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Abstract  

The influence of convection on the concentration field in front of a growing 

rod eutectic was determined numerically for eutectic compositions of We = 0.1 

and We = 0.05. The change in spacing X between the rods with increasing in- 

tensities of convection was calculated assuming the eutectic grows at minimum 

interfacial undercooling. The spacing increases more or less linearly with the 

intensity of stirring. 
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B.l Introduction 

Composites offer the unique advantage of being able to combine the properties of 

different components into one material. In-situ composites obtained by directional 

solidification of eutectics possess a high degree of thermal stability and strengths 

greater than their individual components. 

Convection plays a significant role in determining the eutectic microstructure. 

MnBi-Bi [1,2] and InSb-NiSb [3] eutectics solidified in space showed a decreased 

spacing between the rods compared to earth processed samples grown at  identical 

growth rates. Prior theoretical work on the effect of convection on the growth of 

lamellar eutectics predicted that the spacing between the lamellae increases with 

increasing convection [4,5]. Here we describe a three-dimensional model for the 

influence of convection on the microstructure of rod eutectics. 

B.2 Model 

The structure of a rod eutectic viewed normal to its interface is shown in figure 1. 

The rods are placed on the corners of a hexagon as assumed by Jackson and Hunt 

[6]. The computational domain is also shown. The domain is chosen to represent 

the smallest region which satisfies a periodicity condition. 

Certain simplifying assumptions are made to reduce computational difficulties. 

It is assumed that the rods have a square cross-section. This facilitates the use of 

Cartesian coordinates to  model the problem. Also, as in all prior theoretical work, 

it is implicitly assumed that the volumetric properties are the same in all the three 

phases. This results in the same numerical values for mass fraction, volume fraction 

and mole fraction. The interface is assumed to be planar. 
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The effect of convection is modelled by assuming a transverse flow U across 

the interface with a constant velocity gradient Gu=du/dy over the computational 

domain of interest. The direction of the velocity U and the domain are shown in 

figure 2. 

Using the symbols defined at the end of the paper, the differential equation 

for continuity of mass at steady-state is 

a2W a2W a2W V a W  GuZaW -+-+-+ ----- = 
3 9  ay2 az2 D az  D a x  

The boundary conditions are: 

at z = X/2, where X is the spacing between the rods, W = We (B.2) 

at z = 0, and over the a phase, D(dW/dz) = -V(Wi - W,") (B-3) 

at z = 0, and over the p phase, D(dW/dz) = -V(Wi - Wf) P . 4 )  

Higher values of z were tried for the far field boundary condition. With a= A, W 

changed only in the 5'" decimal place after z= X/2, and so we decided to use z= X/2 

for the far field boundary condition. 

The computational domain represents a small section of a periodic array of 

rods. Thus it is assumed that the composition field repeats itself periodically in 

both the x and y directions, 

and 

We assume negligible solid solubility and hence W r  = 1.0 and Wf = 0.0. The 

differential equation is non-dimensionalized 
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two for a fixed eutectic composition. The scaling variables are similar to that used 

by Baskaran and Wilcox [4], X = z/X and Y = y/X. The non-dimensional equation 

is 

a2w a2w a2w aw dW - +~----rz--=o az dX axz ay2 az2 t-+- 

where A = XV/D is a rod spacing based Peclet number and I' = GuX2/D is the di- 

mensionless convective velocity gradient at the interface. The boundary conditions 

are: 

at Z = 112, W = We 

at Z = 0, over the a phase, D(dW/dZ) = AWi 

at Z = 0, over the p phase, D(dW/dZ) = A(Wi - 1) 

and the periodicity conditions in the x and y directions, 

wx=o = wx=1 

WY=O = wy=,, 

(B. l l )  

(B.12) 

A central finite difference method is used to solve the differential equation. A 

variable mesh size is used in the x and y directions. This is necessary to  ensure that 

the phase boundaries coincide with a mesh line. This enables taking care of the 

mathematical singularity that arises at the three phase junctions. The composition 

of the solid phase at  the phase boundary is taken to be an average composition of 

the a and p phases. 

