

Maximal Information Systems

Hugh Durrant-Whyte
ARC Federation Fellow, Research Director
ARC Centre of Excellence for Autonomous Systems
The University of Sydney, Australia

hugh@cas.edu.au

The Thesis

- Large Scale "Systems of Autonomous Systems"
- We would like to:
 - Provide a quantitative model of system components
 - Reason a priori about combinations of components
 - Predict performance of complete systems

Information provides a measure for a large class of system designs

Information: A Reminder

- Entropic Information
 - Measures surprise
 - Is additive by construction

$$H_P(\mathbf{x}) = -E[\log P(\mathbf{x})]$$

- Mutual Information
 - Belief compression
 - Incorporates "context"

$$I(\mathbf{x}, \mathbf{y}) = E \left[\log \frac{P(\mathbf{x} \mid \mathbf{y})}{P(\mathbf{x})} \right]$$

- Combinations are additions:
 - Sensing, control
 - Abstraction

$$H(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}) + H(\mathbf{y}) - I(\mathbf{x}, \mathbf{y})$$

And now a story about information in systems of systems

Decentralised Data Fusion (DDF)

- Way back in 1988 ...
- A set of network Data Fusion methods:
 - Ad Hoc Network
 - Fusion at Sensor/Platform
 - No Central Fusion Site
 - Fully Scalable
- Decentralised Algorithms:
 - Information-methods
 - For target tracking
 - For cooperative navigation
 - For cooperative control

The Information Filter

$$P(\mathbf{x}(k) | \mathbf{Z}^k) = C.P(\mathbf{x}(k) | \mathbf{Z}^{k-1}) \prod_{j} P(z_j(k) | \mathbf{x}(k))$$

Log-Likelihood:

$$\ln P(\mathbf{x}(k) \mid \mathbf{Z}^k) = \ln P(\mathbf{x}(k) \mid \mathbf{Z}^{k-1}) + \sum_{j} \ln P(z_j(k) \mid \mathbf{x}(k)) + K$$

(Fisher or Canonical) Information form for Gaussians:

$$\hat{\mathbf{y}}(k \mid k) = \mathbf{P}^{-1}(k \mid k)\hat{\mathbf{x}}(k \mid k)$$

$$\mathbf{i}_{j}(k) = \mathbf{H}_{j}^{T} \mathbf{R}_{j}^{-1} \mathbf{z}_{j}(k)$$

$$\mathbf{Y}(k \mid k) = \mathbf{P}^{-1}(k \mid k)$$

$$\mathbf{I}_{j}(k) = \mathbf{H}_{j}^{T} \mathbf{R}_{j}^{-1} \mathbf{H}_{j}$$

The Information Filter

Observation updates are simple sums (unlike KF):

$$\hat{\mathbf{y}}(k \mid k) = \hat{\mathbf{y}}(k \mid k-1) + \sum_{j} \mathbf{i}_{j}(k)$$

$$\mathbf{Y}(k \mid k) = \mathbf{Y}(k \mid k-1) + \sum_{j} \mathbf{I}_{j}(k)$$

Time/Structure updates are Dual to state (KF) Observation Updates:

$$\hat{\mathbf{y}}(k+1|k) = \hat{\mathbf{y}}(k|k) + \mathbf{\Omega}[\hat{\mathbf{y}}(k|k) + \mathbf{Y}(k|k)\mathbf{B}\mathbf{u}(k)]$$

$$\mathbf{Y}(k+1|k) = \mathbf{Y}(k|k) - \mathbf{\Omega}(k)\mathbf{\Sigma}(k)\mathbf{\Omega}^{T}(k)$$

DDF: The Basic Idea

Operation:

- Fusion of local sensor data and communicated states
- Common, re-configurable, ad-hoc network interface
- No global fusion location
- Fully scalable structure

Operation of Sensor Nodes

- Nodes fuse information from:
 - Local observations, Local predictions, and
 - Communicated information
- Focus on Channels:
 - Communicate local information gain (MI)
 - Assimilate information gains from neighbourhood

Scaling The Network

PerMIS August 2006

Issues of Timing

Early DDF Projects

- SKIDS (1986-1991): Prove essential idea
 - Distributed Tracking of people
 - Cameras, optical barriers, etc
- ISSS (1990-1994): Scalability
 - Large Scale Process plant
 - 250 distributed sensors
- OxNav (1991-1995): Modularity, management
 - Decentralised Navigation
 - Decentralised Sensor Management

OxNav(1994): A system of modular information components

Navigation and Sensor Management

"Data Fusion and Sensor Management: An Information-Theoretic Approach"

J. Manyika and H. Durrant-Whyte, Prentice Hall 1994. Now only \$900 on Amazon!

Modular Control

"Decentralised Control", Arthur Mutambara, CRC Press 1995

In 1995 nobody was interested in sensor networks
So I went to Australia to do Field Robotics
Then ...

