North Aleutian Basin Play 2: Tolstoi (Eocene-Oligocene)

Geological Assessment

GRASP UAI: AAAAA HAC
Play Area: 10,890 square miles
Play Water Depth Range: 15-300 feet
Play Depth Range: 4,000-20,000 feet
Play Exploration Chance: 0.1404

Play 2, Tolstoi (Eocene-Oligocene), North Aleutian Basin OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas

Assessme	nt Results as o	f November 2	005								
Resource Commodity	Resources *										
(Units)	F95	Mean	F05								
BOE (Mmboe)	91	568	1,293								
Total Gas (Tcfg)	0.404	2.501	5.693								
Total Liquids (Mmbo)	19	123	280								
Free Gas** (Tcfg)	0.401	2.476	5.640								
Solution Gas (Tcfg)	0.003	0.025	0.053								
Oil (Mmbo)	9	62	139								
Condensate (Mmbc)	10	61	141								

^{*} Risked, Technically-Recoverable

F95 = 95% chance that resources will equal or exceed the given quantity

F05 = 5% chance that resources will equal or exceed the given quantity

BOE = total hydrocarbon energy, expressed in barrels-of-oilequivalent, where 1 barrel of oil = 5,620 cubic feet of natural gas

Mmb = millions of barrels

Tcf = trillions of cubic feet

Table 1

Play 2, the "Tolstoi" play, is the second most important play in the North Aleutian Basin OCS Planning Area, with 25% (568 Mmboe) of the Planning Area energy endowment (2,287 Mmboe). The overall assessment results for play 2 are shown in table 1. Oil and gas-condensate liquids form 22 percent of the hydrocarbon energy endowment of play 2. Table 5 reports the

detailed assessment results by commodity for play 2.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of North Aleutian basin play 2. Table 4 reports the risk model used for play 2. The location of play 2 is shown in figure 1.

The Tolstoi play sequence corresponds in the North Aleutian Shelf COST 1 well to the lower part of the Stepovak Formation and the entire Tolstoi Formation. The play sequence ranges in age from early Eocene to early Oligocene. In onshore areas, rocks correlative to play 2 were penetrated by 5 wells (Becharof Lake 1, Great Basins 1, Great Basins 2, Hoodoo Lake 2, and David River 1/1A wells). Offshore, in eastern St. George Basin, correlative rocks were penetrated by the St. George Basin COST 2 well. The North Aleutian Shelf COST 1 well is the most important point of control for the Tolstoi play sequence in the North Aleutian basin

Gas is pooled in several Tolstoi Formation intervals in the Becharof Lake 1 well, where flow tests of separate intervals recovered gas at rates ranging from 10 to 50 mcfg/d, or a total of 90 mcfg/d for all three zones. In the Becharof Lake 1 well, cuttings headspace gas carbon isotopes (AOGCC, 1985) for the Tolstoi Formation range from -32.8 to -43.9 $(\delta^{13}C \text{ [PDB]})$, indicating thermogenic gas. Gas was recovered in flow tests from two intervals in the Tolstoi Formation at rates of 5 to 10 Mcfgpd (with 300-400 bwpd) in the David River 1/1A well. Gas shows were associated with Tolstoi Formation coals in the North Aleutian Shelf COST 1 well as well as in the 5 Tolstoi penetrations onshore.

^{**} Free Gas Includes Gas Cap and Non-Associated Gas

Oil shows were noted in the Tolstoi Formation in the North Aleutian Shelf COST 1, Becharof Lake 1, Hoodoo Lake 2, and David River 1/1A wells).

Most of the oil and gas resources of play 2 are associated with simple anticlines draped over basement uplifts, or, in truncation traps (against faults and unconformities) on the flanks of basement uplifts. Mapped traps range up to 53,000 acres in closure area. The upper part of the Tolstoi play sequence (lower part of Stepovak Formation) passes over the crests of basement uplifts. In the North Aleutian Shelf COST 1 well, the upper part of the Tolstoi play sequence contains porous and permeable sandstones that are sparse (236 feet net, or 10% of interval) and thin (maximum = 43 feet). A regional shale seal in the lower part of the Stepovak Formation is prominent within the upper part of the Tolstoi play sequence. The lower part of the Tolstoi play sequence is involved in fault- and stratigraphictruncation traps on the flanks of basement uplifts. Sandstones are abundant in the lower Tolstoi play sequence (1,910 feet net, 30% of sequence) in the North Aleutian Shelf COST 1 well, but are thin-bedded (maximum = 57 feet) and impermeable (diagenesis of volcanic particles has resulted in collapse of framework grains; 84% of core samples have <10 md permeability). No oil source rock formation has been identified in the North Aleutian basin but coals and shales with Type III (coal-like) organic matter are abundant and could form sources for both biogenic and thermogenic gas, condensate, and minor oil. For this reason, play 2 is modeled as gas-prone. Oil shows were encountered in the interval from 15,300 to 16,800 feet (corresponds to 0.78% to 1.04% Ro) in the North Aleutian Shelf COST 1 well. Carbon isotopes on extracts from the show interval correlate to extracts and oils from Tertiary-age rocks in northern