The parameter of importance to fiber spacing is the average concentration of 

the interfacial liquid over each of the solid phases. Numerically this is done by 

averaging the concentration at a mesh point over an area formed by traveling half 

the grid space in the x and y directions. The average concentration over the entire 

a and p phases is then calculated. 
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B.3 Results 

A plot of the computed isoconcentration lines at the interface for an eutectic compo- 

sition of We = 0.1 growing without the disturbing influence of convection is shown 

in figure 3a. The rods appear rectangular in these plots due to the unequal scales 

for the axes. Convection distorts the contours and the effect of convection with an 

intensity r = 250 is shown in figure 3b. The corresponding isoconcentration lines 

for an eutectic composition of We = 0.05 is shown in figures 4a and 4b. 

To account for the influence of convection on the spacing between the rods, 

Jackson and Hunt's [6] analysis is modified to  include a perturbation in the concen- 

tration field A due to convection. Thus the perturbation in the concentration field 

in the a and /3 phases are, 

.r 
I 

In the absence of convection the deviation of the average interfacial composition 

from the eutectic is proportional to A = XV/D, 

(Wi, - We)o = AaA (B.15) 

The values of A, and AB from the analytical solution of Jackson and Hunt [6] for 

circular rods are: 

A, = 2M 

1 O0 J:(nn(l - where M = E( 
n=l J8 (nn) 

(B.17) 

(B.18) 

(B.19) 
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In the above equation Jo and Jl are Bessel functions. 

Further analysis is similar to that developed by Baskaran and Wilcox [4] for 

lamellar eutectics. Numerical results show that A is independent of A Thus 

A = Af(r) (B.20) 

The numerical solution for r = 0 (no convection) and A = 0.05 was compared 

with the analytical solution. The average concentration over the a! phase (rods) for 

an eutectic composition of We = 0.1 was calculated to be 0.10049 which compares 

well with the analytical solution of = 0.10025, an error of 0.2%. The calculated 

average concentration over the p phase (matrix) is 0.09577 compared to the ana- 

lytical solution of wip = 0.09775, an error of 2%. The average composition for the 

other eutectic composition investigated, We = 0.05, is also very nearly identical to 

that calculated analytically. The difference between the calculated and analytical 

values of deviation from the eutectic composition, (w; - We) is high. For We = 0.1 

the calculated value of the deviation from the eutectic composition over the or phase 

is 0.00049 and the analytical value is 0.00025. Over the p phase the values of the 

calculated and analytical deviations from the average compositions are 0.00423 and 

0.00225 respectively. This deviation from the analytical results is due to 1) assum- 

ing a square cross-section of the rods and 2) placing the rods on the corners of a 

hexagon rather than on a circle as done by Jackson and Hunt 161. 

The change in undercooling with increasing convection was calculated using 

equation 14 in Chandrasekhar et a1.8 paper [SI. The result is shown in figure 5. A 

least squares fit yields for We = 0.1: 

g/2 = 1 - o.ooo583rO, r2 = 0.999 

and for We = 0.05 

(B.21) 
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g/2 = 1 - 0.0004I',, r2 = 0.998 (B.22) 

where r is the correlation coefficient. 

The effect of convection on spacing is calculated using equation 21 from Baskaran 

and Wilcox's paper [4]. The result is shown in figure 6. A least square fit yields for 

we = 0.1: 

A/Ao = 1 + o.oo2404r0, r2 = 0.999 (B.23) 

and for We = 0.05, 

A/x, = 1 + o.ooimr,, r2 = 0.997 (B.24) 

It is interesting to compare the results of this computation with those of our 

earlier work [5 ]  for lamellar eutectics. The spacing between lamellae for eutectic 

compositions of 0.30 and 0.50 increases with the square of the stirring intensity. For 

an eutectic composition of 0.10 the change in spacing of lamellae is given by [5 ] :  

x/x, = 1 + 8.9 x 1 0 - 4 r y 2  (B.25) 

The change in spacing for a rod eutectic of the same composition, We = 0.1, is given 

by equation (23). A comparison is shown in figure 7.The change in spacing is less 

for rod eutectics than for the lamellar eutectics for a given value of I?,. 

