EOSDIS Core System Project

HDF-EOS 2.6 Version Description Document (VDD) for the ECS Project

March 2000

Raytheon Systems Company Upper Marlboro, Maryland

HDF-EOS 2.6 Version Description Document (VDD) for the ECS Project

March 2000

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

LaVerne Jackson /s/	3/1/00
LaVerne Jackson, Staff Engineer EOSDIS Core System Project	Date
SUBMITTED BY	
Marine C. Amerikaans /a/	2/1/00

Mary S. Armstrong /s/
Mary Armstrong, Director of Development
EOSDIS Core System Project

Date

Raytheon Systems Company

Upper Marlboro, Maryland

Preface

This document accompanies the delivery of HDF-EOS 2.6 (Hierarchical Data Format - Earth Observing System) software for the ECS project. It is a formal deliverable and has been placed under configuration control by the EOSDIS Core System (ECS) Science Data Processing Segment. Changes to this document shall be made by document change notice (DCN) or by complete revision.

This HDF-EOS version is directed at Earth Observing System (EOS) instrument data providers who will deliver code to the ECS Version 2.0 Distributed Active Archive Centers (DAACs). It describes the HDF-EOS library tools. EOS data consumers will also use it. HDF files consist of a directory and a collection of data objects. Every data object has a directory entry, containing a pointer to the data object location, and information defining the datatype. Additions to traditional HDF are required to fully support these datatypes.

This document describes three new EOS specific datatypes – *point*, *swath*, and *grid*. Each of these new datatypes is constructed using conventions for combining standard HDF datatypes and is supported by a special application programming interface (API) which aids the data product user or producer in the application of the conventions. The APIs allow data products to be created and manipulated in ways appropriate to each datatype, without regard to the actual HDF objects and conventions underlying them. The sum of these new APIs comprises the HDF-EOS library.

Any questions regarding distribution should be addressed to:

Data Management Office ECS Project Office Raytheon Systems Company 1616 McCormick Drive Upper Marlboro, MD 20774-5301

Abstract

This document describes the delivery contents of HDF-EOS 2.6 software. HDF refers to the scientific data format standard selected by NASA as the baseline standard for EOS and HDF-EOS refers to EOS conventions for using HDF. The three interfaces described include – Point, Swath, and Grid.

It briefly describes the capabilities of the product, provides an inventory of the delivery, lists unresolved problems, and addresses issues such as special operating instructions, system limitations, and disclaimer notices for public domain software used in the product.

Keywords: API, HDF-EOS, standard, data, product, disk, format, point, grid, swath

Change Information Page

	List of Eff	ective Pages	
Page	Number	Iss	ue
iii thro 1-1 a 2-1 a 3-1 thro 4-1 thro 5-1 thro A-1 a	itle ough x nd 1-2 nd 2-2 ough 3-8 ough 4-4 ough 5-6 nd A-2 nd B-2	Original Original Original Original Original Original Original Original Original	
C-1 a	nd C-2 ough AB-6	Original Original Original	
	Docume	nt History	
Document Number			CCR Number
814-RD-511-001	Original	March 2000	00-0162

Contents

Preface

Abstract

1. Introduction

1.1	Identification of Document	1-1
1.2	Scope of Document	1-1
1.3	Purpose and Objectives of Document	1-1
1.4	Document Status and Schedule	1-1
1.5	Document Organization	1-1
	2. Related Documentation	
2.1	Parent Documents	2-1
2.2	Applicable Documents	2-1
	3. Product Description	
3.1	Product Description and General Capabilities	3-1
3.2	HDF-EOS Version 2.6 Routine Listing	3-1
	3.2.1 PT API Routines	3-2
	3.2.2 SW API Routines	3-3
	3.2.3 GD API Routines	3-4
3.3	HDF-EOS 2.6 Test Tools and Drivers	3-6
3.4	HDF-EOS 2.6 Hierarchical Data Format	3-6
3.5	HDF-EOS Users Guide	3-7

4. Product Inventory

4.1	HDF-EOS 2.6 Tar File Listing	4-1
4.2	HDF-EOS2.6v1.00_TestDrivers.tar Listing.	4-3
4.3	Documentation	4-3
4.4	Archive Tape	4-3
	5. Non-Conformance Status	
5.1	Known Problems with HDF-EOS 2.6	5-1
5.2	HDF-EOS 2.6 Non-Conformance Reports (Close Status)	. 5-1
5.3	HDF-EOS 2.6 Non-Conformance Reports (Open Status)	. 5-5
	Appendix A. Build/Installation Instructions Appendix B. User Feedback Procedures	

Abbreviations and Acronyms

Appendix C. Test Baseline Configuration

1. Introduction

1.1 Identification of Document

This document is a Version Description Document (VDD) prepared using NASA-STD-2100-91 as a guide. It is submitted as required for the Earth Observing System Data and Information System (EOSDIS) Core System (ECS), contract number NAS5-60000.

1.2 Scope of Document

This VDD specifies the delivery contents of the HDF-EOS 2.6 software and accompanying documentation.

1.3 Purpose and Objectives of Document

The purpose of this VDD is to describe the contents of the delivery of HDF-EOS 2.6 software. The document briefly describes all tools that incorporate the delivery, provides an inventory of the delivery, lists unresolved problems, and addresses special issues such as special operating instructions, system limitations, and disclaimer notices for public domain software used in the library.

1.4 Document Status and Schedule

This Version Description Document for HDF-EOS 2.6 is submitted as a final document. Any changes to HDF-EOS 2.6 that require a subsequent version to be released will be described in a new Version Description Document.

1.5 Document Organization

The format and contents of this document comply with NASA-DID-P500 and NASA-DID-999 as defined in NASA-STD-2100-91.