Cook Inlet as opposed to extracts and oils from Mesozoic-age source rocks on the Alaska Peninsula and beneath Cook Inlet. These data suggest that Mesozoic oil source beds do not underlie North Aleutian basin in the area of play 2. The hypothetical petroleum system for play 2 assumes that gas and minor liquids migrating out of Tertiary rocks in the deep parts of North Aleutian basin rise along faults bounding basement uplifts to charge shallow reservoir beds draped over uplifts or truncated on uplift flanks.

The major risk factors for play 2 relate to: 1) **reservoir** (thin sandstones are porous in the upper Tolstoi play sequence but are impermeable in the lower Tolstoi play sequence); and 2) **source adequacy** (no attractive source formation in known Tertiary-age rocks; Mesozoic rocks beneath play 2 are pervasively invaded by plutons and cannot form a source for petroleum).

A maximum of 44 hypothetical pools is forecast by the integration of the risk model and the prospect numbers model for play 2. These 44 pools range in mean conditional (un-risked) recoverable volumes from 7 Mmboe (pool rank 44) to 208 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 61 Mmboe (F95) to 467 Mmboe (F05), or, in the gas case, from 0.34 Tcfge (F95) to 2.62 Tcfge (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 2.

Play 2, Tolstoi, North Aleutian Basin OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools

Accacement	Reculte as	of November 2005	

Pool Rank	ВО	E Resourc	es *
1 ooi rank	F95	Mean	F05
1	61	208	467
2	34	124	248
3	22	90	182
4	16	71	146
5	13	59	122
6	11	51	107
7	9	45	96
8	8	41	88
9	7	38	82
10	6	35	79

^{*} Conditional, Technically-Recoverable, Millions of Barrels Energy-Equivalent (Mmboe), from "PSRK.out" file

F95 = 95% chance that resources will equal or exceed the given quantity

F05 = 5% chance that resources will equal or exceed the given quantity

BOE = total hydrocarbon energy, expressed in barrels-of-oilequivalent, where 1 barrel of oil = 5,620 cubic feet of natural gas

Table 2

In the computer simulation for play 2, a total of 61,326 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 12 contains the largest share (18,963, or 31%) of simulation pools (conditional, technically recoverable BOE resources) for play 2. Pool size class 12 ranges from 64 to 128 Mmboe. The 5 largest simulation pools for play 2 fall within pool size class 16, which ranges in size from 1,024 to 2,048 Mmboe (or 5.8 to 11.5 Tcfge). Table 6 reports statistics for the simulation pools developed in the GRASP computer model for play 2.

GRASP Play Data Form (Minerals Management Service-Alaska Regional Office)

<u>Basin</u>: North Aleutian Basin <u>Play Number</u>: 2 <u>Play UAI Number</u>: AAAAA HAC <u>Assessor(s)</u>: K.W. Sherwood, D. Comer, J. Larson <u>Play Name</u>: Tolstoi (Eocene-Oligocene)

Date: December 2004

<u>Play Area</u>: 10,890 mi² (7 million acres) <u>Reservoir Thermal Maturity</u>: 0.30%-1.65% Ro Play Depth Range: 4,000 to 20,000 feet (mean = 12,000 ft)

Expected Oil Gravity: 35° API

Play Water Depth Range: 15-300 feet (mean = 250 ft)

POOLS Module (Volumes of Pools, Acre-Feet)

			,										
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Prospect Area (acres)- Model Input*	6787 (act)		6567 (fit)		11169	15925/9790			28028				52653
Prospect Area (acres)- Model Output**	1518	5490	6647	9321	13549	15555/8547	19702	23776	27111	33179	36000	38000	52353
Fill Fraction (Fraction of Area Filled)	0.16	0.28	0.3	0.34	0.4	0.41/0.10	0.48	0.51	0.53	0.6	0.65	0.69	1
Productive Area of Pool (acres)	455	2031	2509	3631	5447	6442/3960	8173	10082	11572	14470	16000	17000	31312
Pay Thickness (feet)	31	49	53	60	69	71/17	80	86	91	98	107	113	171

