Written comments submitted to the SACATM meeting March 10-11, 2004

Acute eye irritation assay using *in vitro* reconstituted human corneal epithelium (HCE model)

Current industrial use of reconstituted human corneal epithelium (HCE model) for the *in vitro* determination of the eye irritation potential of finished products and chemicals as alternative method to the Draize eye test.

Content:

Introduction

- 1. In vitro reconstituted human corneal epithelium
- 2. Test method principle
- 3. Detailed assay procedure
- 4. Results for finished products
- 5. Results for chemicals
- 6. Scientific references
- 7. Industrial contacts

February 26, 2004

1

S K I N E T H I C

Tissue Culture Laboratories

Introduction

This report summarizes a part of the current industrial usage of the SkinEthic in *vitro* reconstituted human corneal epithelium (HCE model) for the prediction of eye irritation of finished products and chemicals as alternative method to the Draize eye irritation test.

The test method principle (based on Multiple Endpoint Analysis MEA) as well as a detailed assay procedure are provided. *In vitro-in vivo* correlation analysis (and development of the prediction model) is being performed internally by each laboratory.

The number of available *in vitro* data is presented separately for finished products (Table 1) and chemicals (Table 2). Some of the data provided are proprietory and confidential and not yet published in literature. However all laboratories cited are willing to provided internal *in vitro* vs. *in vivo* results if ICCVAM review is required. A contact name for each laboratory is listed at the end of the report.

When cultivated at the air-liquid interface in chemically defined medium, the transformed human corneal epithelial cells of the cell line HCE (LSU Eye Centre, New Orleans, USA) form a corneal epithelial tissue (mucosa), devoid of stratum corneum, resembling ultra-structurally (tissue morphology and thickness) the corneal mucosa of the human eye (Figure 1,2). [10, 17].

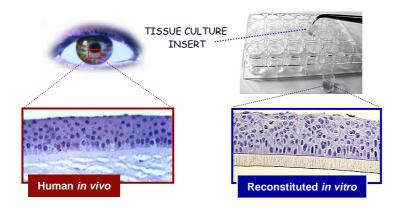


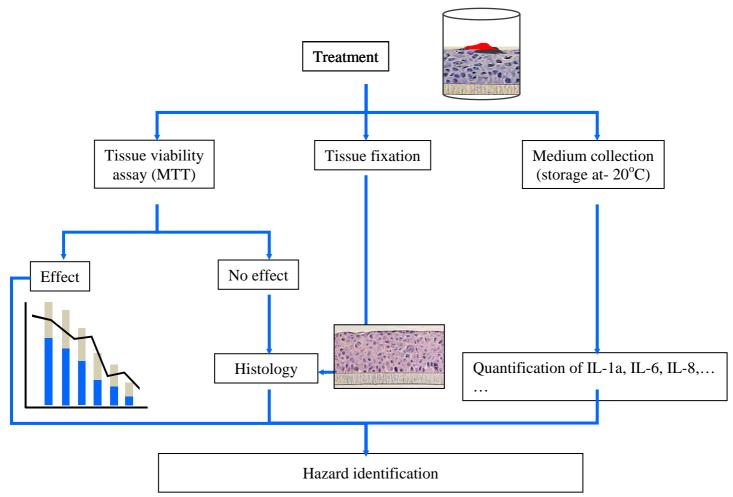
Figure. 1: Transversal section of human corneal epithelium *in vivo* (left), and reconstituted *in vitro* on a polycarbonate membrane in tissue culture inserts (right).



Figure 2. Ultra-structural results show that the *in vitro* 3D tissue (right) resembles normal *in vivo* corneal epithelium (left) featuring the typical presence of a columnar basal cell layer, 2-3 layers of transitional wing cells, and 2-3 layers of superficial squamous cells.

Recent results also indicate that the *in vitro* tissue constructs secrete the same mucins that are being found in the human cornea *in vivo* (Berry et al, personal communications, [15]).

2. Test method principle


Triplicate in vitro reconstituted human corneal epithelial tissues (size 0.5 cm²) are dosed topically with a small amount of test agent for different time points:

- For finished products, tissues are dosed for 10 minutes, 1 hour, 3 hours and 24 hours.
- For chemicals, tissues are dosed for 5, 10, and 60 minutes.

