Thermal \& Fluids Analysis Workshop(TFAWS) AUGUST 18-22, 2003

Supersonic Hypersonic Arbitrary Body Program (S/HABP)

David Adamczak
Amarshi A. Bhungalia
AFRL/VA
Air Force Research Lab

What is S/HABP

S/HABP is a supersonic and hypersonic aerodynamic program that can compute the aerodynamic characteristics of complex arbitrary threedimensional shapes utilizing engineering level methods

S/HABP has its origins in the Gentry code from Douglas Airaraft circa 1964

AFRL has maintained and sponsored development of several versions over the years and a new version that is PC based is under development

Current Code is contrined in several routines

- VECC - Graphical User interface
- Mk5exe- latest S/HABP exeatable
- Utilities routines - XY plotting and trim

What's new in current version of S/HABP

Latest version is S/HABP Mark 5-contains

- Upgraded viscous level 2 routines and aero-heating methods
- Unix GUI
- Multiple control defiledions
- Trimmed aerodynamics
- Stability derivative methods
- Flowfield/Shodk shape

Geometry Inputs

S/HABP uses a x, y, z wire frame mesh for geometry input
Several other geometry generation routines exist in the code but are not widely used

Lowest level of geometry used in the analysis is a quadrilateral element

Geometry Inputs

Geometry is organized by panels and components for later analysis A nal ysis methools are applied at a component level

Can deflect components to allow vehide trim analysis

Aero Analysis

Aerodynamic analysis is broken down into runs
User can analyze multiple runs to form a case
Components Can later be summed to get total forces \& moments or just component of interest

Can match Mach \& Altitude points or wind tunnel test conditions
Air or Helium gases
Can run alpha \& beta sweeps induding dynamic pitch, yaw, roll rates
Can calculate

- Invisaid Surface pressures - windward \& Leeward
- Viscous Forces
- Flow fields
- Component shielding
- Streamlines

Inviscid Analysis

Windward Invisaid surface pressures are calculated by impact methods (Newtonian flow) with many choices available

- Modified Newtonian
- Modified Newtonian + PrandtMeyer
- Tangent-Wedga
- Tangent-Wedge Emppirica
- Tangent-Cone
- Inclined-cone
- Van dyke unified
- Shock Expansion
- Free Moleaular Flow
- Input Presure Coefficient
- Dahlem-Buck empirica!

Inviscid Analysis

Leeward Inviscid surface pressures are calculated by shadow methods

- Newtonian
- Modified Newtonian + Prandt-

Meyer

- Prandt-Meyer expansion
- Indined-cone
- Van dyke unified
- High Mach Base pressure
- Shock Expansion
- Free Moleaular Flow
- Input Presure Coefficient
- Dahlem-Buck Mirror
- ACM Empirical
- Half Prandt-Meyer

Viscous Analysis

Viscous skin friction forces can be calculated with two methods

- Level I

Skin friction based on local Reynolds number and input flow initial running length

- Level II

Streamlines are ganerated on which the boundary layer properties arecalculated

Skin friction data from B.L. then interpolated to elements on geometry

Flowfield Analysis

Off body flow fields can be calculated or input

- Shodk expansion method
- Simple methods
* Wedge flow * Prandit-Meyer expansion * Coneflowfield
* Newtonian Prandt-Meyer Flowfield
- Input data can also be entered for flowfield and surface pressures.

Shielding Analysis

Component shielding effects can also be accounted for
Accounts for effects of one part of the vehide blocking theflow onto another at angle of attack
i.e. A vertical tail being hidden behind a body at high angle of attadk and becoming ineffective

User Limitations

Newtonian flow model
Useful over a wide range of Mach numbers - Mach 2 and up
User must make correct choices for methods to get "good results"
Level one viscous anal ysis is user dependent on input flow running lengths
Level 2 viscous analysis dependent on streamlines

Output Sample Data

CL vs Angle of Attack
Mach $=23.00$ Altitade $=240000$.

LD vs Angle of Artack Mach $=23.00$ Altitude= 240000 .

S/HABP Application to Thermal Protection System (TPS) Sizing and optimization for RM LS Vehide

Summary

The Supersonic/Hypersonic Arbitrary Body Program (SHABP) calculates the aerodynamic coefficients arbitrary bodies for Mach numbers between 1.5 and 25, and for angles between 0180 degrees. SHABP has been used to study the aerodynamic characteristics of reentry vehicles (RVs) for both Tactical Ballistic Missiles (TBMs) and Intercontinental Ballistic Missiles (ICBMs) as well as hyersonic cruise and launch vehicles. The SHABP engineering tool also computes rarefied aerodynamics of vehicles designed to operate in the transitional flow regime between completely continuum and free-molecular flows. SHABP contains a collection of gas/surface interaction models and an aerodynamic bridging procedure for use on calculating aerodynamic properties between the various regimes