An important motivation for this work was to estimate the effect of natural 

convection on spacing of rod eutectics. The value of I', computed for a typical 

experimental set-up [7] is 6.5 x For this value of I?,, X x A,. Thus natural 

convection is not predicted to change the spacing by perturbing the concentration 

field ahead of the growing eutectic interface. 
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B.4 Conclusions 

1. The spacing between the rods increases with an increase in convection. 

2. The effect of convection on spacing decreases with decrease in the eutectic 

composition. 
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Nomenclature 

la . 

I - Aa,AB - 

D =  

Gu = 

*a,rp = 

u =  
v =  
w =  
we = 

wi = 

wi = 

w; = 

wf = 

X,Y = 

X,Y = 

z =  

z =  
r =  
ro = 

A, = 

A =  

A =  

Constants 

Diffusion Coefficient in the melt (m2/s )  

Gradient of transverse velocity neaz interface (du/dz) ,  (s-l 

Radius of the CY and p phases respectively, defined by [6] (m) 

Melt velocity parallel to the interface (m/s) 

Freezing Rate (m/s) 

Mass fraction of component A in the melt 

Eutectic mass fraction 

Interfacial melt composition 

Average interfacial melt composition 

Composition of the CY phase (the rods, assumed 1.0 here) 

Composition of the ,d phase (the matrix, assumed 0.0 here) 

Distances along the solid interface (m) 

Dimensionless distances along the solid interface, x/X and y/X 

Distance into the melt from the interface (m) 

Dimensionless distance into the melt from the interface, z/X 

GuX2/D, Dimensionless convective velocity at the interface 

GuX:/D 

Value of X at Gu=O 

Spacing between the rods (m) 

XV/D Freezing rate based Peclet number 
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List of figures 

0 Figure 1: A rod eutectic structure viewed normal to the freezing interface. 

The smallest region satisfying the periodicity condition is shown by the dotted 

lines. The arrow on the left indicates the direction of the convective velocity. 

0 Figure 2: a) Computational domain viewed normal to the rod eutectic inter- 

face. The rod cross sections are approximated by squares. The convective 

flow is shown on the left. 

0 b) The three dimensional domain modelled. The crystallization flow is parallel 

to the z-axis and flows in a direction opposite to it. The convective flow is 

parallel to the x-axis and flows in the same direction as it. 

0 Figure 3: a) Computed isoconcentration lines in the melt at the interface 

of the eutectic growing without convection. Here We = 0.1, I' = 0.0, and 

N=0.05. 

0 b) Computed isoconcentration lines in the melt at the interface of the eutectic 

with convection from left to right. Here We = 0.1, I' = 250, and N=0.05. 

0 Figure 4: a) Computed isoconcentration lines in the melt at the interface 

of the eutectic growing without convection. Here We = 0.05, I' = 0.0, and 

N=0.05. 

0 b) Computed isoconcentration lines in the melt at the interface of the eutectic 

with convection from left to right. Here We = 0.05 I' = 250, and N=0.05. 

0 Figure 5: The ratio of the rod spacing with convection to that without con- 

vection, X/X,, versus I', = r / ( A / A , ) 2 ,  where I', is the dimensionles velocity 

gradient at the interface. 
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0 Figure 6: The ratio of the minimum undercooling with convection to that 

without convection, g/2, versus r o  = r / (A /Ao)2 .  

0 Figure 7: The ratio of rod or lamellar spacing with convection to that without 

convection, A/A,, versus ro = r / ( A / A o ) 2 .  
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