^{*} model fit to prospect area data in BESTFIT

MPRO Module (Numbers of Pools)

Input Play Level Chance	1	
Output Play Level Chance*	0.9904	

Prospect Level Chance 0.1404

Exploration Chance 0.1404

0.1

0.9

* First Occurrence of Non Zero Pools As Reported in PSUM Module

Risk Model	Play Chance	Petroleum System Factors	Prospect Chance
		Minor gas pools tested (90 Mcfg/d) in Becharof Lake 1 well	
		Reservoir (impermeable through most of sequence)	0.216
		Source (mainly Tertiary coals and Type III shales)	0.65

Fractile			F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00	
Numbers of Prospects in Play	16	20	23	30	40	43.65/19.72	51	60	65	75	90	100	200
Numbers of Pools in Play	1	2	2	4	6	6.13/3.60	8	9	11	12	15	18	44

Zero Pools at F99.06

Minimum Number of Pools 1 (F99.00) Mean Number of Pools 6.13 Maximum Number of Pools 44

POOLS/PSRK/PSUM Modules (Play Resources)

Fractile F100		F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Oil Recovery Factor (bbl/acre-foot) 25 57		57	75	113	178	203/118	266	322	364	430	480	510	803
Gas Recovery Factor (Mcfg/acre-foot) 18 351		433	630	921	997/497	1285	1509	1657	1933	2100	2300	3200	
Gas Oil Ratio (Sol'n Gas)(cf/bbl) 56 162		195	267	376	426/220	531	638	723	871	1073	1100	1110	
Condensate Yield ((bbl/Mmcfg) 1 14				21	25	25/17	29	32	34	35	37	39	50
Pool Size Distribution Statistics from POOLS	:	μ (mu)= 11	1.079	σ² (sigma	squared)= 0.828		Random N	lumber Gei	nerator See	ed= 668,076	3		

BOE Conversion Factor (cf/bbl) 5620
Probability Any Pool is 100% Oil 0.1
Probability Any Pool is 100% Gas 0.8
Probability Any Pool is 100% Gas 0.8

Table 3. Input data for North Aleutian basin play 2, 2006 assessment.

^{*} output from @RISK after aggregation with fill fraction

Risk Analysis Form - 2006 National Assessment Assessment Province: Assessor(s): K.W. Sherwood, D. Comer, J. Larson Play UAI: Play UAI: AAAAA HAC Date: 1-Jan-05

For each component, a *quantitative* probability of success (i.e., between zero and one, where zero indicates no confidence and one indicates absolute certainty) based on consideration of the *qualitative* assessment of **ALL** elements within the component was assigned. This is the assessment of the probability that the minimum geologic parameter assumptions have been met or exceeded.

				Play Chance Factors	Averge Conditional Prospect Chance ¹
1.	Hyd	drocarbon Fill component (1a * 1b * 1c)	1	1.0000	0.6500
		Presence of a Quality, Effective, Mature Source Rock			•
		Probability of efficient source rock in terms of the existence of sufficient volume of mature source rock of adequate quality located in the drainage area of the reservoirs.	1a	1.00	0.65
		Effective Expulsion and Migration Probability of effective expulsion and migration of hydrocarbons from the source rock to the			1
		reservoirs.	1b	1.00	1.00
		Preservation Control of the control			
		Probability of effective retention of hydrocarbons in the prospects after accumulation.	1c	1.00	1.00
2.	Res	servoir component (2a * 2b)	2	1.0000	0.2160
	a.	Presence of reservoir facies			•
		Probability of presence of reservoir facies with a minimum net thickness and net/gross ratio (as specified in the resource assessment).	2a	1.00	1.00
		Reservoir quality			
		Probability of effectiveness of the reservoir, with respect to minimum effective porosity, and permeability (as specified in the resource assessment).	2b	1.00	0.22
3.	Tra	p component (3a * 3b)	3	1.0000	1.0000
		Presence of trap			
		Probability of presence of the trap with a minimum rock volume (as specified in the resource assessment).	3a	1.00	1.00
		Effective seal mechanism			
		Probability of effective seal mechanism for the trap.	3b	1.00	1.00
<u>کرر</u>	rall	Play Chance (Marginal Probability of hydrocarbons, MPhc)			
Οv∈		Play Chance (Marginal Probability of hydrocarbons, MPhc) (1 * 2 * 3) Product of All Subjective Play Chance Factors		1.0000	
	rag	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance ¹		1.0000	0.1404
	rag	(1 * 2 * 3) Product of All Subjective Play Chance Factors		1.0000	0.1404
	rag	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance ¹	B of Gui		0.1404
Ave	erag	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors [†] Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance	3 of Gui	de	
Ave	erag	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3	3 of Gui	de	0.1404
Ave Exp	erage	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors [†] Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance	3 of Gui	de	
Ave	erage	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors f Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance (Product of Overall Play Chance and Average Conditional Prospect Chance)	3 of Gui	de	
Ave	erage	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors f Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance (Product of Overall Play Chance and Average Conditional Prospect Chance)	3 of Gui	de	
Ave Exp	erage	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors f Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance (Product of Overall Play Chance and Average Conditional Prospect Chance)	3 of Gui	de	
Ave Exp	erage	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors f Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance (Product of Overall Play Chance and Average Conditional Prospect Chance)	3 of Gui	de	
Ave	erage	(1 * 2 * 3) Product of All Subjective Play Chance Factors e Conditional Prospect Chance (1 * 2 * 3) Product of All Subjective Conditional Prospect Chance Factors f Assumes that the Play exists (where all play chance factors = 1.0) Must be consistent with play chance and prospect distribution See discussion on Page 3 ation Chance (Product of Overall Play Chance and Average Conditional Prospect Chance)	3 of Gui	de	