- Introduction Introduces the VDD scope, purpose, objectives, status, schedule and document organization.
- Related Documentation Provides a bibliography of reference documents for the VDD organized by parent and binding subsections.
- Product Description Describes the general capabilities and product contents.
- Inventory Lists tar file listings for HDF-EOS and test drivers, documentation, and archive tape.
- Non-conformance Status Discusses known problems with HDF-EOS Version 2.6 and lists Non-conformance Reports with open status.
- Appendices Contain supplemental information such as: Build/installation instructions, user feedback procedures, and the test baseline configuration.

2. Related Documentation

2.1 Parent Documents

The following documents are the parent from which this document's scope and content derive:

423-41-01 EOSDIS Core System Statement of Work

423-16-02 Science Data Processing (SDP) Toolkit Requirements Specification for

the ECS Project

2.2 Applicable Documents

The following documents are directly applicable to this plan to the extent referenced herein. In the event of conflict between any of these documents and this plan, the plan shall take precedence.

170-TP-510	HDF-EOS Library Users Guide for the ECS Project, Volume 1: Overview and Examples
170-TP-511	HDF-EOS Library Users Guide for the ECS Project Volume 2: Function Reference Guide
175-WP-001	HDF-EOS Primer for Version 1 EOSDIS
333-CD-510	Release 5B SDP Toolkit Users Guide for the ECS Project
814-RD-510	Release 5B SCF Toolkit 5.2.6 Version Description Document (VDD) for the ECS Project

NASA-STD-2100-91 NASA Software Documentation Standard, Software Engineering

Program

3. Product Description

This section describes the general capabilities of HDF-EOS 2.6 and the tools and test drivers provided.

3.1 Product Description and General Capabilities

HDF-EOS is an extension of NCSA (National Center for Supercomputing Applications) HDF and uses HDF library calls as an underlying basis. Version 4.1r3 of HDF is used. The library tools are written in C language and a FORTRAN interface is provided. The current version contains software for creating, accessing and manipulating grid, point and swath structures. Also included are overviews of the interfaces, function-by-function calling sequences, explanations, and code examples. Included also are tools for subsetting and data projection. EOSView, our viewing tool has been revised to accommodate the current version of the libraries.

HDF is the scientific data format standard selected by NASA as the baseline standard for EOS. These libraries are aimed at EOS data producers and consumers, who will develop their data into increasingly higher order products. These products range from calibrated Level 1 to Level 4 model data. The primary use of HDF-EOS libraries will be to create structures for associating geolocation data with their associated science data. Producers through use of supplied libraries specify this association. Most EOS data products identified fall into categories of grid, point, or swath structures. These structures are implemented in the current version of the libraries. Services based on geolocation information will be built on HDF-EOS structures. Producers of products not covered by these structures (for example, non-geolocated data) can use standard HDF libraries.

In the ECS (EOS Core System) production system, the HDF-EOS libraries will be used in conjunction with SDP (Science Data Processing) Toolkit software. The primary tools used in conjunction to HDF-EOS libraries will be those for metadata handling, process control, and status message handling. Metadata tools will be used to write ECS inventory and granule specific metadata into HDF-EOS files, while the process control tools will be used to access physical file handles used by the HDF tools.

3.2 HDF-EOS Version 2.6 Routine Listing

The HDF-EOS library is comprised of three new APIs:

- Point (PT) interface designed to support data that has associated geolocation information, but is not organized in any well-defined spatial or temporal way
- Swath (SW) interface tailored to support time-ordered data such as satellite swaths (which consist of a time-ordered series of scanlines), or profilers (which consist of a time-ordered series of profiles)
- Grid (GD) interface designed to support data that has been stored in a rectilinear array based on a well defined and explicitly supported projection

The HDF library is accessible from both C and FORTRAN programs because it contains a set of "wrapper" functions that make the underlying C code callable from FORTRAN. HDF provides two names for each function: one for use in C programming and a shorter version for use in FORTRAN programming. The following HDF-EOS Routine listings provide a description of the tools.

3.2.1 PT API Routines

All C routine names in the point data interface have the prefix "PT" and the equivalent FORTRAN routine names are prefixed by "pt." The PT routines are grouped into categories that are described in the HDF-EOS User's Guide. The PT function calls are listed in the following table.

Routine Name		
С	FORTRAN	Description
PTopen	ptopen	creates a new file or opens an existing one
PTcreate	ptcreate	creates a new point data set and returns a handle
PTattach	ptattach	attaches to an existing point data set
PTdetach	ptdetach	releases a point data set and frees memory
PTclose	ptclose	closes the HDF-EOS file and deactivates the point interface
PTdeflevel	ptdeflev	defines a level within the point data set
PTdeflinkage	ptdeflink	defines link field to use between two levels
PTwritelevel	ptwrlev	writes (appends) full records to a level
PTreadlevel	ptrdlev	reads data from the specified fields and records of a level
PTupdatelevel	ptuplev	updates the specified fields and records of a level
PTwriteattr	ptwrattr	creates or updates an attribute of the point data set
PTreadattr	ptrdattr	reads existing attribute of point data set
PTnlevels	ptnlevs	returns the number of levels in a point data set
PTnrecs	ptnrecs	returns the number of records in a level
PTnfields	ptnflds	returns number of fields defined in a level
PTlevelinfo	ptnlevinfo	returns information about a given level
PTlevelindx	ptlevidx	returns index number for a named level
PTbcklinkinfo	ptblinkinfo	returns link field to previous level
PTfwdlinkinfo	ptflinkinfo	returns link field to following level
PTgetlevelname	ptgetlevname	returns level name given level number
PTsizeof	ptsizeof	returns size in bytes for specified fields in a point
PTattrinfo	ptattrinfo	returns information about point attributes
PTinqattrs	ptinqattrs	retrieves number and names of attributes defined

