given by

where ,?n = [zn, O] and the

See [15] for more details.

row vector c is of the form c = [CO,cl, C2,s”. ,Cq+l],with co = c1 = O.

5 Numerical Tests

The variable-coefficient solver VODE as described above was tested on several problems, of which

two are given here. As mentioned in the Introduction, VODE was written according to the standard

ODEPACK [10] interface, and its overall structure is similar to that of LSODE [11]. So we will

12
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forego a detailed presentation of the solver and its usage. We have also implemented a second

version of the VODE solver which uses the fixed-leading-coefficient form of the BDF methods.

This version will be referred to as VODE-FLC.

Since both the linear system scaling and new initial h modifications were overall beneficial

in improving the efficiency of the solver, we have elected not to specifically present test results

regarding these enhancements. However, since the J-saving strategy is a user controllable option,

the test results presented

both problems considered

below will compare its effect on the solution of the test problems. For

below, we compare statistics for LSODE, VODE and VODE-FLC (with

and without the J-saving strategy).

One important aspect of the implementation of the

of VODE is algorithmic tuning. For this. preliminary

VC and FLC methods in the two versions

study, we have elected to use the tuning

recommended in [14] for VODE, and that used by Jackson and Sacks-Davis in [15] for VODEFLC.

Further testing may indicate modifications of these recommendations.

In the tables below, the following performance statistics will be helpful in comparing the indi-

vidual solvers:

. NST = number of time steps

● NFE = number of ~ evaluations

. NJE = number of J evaulations

● NLU = number of LU factorization of P = 1 – qJ

● R.T. = run time (in seconds) on a Cray-1.

13



5.1 Test Problem 1

.

Our first test problem is one that was used in [7]. It is a system derived from a 1-D diurnal

kinetics-diffusion PDE system with two species. The PDEs have the form

C3ci (3

[1

ac~

z=% w= +Ri(cl, c2, t) (i= 1,2),

K(z) = 10-8e@ ,

‘ 2~)= +c’ -IF(C ,C , k2c1c2 + k3(t) “7.4 “1016+ &(t)C2,

1 2t)= klclP(C ,C , – k2c1c2 – k4(t)c2,

kl = 6.031, k2 = 4.66 “10-16,

{

exp[–22.62/ sin(wt)], for sin(wt) >0,
ks(t) = o, for sin(d) <0,

{

exp[–7.601/ sin(wt)], for sin(wt) >0,
h(~) = 0, for sin(wt) <0,

w = x/43200,”

with 30 < z < 50 km, O < t < 432000 seconds (5 days), and are discretized by finite differencing on

a mesh of size 50. Homogeneous Neumann boundary conditions are used with polynomial initial

conditions. See [7] for complete details on the problem definition and a discussion of the physical

aspects.

The results of solving this problem using all three solvers are given in Table 5.1. The method

flag MF in the table is an input for all three solvers. It indicates which ODE method is used, if

the Jacobian matrix is treated as a dense or banded matrix, and whether or not the Jacobian is

obtained by finite differences or analytically. The value IMFI = 25 means that the solver uses a

stiff method, the Jacobian is banded, and it is obtained by finite differencing. A positive MF value

means that the J-saving strategy is used, while a negative value means it is not. The RTOL value is

the user-specified relative error tolerance. The absolute error tolerance ATOL is then 100* RTOL.

From the table, it is immediately apparent that the J-saving strategy is very beneficial on this



.

*

Solver RTOL MF NST NFE NJE NLU R.T.
VODE 10-3 -25 644 2322 236 236 2.27
VODE 10-3 25 696 1406 19 275 1.95

I

VODE 10-5 -25 1126 3552 298 298 3.59
VODE 10-5 25 1122 2207 26 298 2.90

VODE-FLC

VODE-FLC :;::
-25 731 2131 207 207 2.13
25 835 1377 25 224 1.90

VODE-FLC 10-5 -25 1211 3093 271 271 3.17
VODE-FLC 10-5 25 1252 2007 32 286 2.76

LSODE 10-3 25 622 1875 185 185 1.88
LSODE 10-5 25 2050 5511 470 470 5.64

Table 5.1: Results for Test Problem 1

problem in reducing the number of J evaluations, at the cost of a somewhat higher number of LU

factorization. Both versions of VODE are more efficient in terms of run time than LSODE at

the tighter tolerance, while remaining competitive for the looser tolerance. The VODE-FLC is the

overall winner with a 51% decrease in run time over LSODE for the tight tolerance, although in

general VODE-FLC takes slightly more steps per run.