Negative control (phosphate-buffered saline solution) as well as positive controls (SDS 0.5% and SDS 1%) are run in parallel.

At each time point, duplicate tissues are assessed for tissue viability (MTT assay), and one culture is fixed in a balanced 10% formalin solution for histological analysis, which is performed when the MTT assay data show no tissue toxicity. Additionally, the culture media underneath the tissues is being stored at -20°C for pro-inflammatory mediator analysis (IL-1a, Il-6, IL-8, amongst others).

Schematic representation of the MEA protocol principle:

Web Site: http://www.skinethic.com

3. Detailed assay procedure

Test method:

 $30 \,\mu l$ of each product (and controls) is deposited onto the surface of each of 12 equivalent cultures. The cultures are incubated at 37° C for 10 minutes, 1 hour, 3 hours and 24 hours for testing finished products, or 5, 10 and 60 minutes for testing chemicals.

Evaluation of cell viability:

For each of the tested products or controls, and for each time point, two treated cultures are rinsed with PBS and placed on 300 µl of 0,5 mg/ml MTT.

- <u>Qualitative</u> evaluation of cell viability: After a 30 minutes incubation at room temperature, the color of each culture is noted: Negative control cultures have to be of dark blue color, proof of the cell's viability. Positive control cultures have to be blue/white or white, evidence of cell death.
- Quantitative evaluation of cell viability: After 3 hours incubation on 300 μ l of 0.5 mg/ml MTT at 37°C., 5% C0₂, cultures is placed in 1.5 ml of isopropanol. Extraction is performed at room temperature, for a minimum of 2 hours, by gentle shaking. Optical density is measured on 200 μ l of extracts at 570 nm (reference filter: 690 nm). Results are expressed as percentage of viability compared to negative control (mean +/- SD of duplicate cultures):

% Viability = [OD(570nm - 690 nm) test product / OD(570nm - 690 nm) negative control)] x 100

Histology:

For each of the tested products or controls, at the end of each test period, one culture is fixed in a balanced 10% formalin solution and later embedded in paraffin. Four micron vertical sections are stained with hematoxylin/eosin, and photographed under a microscope.

- Histo-pathologic interpretation: Negative control cultures: The corneal epithelial tissues must have a constant thickness (corresponding to internal QC control sections), devoid of terminally differentiated cells, and a regular and compact shape. Cells are attached to the others via multiple desmosomes. Positive control cultures: Most of the upper cell-layers of the epithelial tissues must be disintegrated, and the remaining basal cells loosely attached to the polycarbonate substratum.

Release of inflammatory mediators:

After topical application of the test products, conditioned media underneath triplicate corneal tissues are collected and kept frozen at -20° C. for inflammatory mediator quantification (IL-1a, IL-6 and IL-8, using ELISA kits; IL-1a kit: R&D Systems, UK Cat # DLA50; IL-6 kit: R&D Systems, UK Cat # D6050; IL-8 kit: R&D Systems, UK Cat # 8050), amongst others.

4. Results for finished products

Table 1: Number of finished products tested in each laboratory.

Company	In vitro	Rabbit	Human	References	Comments
		(Draize)	(Clinical)		
Clarins, France	400	-	some	-	(1)
Lancaster-Coty, Monaco	187	187	1	[1,2,3,5,19]	(2)
AFSSAPS, France	149	149	-	[9]	(3)
LVMH, France	82	-	82	[4,14]	(4)
Avon Products, USA	20	1	10	[20]	(5)
VitroScreen, Italy	50	-	10	[6]	
Alberto Culver, USA	12	12			
Total	900	348	102		

^{(1):} No animal data, some clinical data available.

5. Results for chemical raw materials

Table 2: Number of chemicals tested in each laboratory.

Company	In vitro	Rabbit	Human	Reference	Comments
		(Draize)	(Clinical)	S	
Lancaster-Coty, Monaco	48	48	-	[19]	(1)
Unilever, UK	8	8	-	[7]	(2)
Vitroscreen, Italy	20	20	-	-	
Novozymes, Denmark	18	18	-	[8]	(3)
SkinEthic Labs., France	22	22	-	[11,13]	(4)
Univ. of New Orleans, USA	1	1	1	[10,18]	(5)
Prevalidation multi-center:	25	25	-	[12,15]	(6)
- J&J PRD, Belgium					
- Pfizer R&D, France					
- Novartis, Switzerland					
- SkinEthic Labs., France					
Multi-center validation:	21	21	-	[21]	(7)
-GSK/ SafePharm, UK					
- SkinEthic Labs., France					
Total	163	163	1		_

^{(2):} Data on 40 materials are published; the remaining will be published peer-reviewed later this year. Parts of the data is available for ICCVAM review on demand.