 Table 4. Risk model for North Aleutian basin play 2, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region
GRASP Model Version: 8.29.2005)
Computes the Geologic Resource Potential of the Play

Play UAI: AAAAAHAC Play No. World World Level Level Resources UNITED Country Level STATES OF **AMERICA** Region MMS ALASKA **REGION** Level Basin Level **NORTH ALEUTIAN BASIN**

Play Level - Play 2 Tolstoi Fm. (Eocene/Paleocene)

Geologist Sherwood / Comer / Larson

Remarks 2005 Assessment

Run Date & Time: Date 19-Sep-05 Time 14:07:43

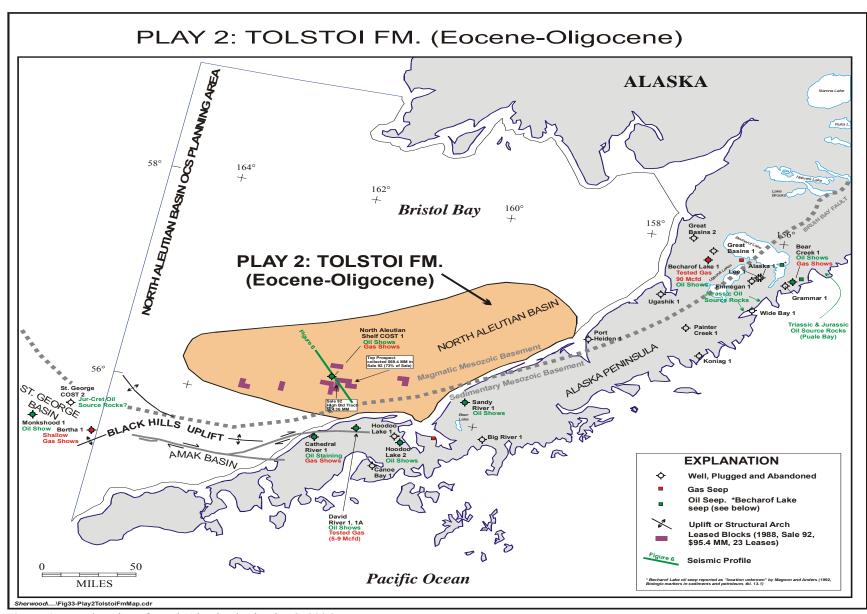
Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	568,290	395,110
Oil (Mbo)	61,795	103,820
Condensate (Mbc)	61,389	45,180
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	2,476,000	1,778,300
Solution Gas (Mmcfg)	25,468	47,513

10000 (Number of Trials in Sample)