Routine	Name	
С	FORTRAN	Description (cont.)
PTinqpoint	ptinqpoint	retrieves number and names of points in file
PTgetrecnums	ptgetrecnums	returns corresponding record numbers in a related level
PTdefboxregion	ptdefboxreg	define region of interest by latitude/longitude
PTregioninfo	ptreginfo	returns information about defined region
PTregionrecs	ptregrecs	returns # of records and record #s within region
PTextractregion	ptextreg	read a region of interest from a set of fields in a single level
PTdeftimeperiod	ptdeftmeper	define time period of interest
PTperiodinfo	ptperinfo	returns information about defined time period
PTperiodrecs	ptperrecs	returns # of records and record #s within time period
PTextractperiod	ptextper	read a time period from a set of fields in a single level
PTdefvrtregion	ptdefvrtregion	Define a region of interest by vertical field

3.2.2 SW API Routines

The SW interface consists of routines for storing, retrieving, and manipulating data in swath data sets. All C routine names in the swath data interface have the prefix "SW" and the equivalent FORTRAN routine names are prefixed by "sw." The SW routines are grouped into categories that are described in the HDF-EOS User's Guide. The SW function calls are listed in the following table.

Routine Name		
С	FORTRAN	Description
SWopen	swopen	opens or creates HDF file in order to create, read, or write a swath
SWcreate	swcreate	creates a swath within the file
SWattach	swattach	attaches to an existing swath within the file
SWdetach	swdetach	detaches from swath interface
SWclose	swclose	closes file
SWdefdim	swdefdim	defines a new dimension within the swath
SWdefdimmap	swdefmap	defines the mapping between the geolocation and data dimensions
SWdefidxmap	swdefimap	defines a non-regular mapping between the geolocation and data dimension
SWdefgeofield	swdefgfld	defines a new geolocation field within the swath

Routine	Name	
С	FORTRAN	Description (cont.)
SWdefdatafield	swdefdfld	defines a new data field within the swath
SWdefcomp	swdefcomp	defines a field compression scheme
SWwritegeometa	swwrgmeta	writes field metadata for an existing swath geolocation field
SWwritedatameta	swwrdmeta	writes field metadata for an existing swath data field
SWwritefield	swwrfld	writes data to a swath field
SWreadfield	swrdfld	reads data from a swath field.
SWwriteattr	swwrattr	writes/updates attribute in a swath
SWreadattr	swrdattr	reads attribute from a swath
SWsetfillvalue	swsetfill	sets fill value for the specified field
SWgetfillvalue	swgetfill	retrieves fill value for the specified field
SWinqdims	swinqdims	retrieves information about dimensions defined in swath
SWinqmaps	swinqmaps	retrieves information about the geolocation relations defined
SWinqidxmaps	swinqimaps	retrieves information about the indexed geolocation/data mappings defined
SWinggeofields	swinqgflds	retrieves information about the geolocation fields defined
SWinqdatafields	swinqdflds	retrieves information about the data fields defined
SWinqattrs	swinqattrs	retrieves number and names of attributes defined
SWnentries	swnentries	returns number of entries and descriptive string buffer size for a specified entity
SWdiminfo	swdiminfo	retrieve size of specified dimension
SWmapinfo	swmapinfo	retrieve offset and increment of specified geolocation mapping
SWidxmapinfo	swimapinfo	retrieve offset and increment of specified geolocation mapping
SWattrinfo	swattrinfo	returns information about swath attributes
SWfieldinfo	swfldinfo	retrieve information about a specific geolocation or data field
SWcompinfo	swcompinfo	retrieve compression information about a field
SWinqswath	swinqswath	retrieves number and names of swaths in file
SWperiodinfo	swperinfo	returns information about a defined time period
SWregionindex	swregidx	returns information about the swath region
SWupdateidxmap	swupimap	update map index for a specified region
SWgeomapinfo	swgmapinfo	retrieve type of dimension mapping for a dimension
SWdupregion	swdupregion	duplicate a region or time period

3.2.3 GD API Routines

The table below provides the routines available for storing and retrieving HDF-EOS *Grid Data*. All C routine names in the grid data interface have the prefix "GD" and the equivalent FORTRAN routine names are prefixed by "gd." The GD routines are grouped into categories, which are described in the HDF-EOS User's Guide.

Routine	Name	
С	FORTRAN	Description
GDblkSOMoffset	n/a	writes block SOM offset values (special function for SOM MISR data)
GDopen	gdopen	creates a new file or opens an existing one
GDcreate	gdcreate	creates a new grid in the file
GDattach	gdattach	attaches to a grid
GDdetach	gddetach	detaches from grid interface
GDclose	gdclose	closes file
GDdeforigin	gddeforigin	defines origin of grid
GDdefdim	gddefdim	defines dimensions for a grid
GDdefproj	gddefproj	defines projection of grid
GDdefpixreg	gddefpixreg	defines pixel registration within grid cell
GDdeffield	gddeffld	defines data fields to be stored in a grid
GDdefcomp	gddefcomp	defines a field compression scheme
GDwritefieldmeta	gdwrmeta	writes metadata for field already existing in file
GDwritefield	gdwrfld	writes data to a grid field.
GDreadfield	gdrdfld	reads data from a grid field
GDwriteattr	gdwrattr	writes/updates attribute in a grid.
GDreadattr	gdrdattr	reads attribute from a grid
GDsetfillvalue	gdsetfill	sets fill value for the specified field
GDsettilecomp	n/a	function allows the user to have a field with fill values and use tiling and compression
GDgetfillvalue	gdgetfill	retrieves fill value for the specified field
GDinqdims	gdinqdims	retrieves information about dimensions defined in grid
GDinqfields	gdinqdflds	retrieves information about the data fields defined in grid
GDinqattrs	gdinqattrs	retrieves number and names of attributes defined
GDnentries	gdnentries	returns number of entries and descriptive string buffer size for a specified entity
GDgridinfo	gdgridinfo	returns dimensions of grid and X-Y coordinates of corners
GDprojinfo	gdprojinfo	returns all GCTP projection information
GDdiminfo	gddiminfo	retrieves size of specified dimension.
GDcompinfo	gdcompinfo	retrieve compression information about a field
GDfieldinfo	gdfldinfo	retrieves information about a specific geolocation or data field in the grid
GDinqgrid	gdinqgrid	retrieves number and names of grids in file
GDattrinfo	gdattrinfo	returns information about grid attributes
GDorigininfo	gdorginfo	return information about grid origin
GDpixreginfo	gdpreginfo	return pixel registration information for given grid
GDdefboxregion	gddefboxreg	define region of interest by latitude/longitude
GDregioninfo	gdreginfo	returns information about a defined region