^{(3):} AFSSAPS is a department of the French Ministry of Health.

^{(4):} All 82 products were evaluated clinically in humans.

^{(5):} Avon has a large internal data base (400 formulations) tested in other ocular tissue models.

S K I N E T H I C Tissue Culture Laboratories

- (1): Data is will be published peer-reviewed later this year. Parts of the data is available for ICCVAM review on demand.
- (2): Evidence of in vitro corneal recovery was observed with slight to mild irritants.
- (3): Test substances are enzymes.
- (4): Data include in vitro corneal recovery study on 19 ECETOC chemical raw materials.
- (5): Benzalkonium chloride was studied at different concentrations.
- (6): 20 liquids and 5 solids were tested in 4 laboratories. The data is currently undergoing independent statistical analysis.
- (7): 21 chemicals were tested in 2 labs. The data is currently undergoing independent statistical analysis.

6. Scientific references

- 1. A new in vitro human epithelium model for assessing the eye irritation potential of formulated cosmetic products. Doucet O., Lanvin M., and Zastrow L. Lancaster Group-Coty International Research Center, Monaco. In Vitro and Molecular Toxicology., vol. 11, n°4, p. 273-283, 1998. E-mail: mylene_lanvin@cotyinc.com
- 2. Comparison of three in vitro methods for the assessment of the eye irritation potential of formulated products. Doucet O., Lanvin M., and Zastrow L. Lancaster Group-Coty International Research, Monaco. In Vitro and Molecular Toxicology., vol. 12, n°2, p. 63-76, 1999. E-mail: mylene_lanvin@cotyinc.com
- 3. Assessment of the eye irritation potential of cosmetic products by using reconstituted human epithelial cultures: intralaboratory validation and refinements. Doucet O., Lanvin M., and Zastrow L. Lancaster Group-Coty International Research, Monaco. In ATLA, vol. 27, special issue, p. 345, 1999. E-mail: mylene_lanvin@cotyinc.com
- 4. The use of alternative methods and clinical tests in the ocular risk assessment of cosmetic formulations. P. Courtellemont, M. Pannetier, P. Perrier and M. Pericoi. In: Clarck DG., Lisansky SG; MacMillan R (Eds.), Alternatives to Animal Testing II; CPL Press, 1999. E-mail: pcourtellemont@diormail.com
- 5. Characterisation of the barrier function, the hydration, the pH offered by 3D-human epithelial cultures from foreskin, corneal, buccal and vaginal cells. O. Doucet (1), N. Garcia (1), M. Bayer (1), D. Fouchard (1), L. Zastrow (1), J.P. Marty (2): (1) Lancaster Coty, International Research Center, Monaco (2) Laboratoire de Dermo-Pharmacologie, Faculté de Pharmacie, Chatenay-Malabry, France. Perspectives in Percutaneous Penetration (PPP), 7th International Conference (La Grande Motte, France 25-29 April 2000). E-mail: mylene lanvin@cotyinc.com
- 6. Predicting the eye irritating potential of cosmetic products. M. Meloni, M. Lavazza, E. Santirocco. Diana De Silva Cosmetiques, Rho, Italy. Presented at the 21th IFSCC International Congress, Berlin, 2000. E-mail: marisa.meloni@vitroscreen.com
- 7. The effect of known eye irritants on the SkinEthic and Epiocular models of corneal epithelium. P. Jones, A. King, J; Fentem. Unilever Research, Bedford, UK. Poster presented at the European Tissue Culture Society, Granada, October 2001.E-mail: penny.jones@unilever.com
- 8. Evaluation of an in vitro human corneal model as alternative to the in vivo eye irritation testing of enzymes. Brinch D.S., Elvig S.G., Novozymes A/S, Bagsvaert, Denmark. Toxicology Letters, Vol 123, suppl.1, 22, 2001. E-mail: nib@novozymes.com
- 9. Set up of a strategy for the assessment of local tolerance of baby's shampoos. J. Vincent, J. Maurain, D. Sauvaire and I. Fabre. AFSSAPS, Vendargues, France. Presented at the 8th International Congress of Cosmetic Sciences, Paris, 2001. E-mail: isabelle.fabre@afssaps.sante.fr
- 10. Three-dimensional construct of the human corneal epithelium for in vitro toxicology. Nguyen D.H., . 4th World Congress on Alternatives and Animal Use in the Life Sciences, New Orleans, USA, August 2002. E-mail: rbeuer@lsuhsc.edu
- 11. In vitro corneal recovery assay using a reconstituted human corneal epithelial model. B. De Wever, C. Tornier, M; Rosdy and R. Beuerman. 4th World Congress on Alternatives and Animal Use in the Life Sciences, New Orleans, USA, August 2002. E-mail: bdewever@skinethic.com

