Return to NETL Home
 
Go to US DOE
 

Publications
News Release

Release Date: January 19, 2006

 
Significant Milestone Achieved in SECA Fuel Cell Development Program
GE Successfully Tests Solid Oxide Fuel Cell Prototype, Becomes First SECA Industry Team to Enter Second Phase of Program

MORGANTOWN, W. VA - A prototype of the first fuel cell capable of being manufactured at a cost approaching that of conventional stationary power technology has been successfully tested as part of the U.S. Department of Energy's Solid State Energy Conversation Alliance (SECA) program.

GE Hybrid Power Generation Systems, of Torrance, Calif., received high marks for the recently completed testing of its prototype solid oxide fuel cell (SOFC) system. The prototype exceeded DOE targets for availability, efficiency, endurance, and estimated production cost. As a result, GE was green-lighted for phase II of the SECA program, with its more stringent performance and cost targets. GE is the first of six SECA industry teams to complete phase I of the program.

"The vision of an economy driven by clean and economical fuel cells has taken a major step toward reality through this successful prototype," said SECA Coordinator Wayne Surdoval. "GE's success lets us know that the environmentally sound, low-cost fuel cells of the future are within our reach."

While the environmental and efficiency benefits of fuel cells have been well known for many years, this is the first fuel cell prototype with the low cost potential needed for the technology to become commonplace in energy markets. The cost of GE's prototype system is estimated at $724 per kilowatt for an annual production of 50,000 units, surpassing the SECA phase I target of $800 per kilowatt.

"Progress in cost reduction is critical to the widespread deployment and market penetration of SOFC technology," said SECA Project Manager Travis Shultz. "At $400 per kilowatt-the SECA phase III target, and nearly one-tenth the cost of power-generating fuel cells currently sold on the market-fuel cells would compete with traditional gas turbine and diesel electricity generators for stationary applications, and would become viable auxiliary power suppliers for the transportation sector."

The Energy Department projects that SECA technology will save the Nation more than $50 billion by 2025 through increased efficiency and lower fuel costs.

During testing, GE's SOFC system operated at an availability of 90 percent, exceeding the SECA phase I target of 80 percent. A peak power of 5.4 kilowatts was achieved on methane fuel, within the target range of 3-10 kilowatts. An efficiency of 41 percent was realized, exceeding the phase I target of 35 percent for stationary applications. Observed steady-state power degradation was less than 3.6 percent per 1,000 hours, below the phase I target of 4 percent per 1,000 hours.

A fuel cell is an electrochemical device that converts the chemical energy of a fuel (hydrogen, coal, natural gas, gasoline, or diesel) into electrical energy without combustion. The absence of combustion minimizes the formation of pollutants and significantly improves electrical power generation efficiency. Near-zero-emission SOFC systems generate electricity nearly twice as efficiently as conventional means-reducing CO2 emissions and extending fossil fuel reserves.

"Because of its advantages over conventional power generation, SOFC technology is well-positioned for central and distributed power generation applications," said Shultz. "SOFC technology provides energy security by enhancing America's use of coal, reducing our dependence on imported fuels, and making the electric grid less vulnerable to the threat of terrorism."

The SECA program was initiated in the fall of 1999 as an alliance between government, industry, and the scientific community to capitalize on the advantages of SOFC technology and develop SOFCs that could eventually be sold in virtually every market needing clean, affordable electric power.

As a result of GE's phase I successes, the Energy Department has approved their application for the second phase of the SECA effort, making GE the first SECA industry team to enter phase II. GE will continue pursing the SOFC technology and manufacturing advances required to ensure a clean, low-cost, and efficient source of electrical power for the future.

Two Department of Energy national laboratories, the National Energy Technology Laboratory and Pacific Northwest National Laboratory, spearhead the SECA program. For more information, visit the SECA website at http://www.seca.doe.gov/.

 

Contact: David Anna, DOE/NETL, 412-386-4646