Routine	Name	
С	FORTRAN	Description (cont.)
GDextractregion	gdextrreg	read a region of interest from a field
GDdeftimeperiod	gddeftmeper	define a time period of interest
GDdefvrtregion	gddefvrtreg	define a region of interest by vertical field
GDgetpixels	gdgetpix	get row/columns for lon/lat pairs
GDgetpixvalues	gdgetpixval	get field values for specified pixels
GDinterpolate	gdinterpolate	perform bilinear interpolation on a grid field
GDdupregion	gddupreg	duplicate a region or time period
GDdeftile	gddeftle	define a tiling scheme
GDtileinfo	gdtleinfo	returns information about tiling for a field
GDsettilecache	gdsettleche	set tiling cache parameters
GDreadtile	gdrdtle	read data from a single tile
GDwritetile	gdwrtile	write data to a single tile

3.3 HDF-EOS 2.6 Test Tools and Drivers

Included in the software delivery of HDF-EOS 2.6 is a tar file that contains test driver programs. These test programs are provided to aid the user in the development of software using the HDF-EOS libraries. The user may run the same test cases as included in this file to verify that the software is functioning correctly. These programs were written to support the internal testing and are not an official part of the delivery. Users make use of them at their own risk. No support will be provided to the user of these programs. The tar file contains source code for a driver in C and FORTRAN for each tool; sample output files, and input files and/or shell scripts, where applicable.

The sample following UNIX command creates a directory called testdrivers beneath the current directory containing all these test files.

```
zcat HDF-EOS2.6v1.00_TestDrivers.tar.Z | tar xvf -
```

3.4 HDF-EOS 2.6 Hierarchical Data Format

HDF refers to the scientific data format standard selected by NASA as the baseline standard for EOS and HDF-EOS refers to EOS conventions for using HDF. This document provides information on the use of the three interfaces included in HDF-EOS – Point, Swath, and Grid.

The Hierarchical Data Format (HDF) has been selected by the EOSDIS Project as the format of choice for standard product distribution. HDF is a *disk format* and *subroutine library* for storage of most kinds of scientific data. As a *disk format*, HDF files consist of a directory and an unordered set of binary data objects. Each directory entry describes the location, the type, and the size of these binary objects.

The *HDF subroutine library* is designed to be easy for C and FORTRAN programmers to use. The HDF library consists of callable routines, each of which belongs to a particular *interface*. Each

interface within these layers address a particular HDF function or a particular HDF data structure, such as arrays, tables, and annotations.

3.5 HDF-EOS Users Guide

The purpose of the *HDF-EOS Library User's Guide for the ECS Project, Volume 1: Overview and Examples* (170-TP-510-001) is to provide EOS instrument data processing software developers and scientists with knowledge of HDF-EOS 2.6 functionality. The Users Guide also provides a listing of routine calling sequences, detailed descriptions, and examples of usage.

The *HDF-EOS Library User's Guide for the ECS Project Volume 2: Function Reference Guide* (170-TP-511-001) is intended for use by anyone who wishes to use the HDF-EOS library to create or read EOS data products. Users of this document will include EOS instrument team science software developers and data product designers, DAAC personnel, and end users of EOS data products such as scientists and researchers.

4. Product Inventory

4.1 HDF-EOS 2.6 Tar File Listing

A listing of the tar file "HDF-EOS2.6v1.00.tar.Z" follows:

<u>cksum</u>	<u>Bytes</u>	Filename (location)
2808264574	17823	/HDF-EOS2.6v1.00.README
144476945	5826560	/HDF-EOS2.6v1.00.tar
2668696172	26404	/hdfeos/.cmake.state
3789176740	6462	/hdfeos/Makefile
1558469241	527	/hdfeos/make_exclude_list
4153184903	29561	/hdfeos/bin/INSTALL-HDFEOS
751523542	17503	/hdfeos/bin/tmp/hdfeos_env.csh.tmp
2907991568	15170	/hdfeos/bin/tmp/hdfeos_env.ksh.tmp
2047930797	8872	/hdfeos/doc/HDFEOS-DEFINITION.TXT
2808264574	17823	/hdfeos/doc/README
3505908057	10290	/hdfeos/include/HdfEosDef.h
2496326951	82647	/hdfeos/include/cfortHdf.h
3048893625	783	/hdfeos/include/cproj.h
1041273117	3439	/hdfeos/include/isin.h
1374305039	1967	/hdfeos/include/proj.h
160263888	413172	/hdfeos/lib/tmp/geolibDEC.a
1539725027	227896	/hdfeos/lib/tmp/geolibHP.a
2981673750	282586	/hdfeos/lib/tmp/geolibIBM.a
2684090119	597480	/hdfeos/lib/tmp/geolibIRIX53.a
3587846183	401284	/hdfeos/lib/tmp/geolibIRIX62-32.a
3807898217	597940	/hdfeos/lib/tmp/geolibIRIX62-64.a
1618369724	603700	/hdfeos/lib/tmp/geolibIRIX62-64mips3.a
1884937484	456916	/hdfeos/lib/tmp/geolibIRIX62-n32.a
1376498063	335728	/hdfeos/lib/tmp/geolibSOL24.a
1768686479	229480	/hdfeos/lib/tmp/geolibSUN4.a
4175914699	508	/hdfeos/make/CLSInstall.sh
1517364602	4119	/hdfeos/make/Makefile.instr
455902311	1171	/hdfeos/make/Makefile.template
1708850785	13017	/hdfeos/make/make.options
686170178	2339	/hdfeos/make/make.targets
439097116	2355	/hdfeos/make/makeidl.include
3220296200	2568	/hdfeos/make/makeidlxx.include
3567045030	1865	/hdfeos/make/makerec.include
733834203	458	/hdfeos/make/makerec.template
2115695411	1387	/hdfeos/samples/AppendField.c
4070186593	2742	/hdfeos/samples/DefineFields.c
2483950413	2295	/hdfeos/samples/DefineGDflds.c
1941092955	3308	/hdfeos/samples/DefineLevels.c
1643716892	3614	/hdfeos/samples/InquireGrid.c
2532455472	4021	/hdfeos/samples/InquireSwath.c
2475311463	2765	/hdfeos/samples/README
2665423228	1230	/hdfeos/samples/ReadFields.c
2330931874	749	/hdfeos/samples/ReadGDflds.c

1175182293	2913	/hdfeos/samples/ReadLevels.c
3768148998	3520	/hdfeos/samples/SetupGrid.c
334694603	1126	/hdfeos/samples/SetupPoint.c
2044823616	3596	/hdfeos/samples/SetupSwath.c
1131293480	1295	/hdfeos/samples/SubsetGrid.c
3350127139	1514	/hdfeos/samples/SubsetPoint.c
2354443423	1601	/hdfeos/samples/SubsetSwath.c
3733161892	1264	/hdfeos/samples/UpdateLevels.c
3470248050	2225	/hdfeos/samples/WriteFields.c
848736619	1313	/hdfeos/samples/WriteGDflds.c
2081004055	3634	/hdfeos/samples/WriteLevels.c
1482570695	1589	/hdfeos/samples/appendfield.f
3059019073	3171	/hdfeos/samples/definefields.f
2858794458	1506	/hdfeos/samples/definegdflds.f
2526701911	4000	/hdfeos/samples/definelevels.f
2446680929	156	/hdfeos/samples/fixedBuoy0.txt
611905679	720	/hdfeos/samples/fixedBuoy1.txt
1439165887	720	/hdfeos/samples/fixedBuoy1s.txt
4064515715	93	/hdfeos/samples/floatBuoy0.txt
766697626	1550	/hdfeos/samples/floatBuoy1.txt
3243080034	3791	/hdfeos/samples/inquiregrid.f
3415311940	3228	/hdfeos/samples/inquireswath.f
329596563	1254	/hdfeos/samples/readfields.f
3699545549	847	/hdfeos/samples/readgdflds.f
2295858073	2762	/hdfeos/samples/readlevels.f
814838569	4132	/hdfeos/samples/setupgrid.f
1681894116	1309	/hdfeos/samples/setuppoint.f
3651293029	3616	/hdfeos/samples/setupswath.f
907968478	651	/hdfeos/samples/simple.txt
2545431992	1276	/hdfeos/samples/subsetgrid.f
3521603892	1604	/hdfeos/samples/subsetpoint.f
1346280758	2080	/hdfeos/samples/subsetswath.f
3990920395	1119	/hdfeos/samples/updatelevels.f
2164760573	2400	/hdfeos/samples/writefields.f
840222205	1310	/hdfeos/samples/writegdflds.f
2900336605	3866	/hdfeos/samples/writelevels.f
2294014132	133231	/hdfeos/src/EHapi.c
1326844387	407562	/hdfeos/src/GDapi.c
1973810693	2195	/hdfeos/src/Makefile
408808278	1505	/hdfeos/src/Makefile_CM
2005347297	1538	/hdfeos/src/Makefile_alt
3722154386	231774	/hdfeos/src/PTapi.c
3738236340	451993	/hdfeos/src/SWapi.c
995720388	767	/hdfeos/src/make_IT/makeDEC4.0r1
3113958064	721	/hdfeos/src/make_IT/makeHP4.0r1
3759080986	728	/hdfeos/src/make_IT/makeIBM4.0r1
2378040899	722	/hdfeos/src/make_IT/makeSGI4.0r1
1467987716	748	/hdfeos/src/make_IT/makeSUN4.0r1
2932675865	3190	/hdfeos/src/make_IT/makeinc

4.2 HDF-EOS2.6v1.00_TestDrivers.tar Listing

<u>cksum</u>	Bytes	Filename (location)
1928149120	2226	/HDF-EOS2.6v1.00 TestDrivers.README
3608606000	911360	/HDF-EOS2.6v1.00 TestDrivers.tar
1928149120	2226	/hdfeos/testdrivers/README
1835756818	203174	/hdfeos/testdrivers/grid/testgrid.c
2077748214	74943	/hdfeos/testdrivers/grid/testgrid.f
823022450	31750	/hdfeos/testdrivers/grid/testgridf90-32.f
1723358445	2482	/hdfeos/testdrivers/grid/tutils.h
2537038551	135	/hdfeos/testdrivers/point/fixedBuoy0.txt
1531248358	680	/hdfeos/testdrivers/point/fixedBuoy1.txt
2811663699	680	/hdfeos/testdrivers/point/fixedBuoy1s.txt
961403394	81	/hdfeos/testdrivers/point/floatBuoy0.txt
2079259380	1500	/hdfeos/testdrivers/point/floatBuoy1.txt
95646741	630	/hdfeos/testdrivers/point/simple.txt
2269620415	74670	/hdfeos/testdrivers/point/testpoint.c
1770192493	67441	/hdfeos/testdrivers/point/testpoint.f
448738500	42519	/hdfeos/testdrivers/point/testpointf90-32.f
1723358445	2482	/hdfeos/testdrivers/point/tutils.h
1309152130	239072	/hdfeos/testdrivers/swath/testswath.c
2891879728	95575	/hdfeos/testdrivers/swath/testswath.f
869828863	48290	/hdfeos/testdrivers/swath/testswathf90-32.f
1723358445	2482	/hdfeos/testdrivers/swath/tutils.h