0.9904 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used


Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100	0	0	0	0	0
99.99	0	0	0	0	0
99	8,529	957	854	37,254	501
95	91,313	9,327	10,015	401,140	3,338
90	152,800	14,736	16,566	676,820	5,973
85	202,290	21,361	20,528	891,910	9,562
80	248,520	38,189	25,808	1,023,500	13,536
75	289,610	23,461	32,102	1,304,400	11,009
70	329,450	36,536	34,516	1,437,400	14,785
65	369,140	36,695	40,797	1,624,500	14,591
60	406,520	51,571	43,941	1,724,200	23,685
55	449,820	51,904	49,642	1,935,900	21,375
50	492,540	53,987	52,365	2,150,300	20,099
45	537,690	62,498	57,387	2,323,600	24,458
40	584,360	59,474	63,106	2,571,400	23,751
35	633,610	62,240	68,665	2,798,700	26,501
30	694,240	64,037	75,519	3,088,800	28,563
25	764,980	84,186	83,493	3,323,300	33,530
20	840,410	93,682	90,457	3,644,700	43,567
15	931,730	105,510	99,330	4,037,100	48,038
10	1,072,100	133,200	113,950	4,583,200	52,730
8	1,141,400	145,060	120,540	4,864,600	57,111
6	1,231,400	148,240	130,040	5,298,200	58,476
5	1,293,200	139,440	140,810	5,640,200	52,824
4	1,367,200	123,940	150,500	6,084,800	56,563
2	1,604,200	199,550	170,570	6,854,700	80,494
1	1,841,500	228,970	198,460	7,861,700	85,313
0.1	3,160,100	263,120	377,640	14,082,000	76,469
0.01	4,209,200	691,650	436,720	17,115,000	198,810
0.001	4,294,200	613,150	430,690	18,115,000	152,220

 Table 5. Assessment results by commodity for North Aleutian basin play 2, 2006 assessment.

	Classifica	ation and Size)	Poo	I Count Statis	stics		Pool	Types Co	ount	Mixed Po	ool Range	Oil Poo	l Range	Gas Po	ol Range	Total Po	ol Range			Pool Resource	Statistics (MMBOE)	
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Pool	Gas Pool	Min	Max	Min	Max	Min	Max	Min	Max		Min	Max	Total Resource	Average Resource
1	0.0312	0.0625	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	ľ	0.000000	0.000000	0.000000	0.0000
2	0.0625	0.125	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
3	0.125	0.25	2	0.003261	0.0002	0.000202		0	0	2	0	0	0	0	1	1	1	1		0.137452	0.224087	0.361539	180.7695
4	0.25	0.5	3	0.004892	0.0003	0.000303		0	0	3	0	0	0	0	1	1	1	1		0.301342	0.496114	1.206918	402.3058
5	0.5	1	34	0.055441	0.0034	0.003433		1	0	33	1	1	0	0	1	1	1	1		0.545680	0.955496	25.380665	746.4901
6	1	2	105	0.171216		0.010601		2	3	100	1	1	1	1	1	1	1	1		1.024939	1.980937	160.117494	1.5249
7	2	4	310	0.505495	0.031	0.031297		12	13	285	1	1	1	1	1	2	1	2		2.013871	3.996668	954.782219	3.0799
8	4	8	944	1.539315	0.0944	0.095305		68	80	796	1	2	1	2	1	3	1	3		4.008479	7.993170	5741.481000	6.0820
9	8	16		4.314646		0.267138		225	333	2088	1	2	1	2	1	4	1	5		8.000040	15.997020	32478.058000	12.2743
10	16		8004	13.05156	0.8004	0.808077		780	819	6405	1	3	1	3	1	6	1	7		16.001224	31.997773	195708.665000	24.4513
11	32		16546	26.9804	1.6546			1662	1633	13251	1	4	1	4	1	14	1	15		32.000627	63.994934	784143.461000	47.3917
12	64		18963	30.921633		1.914488		1920	1780	15263	1	4	1	5	1	11	1	15		64.003268	127.995753	1726921.000000	91.0679
13	128		10866	17.718422	1.0866	1.097022		1033	1123	8710	1	3	1	4	1	8	1	10		128.004998	255.980052	1897762.000000	174.6514
14	256		2633	4.293448	0.2633	0.265825		252	352	2029	1	2	1	2	1	4	1	4		256.041355	511.094438	866771.628000	329.1954
15	512		265	0.432117	0.0265	0.026754		23	39	203	1	1	1	1	1	2	1	2		512.167367	1009.363000	166342.740000	627.7084
16	1024	2048	5	0.008153	0.0005	0.000505		0	1	4	0	0	1	1	1	1	1	1		1050.299000	1415.393000	5913.587000	1.1827
17	2048	4096	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
18	4096	8192	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
19	8192	16384	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
20	16384	32768	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
21	32768	65536	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
23	131072	262144	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
24	262144	524288	0	0	0	0		0	0	0	0	U	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
25	524288	1048576	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.0000
t Clas			0	0	0	0	Below Class	0	0	0									Below Class	0.000000	0.000000	0.000000	0.0000
		Totals	61326	100	6.1326	6.191419	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.0000

Table 6. Statistics for simulation pools created in computer sampling run for North Aleutian basin play 2, 2006 assessment.

Figure 1. Map location of North Aleutian basin play 2, 2006 assessment.