S K I N E T H I C Tissue Culture Laboratories

- 12. Evaluation of a new in vitro human cornea model as an alternative to the in vivo rabbit eye Draize test. F. Van Goethem, Johnson & Johnson Pharmaceutical R&D. 4th World Congress on Alternatives and Animal Use in the Life Sciences, New Orleans, USA, August 2002. E-mail: fvGoethe@Probe.jnj.com
- 13. A biologically standardized reconstituted human corneal epithelial model for ocular toxicology and pharmacology testing: effect of acute exposure to SDS, H₂0₂ and NaOH. M. Cappadoro, B. De Wever, D. Nguyen and R. Beuerman. Poster presented at INVITOX, Formia, Italy, October 2002. E-mail: cappadorom@skinethic.com
- 14. The use of in vitro reconstituted human corneal epithelium (HCE) in ocular risk assessment. P. Courtellemont, LVMH Perfumes & Cosmetics. Presented at the 1st SkinEthic International Workshop, October 2002. E-mail: pcourtellemont@diormail.com
- 15. Pre-validation of a new in vitro human cornea model as alternative to the rabbit eye Draize test. Freddy Van Goethem, Johnson & Johnson Pharmaceutical R&D. Presented at the 1st SkinEthic International Workshop, October 2002. E-mail: FVGOETHE@PRDBE.jnj.com
- 16. Mucins secreted by the SkinEthic corneal epithelial constructs. Monica Berry, Dept. of Ophtalmology, University of Bristol, UK. Internal Report 2003. E-mail: Mon.Berry@bristol.ac.uk
- 17. Three-dimensional construct of the human corneal epithelium for in vitro toxicology. Nguyen D.H., D.H. Nguyen, R.W. Beuerman, B. De Wever and M. Rosdy. In: Alternative Methods for the New Millenium. Chapter 14, 145-157. CRC Press. 2003. E-mail: rbeuer@lsuhsc.edu
- 18. 3D construct of the human corneal epithelium for in vitro toxicology. R. Beuerman. 2nd International SkinEthic Workshop 'In vitro Reconstituted Human Tissue Models in Applied Pharmacology and Toxicology Testing', Nice, France, October 2003. E-mail: rbeuer@lsuhsc.edu
- 19. Assessment of the eye irritation potential of chemicals and formulated products using 3D epithelial models. M. Lanvin. 2nd International SkinEthic Workshop 'In vitro Reconstituted Human Tissue Models in Applied Pharmacology and Toxicology Testing', Nice, France, October 2003. E-mail: Olivier_Doucet@Cotyinc.com
- 20. The utility of tissue models for safety and efficacy testing of cosmetic products. B. Jones. 2nd International SkinEthic Workshop 'In vitro Reconstituted Human Tissue Models in Applied Pharmacology and Toxicology Testing', Nice, France, October 2003. E-mail: Brian.Jones@avon.com
- 21. The use of a human reconstituted corneal epithelium model for the occupational hazard assessment of pharmaceutical process materials. C.W. Seaman¹, B. De Wever², M. Cappadoro², A. Whittingham³, R. Guest³, C.M. Prusiewicz¹ GlaxoSmithKline, Ware, Herts, UK. ² SkinEthic Laboratories, Nice, France. ³ SafePharm Laboratories, Shardlow, Derbyshire, UK. SOT 2004. E-mail: christopher.w.seaman@gsk.com and rguest@safepharm.co.uk