4.3 Documentation

The documents provided with this release are:

Document Number: 170-TP-510-001

Title: HDF-EOS Library Users Guide for the ECS Project-Volume 1: Overview

and Examples

Delivery Source: Hardcopy, WEB

Document Number: 170-TP-511-001

Title: HDF-EOS Library Users Guide for the ECS Project-Volume 2: Function

Reference Guide

Delivery Source: Hardcopy, WEB

4.4 Archive Tape

The following magnetic tape is used to archive the delivered baseline configuration of the developed software.

904-PR-051-005

Tape label: SCF HDF-EOS 2.6v1.00 Distribution Date: February 22, 2000 >>> 3.0gbyte format (low density) <<< Filenames: HDF-EOS2.6v1.00.README HDF-EOS2.6v1.00.tar.Z

> HDF-EOS2.6v1.00_TestDrivers.tar.Z HDF-EOS2.6v1.00_TestDrivers.README

5. Non-Conformance Status

5.1 Known Problems with HDF-EOS 2.6

This section contains the list of problems closed (section 5.2) and known problems (section 5.3) as of 2/15/2000 in the HDF-EOS 2.6 delivery. These problems were found and recorded during unit and integration and captured in the formal problem tracking system, Distributed Defect Tracking System (DDTS). The DDTS system generated the attached list of "closed" NCRs. HITC management has reviewed this list and HDF-EOS is considered to be acceptable for delivery at this time. The list includes the NCR ID, Title, Description, and Status. DDTS Problem Severity Definitions, on a 1-5 scale, are defined as follows:

- 1 Catastrophic and severely broken and no workaround. Example: can't use major product function.
- 2 A severe defect that must be fixed but there is a workaround. Example: user data must be modified to work.
- A defect that must be fixed, but the system can be deployed with it. Example: A rarely used Tool won't work on a rarely used platform.
- 4 A defect that causes small impact. Easy to recover or workaround. Example: error messages aren't very clear.
- 5 An enhancement request. Example: bad layout or misuse of grammar in manual.

The status of the NCRs corrected for this release is included in section 5.2. This NCR report reflects the information obtained from DDTS on February 15, 2000. To obtain a detailed description of the NCRs, the DDTS system can be accessed from the following WEB page:

http://newsroom.gsfc.nasa.gov/sit/ddts/ddts.html

5.2 HDF-EOS 2.6 Non-Conformance Reports (Close Status)

The following HDF-EOS problems, listed in numerical order by severity, were closed with the HDF-EOS 2.6 Release:

```
ECSed23785
NCR ID:
Title:
              SWdefboxregion does not identify all points in the defined region
Severity:
Problem:
              SWdefboxregion does not identify all points in the defined region
              1. In function SWdefboxregion changed:
Resolution:
              FROM:
                         tmpVal = i+1;
                     }
                       /* End of region */
                      /* ----- */
                       if (flag[i] == 255)
                        if(tmpVal!=i)
```

```
/* Increment (multiple) region counter */
                               ----- */
             j = ++SWXRegion[k]->nRegions;
             /* if SWXRegion[k]->nRegions greater
             * than MAXNREGIONS free allocated memory
             * and return FAIL */
             if ((SWXRegion[k]->nRegions) > MAXNREGIONS)
          {
                HEpush(DFE_GENAPP, "SWdefboxregion", __FILE__,
                                   LINE );
               HEreport("SWXRegion[%d]->nRegions exceeds
                                  MAXNREGIONS= %d.\n", k, MAXNREGIONS);
              free(lonArr);
             free(latArr);
TO:
            j = ++SWXRegion[k]->nRegions;
           if ((SWXRegion[k]->nRegions) > MAXNREGIONS)
              HEpush(DFE_GENAPP, "SWdefboxregion",
                 ___FILE___,
                              LINE );
              HEreport("SWXRegion[%d]->nRegions exceeds
                                MAXNREGIONS= %d.\n", k, MAXNREGIONS);
            free(lonArr);
            free(latArr);
            free(flag);
            return(-1);
         }
           SWXRegion[k]->StartRegion[j - 1] = i;
         if (flag[i] == 255)
           SWXRegion[k]->StopRegion[j-1]=i-1;
          validReg = 0;
      }
2. in function SWupdateescene added:
  int32 index[MAXNREGIONS]; /* to store indicies when stop and
              start are different */
                /* index */
 int32 ind;
  int32 tempnRegions; /* temp number of regions */
and
  if (status == 0)
    tempnRegions = SWXRegion[regionID]->nRegions;
   ind =0:
```

```
for (k = 0; k < SWXRegion[regionID]->nRegions; k++)
                    startReg = SWXRegion[regionID]->StartRegion[k];
                    stopReg = SWXRegion[regionID]->StopRegion[k];
                    if(startReg == stopReg)
                      /* reduce number of regions by 1, if tempnRegions is 0 issue error and break
                     from loop*/
                     tempnRegions -= 1;
                     if(tempnRegions == 0)
                    {
                       free(SWXRegion[regionID]);
                       SWXRegion[regionID] = 0;
                      status = -1;
                        HEpush(DFE_GENAPP, "SWupdatescene", __FILE__, __LINE__);
                        HEreport("Inactive Region ID: %d.\n", regionID);
                      break;
                    }
                  }
                   else
                  /* store index number of regions that have different start and stop */
                     index[ind] = k;
                     ind += 1;
                  }
                 }
                  if (status != 0)
                    return (status);
                 }
                 else
                 {
                    SWXRegion[regionID]->nRegions = tempnRegions;
                 }
                  /* keep starts and stops that are different in the structure */
                  for (k = 0; k < SWXRegion[regionID]->nRegions; k++)
                    SWXRegion[regionID]->StartRegion[k] =
                     SWXRegion[regionID]->StartRegion[index[k]];
                    SWXRegion[regionID]->StopRegion[k] =
                     SWXRegion[regionID]->StopRegion[index[k]];
                 }
               }
NCR ID:
              ECSed24147
Title:
              Core dump in SWfieldinfo function
Severity:
              Core dump in SWfieldinfo function
Problem:
```