5.2 Test Problem 2

This second test problem is a 2-D veraion of the first one, and was also used in [7]. The PDEs have

the form

aci a2ci 8 [1 32—=Kh~+~
at L(z)~ + R“(cl, c2, t) (i= 1,2),

Kh = 4 x 10-6, and K“ (z) = 10-8e=j5,

with O < z < 20, 30< z < 50 km, O < t < 86400 seconds (1 day), and the other terms defined as in

the first problem. We discretize the PDEs on a uniform mesh of size 20 x 20, and use homogeneous

Neumann boundary conditions and polynomial initial conditions. Again, see [7] for further details.

The results for this problem are given in Table 5.2. Here, the additional MF values of +24

correspond to a banded Jacobian obtained analytically. The RTOL and ATOL values are the same
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Solver RTOL MF NST NFE NJE NLU R.T.
VODE 10-3 -24 183 320 63 63 11.23
VODE 10-3 24 185 323 4 63 11.19
VODE 10-3 -25 183 5423 63 63 25.11
VODE 10-3 25 185 647 4 63 12.07
VODE 10-5 -24 331 589 103 103 19.04
VODE 10--5 24 I 320 578 I 7 108 19.40
VODE I 10-5 I -25 I 331 8932 I 103 103 41.86
VODE 10-5 25 320 1145 7 108 21.08

VODEFLC 10-3 -24 230 307 50 50 9.43
VODEFLC 10-3 24 232 326 6 53 10.04
VODEFLC 10-3 -25 230 4357 50 50 20.56
VODEFLC 10-3 25 232 812 6 53 11.38
VODEFLC 10-5 -24 339 461 70 70 13.69
VODEFLC 10-5 24 342 469 7 73 14.14
VODEFLC 10-5 -25 353 6226 71 71 29.69
VODEFLC 10-5 25 375 1096 7 80 17.25

LSODE 10-3 24 223 325 51 51 10.40

LSODE I 10-3 I 25 I 248 I 5480 I 63 I 63 i 29:64-
LSODE 10-5 24 482 708 98 98 20.99

LSODE 10-5 25 481 8323 94 94 46.04

Table 5.2: Results for Test Problem 2

as used in the first problem. The values of NFE and R.T. in the case MF = +25 are also shown

in the bar charts in Figure 5.1. It is clear that the J-saving strategy is also beneficial in reducing

J evaluations and overall work for this problem. In addition, VODE and VODE-FLC are both

more efficient than LSODE on this problem, with the biggest reductions in run time occuring when

MF = 25 for LSODE and VODEFLC. At the tighter tolerance, the run time is reduced by 63%!.

6 Conclusion

We believe that VODE accomplishes the objective of incorporating the ODE methods used in

EPISODE and EPISODEB in a flexible solver package that conforms to the ODEPACK structure.

More than that, it improves on the older codes in several ways, and includes some features that
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2-D Diurnal Kinetics Diffusion
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DRTOL ~ 1oE-3 E#4!4RT0L ‘ 1oE-5

ATOL = RTOL * 100, BDF, DD J

Figure 5.1: NFE and R.T. for Test Problem 2 (Difference-Quotient J)
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enhance its efficiency, in some cases by a considerable amount. The relative speedup resulting from

Jacobian-saving can increase dramatically as the cost of evaluating ~ and J increases, especially

when J ia obtained by difference quotients. The new initial step algorithm and the linear system

relaxation each contribute a modest additional gain in speed.

The relative merits of LSODE, VODE, and the FLC variant of VODE are not entirely clear at

this time. It seems to remain true (as for EPISODE vs GEAR) that on smooth problems, LSODE

may be more efficient than VODE (either version). This can be attributed mainly to the impact

of variable coefficients on the Newton matrix. On the other hand, the greater efficiency of VODE

on many nonsmooth problems gives justification to the variable-coefficient methods. Furthermore,

the FLC version of VODE seems to reduce the gap between VODE and LSOI)E on the smooth

problems, while retaining the advantage for nonsmooth problems. More confident overall statements

of this sort will have to await further refinement and broader testing.

Several further developments are planned for VODE. One is to improve the order selection to

make it more reliable in the presence of large imaginary parts in the problem spectrum. Another

is to study various heuristic (or tuning) issues and consider changes to these. Another is the

development of a variant that includes preconditioned Krylov iteration methods for the algebraic

system problem, in analogy with the LSODPK variant of LSODE [2].
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