45, rue St. Philippe - 06000 NICE - France - Phone : (+33) 4 93 97 77 27 - Fax : (+33) 4 93 97 77 28

S.A. au capital de 230.000 € - Code NAF 851K - RCS Nice B 388 097 537

E-mail: Infos@skinethic.com Web Site : http://www.skinethic.com

Tissue Culture Laboratories

7. Industrial contacts

Contact Name	Company	Coordinates		
Mr. Richard Fitoussi	Clarins	Phone: 0033.1 .34.35.15.15		
In Vitro Toxicology Manager	Cergy-Pontoise, France	E-mail: richard.fitoussi@laboratoires-		
		clarins.fr		
Dr. Olivier Doucet, Ph.D.	Lancaster-Coty R&D Center	Phone: 00377.9205.0981		
Head of Skin Research	Monaco	E-mail: Olivier_Doucet@Cotyinc.com		
Dr. Isabelle Fabre, Ph.D.	AFSSAPS	Phone: 0033.4.67.91.39.31		
Head In Vitro Testing Laboratory	Vendargues, France	E-mail: isabelle. fabre@afssaps-sante.fr		
Dr. Pascal Courtellemont, Ph.D.	LVMH Parfums Christian Dior	Phone: 0033.2.38.60.30.30		
Manager Product Safety	Orleans, France	E-mail: pcourtellemont@diormail.com		
Dr. Brian Jones, Ph.D.	Avon Products	Phone: 001.84 5.369.2708		
Program Leader Toxicology	Suffern, USA	E-mail: brian.jones@avon.com		
	,			
Dr. Marisa Meloni, Ph.D.	Vitroscreen	Phone: 0039.02.439.93.957		
Director	Milan, Italy	E-mail: marisa.meloni@vitroscreen.com		
Ms. Pushpa Vavilikolanu	Alberto Culver Woldwide	Phone: 001.708.450.2559		
Global Regulatory Affairs	Chicaco, USA	E-mail: Pvavilikolanu@alberto.com		
Dr. Julia Fentem, Ph.D.	Unilever SEAC	Phone: 0044.1234.264.780		
Group Head Applied Science &	Sharnbrook, UK	E-mail: Julia.Fentem@unilever.com		
Technology Dr. Ninna Berg, Ph.D.	Novozymes	Phone: 0045.4442.2459		
Bioindustrial Toxicology	Bagsvaert, Denmark	E-mail: nib@novozymes.com		
Diomedian Tomeology	Bugs vuert, Benmark	2 main me e nevezymesteem		
Dr. Freddy Van Goethem, Ph.D.	Johnson & Johnson PRD	Phone: 0032.14.60.59.34		
Study Director In Vitro Toxicology	Beerse, Belgium	E-mail: FVGOETHE@PRDBE.jnj.com		
Dr. Nathalie Alépée, Ph.D.	Pfizer Global R&D	Phone: 0033.2.47.23.77.70		
Manager In Vitro Toxicology	Amboise, France	E-mail: nathalie.alepee@pfizer.com		
Dr. Frank Straube, Ph.D.	Novartis Pharma	Phone: 0041.61.324.1387		
Genetic Toxicology & Functional Validation	Basel, Switzerland	E-mail: frank.straube@pharma.novartis.com		
Dr. Robert Geust, Ph.D	SafePharm Laboratories	Phone: 0044.1332 792896		
Manager In Vitro Toxicology	Derby, UK	E-mail: rguest@safepharm.co.uk		
Dr. Chris Seaman, Ph.D.	GSK Occupational Toxicology	Phone: 0044. 1920 88 3604		
Manager Occupational Toxicology	Ware, UK	E-mail: christopher.w.seaman@gsk.com		
Dr. Martin Rosdy, Ph.D.	SkinEthic Laboratories	Phone: 0033.493.97.77.27		
President and CSO	Nice, France	E-mail: mrosdy@skinethic.com		
Mr. Bart De Wever	SkinEthic Laboratories	Phone: 0033.493.97.77.27		
Business Development Director	Nice, France	E-mail: bdewever@skinethic.com		