5-3

Modified the files /ecs/hdfeos/src/SWapi.c, GDapi.c, PTapi.c, and EHapi.c:

1. Defined macro UTLSTR MAX SIZE = 512

Resolution:

Changed memory allocation for utility strings from static to dynamic if necessary and allocated memory with the size of UTLSTR_MAX_SIZE for these strings. Changed the size of allocated memory to UTLSTR_MAX_SIZE for those that already were allocatimcally.

- 2. Added error check for memory unavailability in several functions that memory were allocated dynamically.
- Added check for NULL metabuf returned from EHmeta... functions. NULL pointer retruned from EHmeta... functions indicate that memory could not be allocated for metabuf.
- 4. Changed memcpy to memmove in some of the functions where there was overlapping between source and destination areas (these were detected using purify on hdfeos testdrivers).
- 5. In the function GDattach changed
 if(GDXGrid[i].sdsID == NULL)
 TO:
 if(GDXGrid[i].sdsID == NULL && nSDS != 0)

NCR ID: ECSed25731

Title: SWscan2longlat calculates incorrect long lat on SGI

Severity: 2

Problem: SWscan2longlat calculates incorrect long lat on SGI

Resolution: On the SGI, the math.h include was required but wasn't in the SWapi.c code. The c

compiler gave no warning or any other error so it wasn't discovered until output from

sin/cos was displayed. This has been fixed.

NCR ID: ECSed21195

Title: Grid interface doesn't fully support SOM projection

Severity: 3

Problem: Grid interface doesn't fully support SOM projection

Resolution: Added code to GDapi.c to fully support MISR SOM projection.

NCR ID: ECSed24252

Title: Projections MERCATO and ALBERS are added to grid api

Severity: 3

Problem: Projections MERCATOR and ALBERS are added to grid api

Resolution: In the file /ecs/hdfeos/src/GDapi.c we added following lines to the function

GDtangentpnts:

```
lonrad = EHconvAng(cornerlon[i], HDFE_DEG_RAD);
        cs[i] = cos(lonrad);
        sn[i] = sin(lonrad);
 }
  /* Compute dot product */
 /* ----- */
  dotPrd = cs[0] * cs[1] + sn[0] * sn[1];
  /* Convert central meridian (DMS to DEG) & compute sin & cos */
  centMerd = EHconvAng(projparm[4], HDFE_DMS_DEG);
  lonrad = EHconvAng(centMerd, HDFE_DEG_RAD);
  cs[1] = cos(lonrad);
  sn[1] = sin(lonrad);
  /* If box brackets central meridian ... */
 /* -----*/
  if (cs[0] * cs[1] + sn[0] * sn[1] > dotPrd)
        latitude[4] = cornerlat[0];
       longitude[4] = centMerd;
        latitude[5] = cornerlat[1];
        longitude[5] = centMerd;
        *npnts = 6:
 }
}
break;
```

5.3 HDF-EOS 2.6 Non-Conformance Reports (Open Status)

The following NCRs, listed in numerical order by severity, are liens against the HDF-EOS 2.6 delivery:

NCR ID: ECSed23363

Title: SMC/GSFC no embedded versioning on HDFEOS in 4PY

Severity: 3

Problem: No embedded versioning on HDFEOS ("what" command)

Description: The Drop 4PY HDFEOS libraries and other files have no embedded versioning (the

"what" command).

NCR ID: ECSed25146

Title: Incorrect use of format "%1f" in function sprintf.

Severity: 3

Problem: Incorrect use of format "%lf" in function sprintf.

Description: There are 3 places in GDapi.c where format "%lf" is used with function sprintf. This causes

precision loss of the float64 involved.

NCR ID: ECSed10922

Title: HDF-EOS library has return values not being tested

Severity: 5

Problem: HDF-EOS library has return values not being tested

Description: The HDF-EOS library has functions that the return values are not being tested for correct

return values. Small errors could be propagating through the library.

Appendix A. Build/Installation Instructions

Build/installation instructions for HDF-EOS are located in Appendix A of the HDF-EOS Users Guide (170-TP-510-001) and in the README file available with the HDF-EOS delivery.

Appendix B. User Feedback Procedures

The mechanism for handling user feedback, documentation and software discrepancies, and bug reports follows:

- a. Accounts at the ECS Landover facility have been set up for user response: pgstlkit@eos.hitc.com or hdfeos@eos.hitc.com
- b. Users will e-mail problem reports and comments to the above account. A receipt will be returned to the sender. A work-off plan for the discrepancy will be developed and status report issued once a month. Responses will be prioritized based on the severity of the problem and the available resources. Simple bug fixes will be turned around sooner, while requested functional enhancements to the Toolkit will be placed in a recommended requirements database (RRDB) and handled more formally.
- c. In order to help expedite responses, we request the following information be supplied with problem reports:

Name:

Date:

EOS Affiliation (DAAC, Instrument, ESDIS, etc.):

Phone No.:

Development Environment:

Computing Platform:

Operating System:

Compiler and Compiler Flags:

Tool Name:

Problem Description:

(Please include exact inputs to and outputs from the toolkit call, including error code returned by the function, plus exact error message returned where applicable.)

Suggested Resolution (include code fixes or workarounds if applicable):

d. In addition to the e-mail response mechanism, a phone answering machine is also provided. The telephone number is 301–925–0764. Calls will be returned as soon as possible. Note, however, that e-mail is the preferred method of responding to users.

Appendix C. Test Baseline Configuration

The HDF-EOS library was built and tested in a multi-platform environment using the following platforms, operating systems, and compilers:

Table C-1. HDF-EOS Development Configuration

			,		
Platform	os	Version	C Compiler	FORTRAN	
Sun Sparc	Solaris	2.5.1(5.5.1)	Sun C 4.0	Sun FORTRAN 4.0	
HP 9000/770	HP-UX	A.10.01	HP C 10.24	HP FORTRAN 10.24	
DEC Alpha	Digital Unix	4.0	DEC C 5.2	DEC FORTRAN 5.2	
IBM RS-6000	AIX	4.2	IBM C 3.1.4.0	IBM FORTRAN 3.2.5	
SGI Power Challenge	IRIX	6.2	SGI C 7.2.1	SGI FORTRAN 7.2.1	

Abbreviations and Acronyms

A.A. Astronomical Almanac

AA Ancillary Data Access

AIRS Atmospheric Infrared Sounder

API Application Program Interface

APID Application Process Identifier

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

BNF Bachus-Nauer Form

CBP Celestial Body Position

CCR Configuration Change Request

CCSDS Consultative Committee on Space Data Systems

CDRL Contract Deliverable Requirements List

CERES Clouds and Earth Radiant Energy System

COTS Commercial off-the-shelf Software

CSMS Communications and Systems Management Segment (ECS)

CRC Cyclic Redundancy Code

CSC Coordinate System Conversion

CUC Constant and Unit Conversions

DAAC Distributed Active Archive Center

DCE Distributed Computing Environment

DCN Document Change Notice

DCW Digital Chart World

DDF Data Distribution Facility

DEM Digital Elevation Model

DDTS Distributed Defect Tracking System

DPFT Data Processing Focus Team

DTM Digital Terrain Model

ECI Earth Centered Inertial

ECR Earth Centered Rotating

ECS EOSDIS Core System

EDHS ECS Data Handling System

EDOS EOS Data and Operations System

EOS Earth Observing System

EOSAM EOS AM Project (morning spacecraft series)

EOSDIS EOS Data and Information System

EOSPM EOS PM Project (afternoon spacecraft series)

EPH Ephemeris Data Access

ESDIS Earth Science Data and Information System

ET Ephemeris Tool

FDF Flight Dynamics Facility

FOV Field-of-View

ftp file transfer protocol

GAST Greenwich Apparent Sidereal Time

GCT Geo-Coordinate Transformation

GMST Greenwich Mean Sidereal Time

GPS Global Positioning System

GSFC Goddard Space Flight Center

HAIS Hughes Applied Information Systems

HDF Hierarchical Data Format

HDF-EOS Hierarchical Data Format - Earth Observing System

HITC Hughes Information Technology Company

http hypertext transport protocol

I&T Integration & Test

I/O input/output

IEEE Institute of Electrical and Electronic Engineers

IMS Information Management System (ECS)

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

LaRC Langley Research Center

MOO Maintain and Operation

MCF Metada Configuration File

MDUE Missing Data Unit Entry

MEM Memory Management

MET Metadata

MODIS Moderate-Resolution Imaging Spectroradiometer

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

NCR Nonconformance Report

NCSA National Center for Supercomputer Applications

netCDF network Common Data Format

NMC National Meteorological Center

PACOR Packet Processor

PC Process Control

PGE Product Generation Executive

PCF Process Control File

PDS Production Data Set

PDPS Planning & Data Production System

PCF Process Control File

PDR Preliminary Design Review

PGE Product Generation Executive (formerly Product Generation Executable)

PGS Product Generation System (ECS)

PGSTK Product Generation System Toolkit

POSIX Portable Operating System Interface for Computer Environments

QA Quality Assurance

QAC Quality and Accounting Capsule

RDBMS Relation Data Base Management System

RPC Remote Procedure Calls

RRDB Recommended Requirements Database

SCF Science Computing Facility

SDP Science Data Production

SES Scheduling and Execution Subsystem

SDPS Science Data Processing Segment

SDPF Science Data Processing Facility

SGI Silicon Graphics International

smf Collection of utilities and library routines used for generating SMFs and

manipulating SMF-defined status values and messages

SMF Status Message File

SPSO Science Processing Support Office

SSM/I Special Sensor for Microwave Imaging

TAI International Atomic Time

TBD To Be Determined

TD Time Date Conversion

TDB Barycentric Dynamical Time

TDRSS Tracking and Data Relay Satellite System

TDT Terrestrial Dynamical Time

TLCF Team Leader Computing Facility

TRMM Tropical Rainfall Measuring Mission (Joint US - Japan)

TSS (TDRSS) Service Session

UARS Upper Atmosphere Research Satellite

URL Universal Research Locator

US United States

USNO U.S. Naval Observatory

UT Universal Time

UTC Universal Coordinated Time

UTCF Universal Time Correlation Factor

UTM Universal Transverse Mercator

VCDU Virtual Channel Data Unit

VDD Version Description Document

VPF Vector Product Format

WWW World Wide Web