ANSER I: Autonomous Navigation and Sensing Experimental Research

Objectives:

- To deploy a fully decentralised data fusion system on a group of four or more UAVs
- To demonstrate functions of target tracking and simultaneous localisation and mapping, decentralised on many sensors in a network of platforms
- To demonstrate, algorithmically and practically, key network-centric features: Modularity, Scalability, Flexibility and Survivability

Flight Platforms

- Four Platforms Delta Wing Configuration
- Max Speed 80kts
- Payload Capacity 20kg
- Wing Span 3m
- Multiple Sensors per platform
- All modular pay-loads
- All parts interchangeable

On-Board Components

Mission Planning System

Multi-Vehicle Flights (2000-2001)

ANSER I: Conclusions

Information Communications is key:

- Timing, delay, asequent and burst communication
- Maintaining integrity, extensible network operation
- Channel and information management

Data Fusion issues:

- Registration and platform bias estimation
- Cross-platform data association
- Weak target information not captured well by information filter alone

Non-technical issues

- BAE Systems Chairman's Gold Award
- Output integrated in a number of BAE Systems UK, US and Australian defence programmes

Decentralised Control

- Mutual Information as a metric for sensor management and control?
- Maximise the gain in information:
 - Tracking
 - Exploration
 - Search

• ...

Mutual Information Gain as a Control Metric

Mutual Information is an a priori measure of average Information gain following observation

$$I(\mathbf{x}(t):\mathbf{z}(t)) = \mathbf{E}\left[\log\left(\frac{\mathbf{P}(\mathbf{x}(t)|\mathbf{z}(t))}{\mathbf{P}(\mathbf{x}(t))}\right)\right]$$
 Measures "compression" of posterior density

- Choose the sequence of observations z(t) which maximise mutual information gain over a horizon
- Observations depend on platform state x(t)
- State is governed by some control input u(t)
- Choose u(t) to maximise information gain

Mutual Information in DDF

- Mutual Information or information gain, is exactly what is communicated in the DDF!
- Can be easily exploited in sensor management, communications and platform control

Information and Systems Design

Ben Grocholsky, PhD U. Sydney 2002

Example Cooperative Control

- The trajectory that maximises information
- Information shared (DDF)

- Inherits DDF properties:
 - Scalability
 - Survivability

Future Cooperative UAVs

- How best to use tactical UAV fleets?
- A list of candidate targets of interest
- Coordinate a UAV fleet with mixed sensors to:
 - Locate,
 - identify and
 - prosecute targets
- Demonstrate this

Set-up

- DDF Enabled on all platforms
- Mutual information on target location and IDs
- A set of UAV manoeuvres:
 - Point-to-Point
 - Orbits
- K-step look-ahead

$$\mathbf{I}_{Orbit} = \frac{R\omega}{V} \int_{\varphi s}^{\varphi_e} \mathbf{I} d\varphi$$

Cooperative Demonstration

Two Vehicle Demonstration

From the Ground Station

ANSER II - Aims

BAE SYSTEMS

- Develop a general mathematical framework for probabilistic fusion in information networks.
- Address issues of efficient information communication and assimilation in information fusion networks.
- Develop explicit models of node performance and use these in designing and building networks of "systems of systems".
- Demonstrate these in combined air/ground human/autonomous sensory networks

ANSER II Demonstration Project (2004-06)

- Full Bayes DDF for fusion of heterogeneous data from UAVs, UGVs, human and data base sources
- Model general feature types; trees, buildings, dams, etc
- Identify and label features, integrate human inferences
- Real-time exploitation of network data by air, ground, human

Bayesian DDF Node Structure

Step I: Model Generation

- NLDR (ISOMAP) on image patches
- Find low-D representation for significant patches of interest
- Use VBEM to find number and centre for mixture model

$$P(\mathbf{z}, \mathbf{x}, \mathbf{s}) = P(\mathbf{z} \mid \mathbf{x}, \mathbf{s})P(\mathbf{x} \mid \mathbf{s})P(\mathbf{s})$$

Step II: Model Inference

 $P(\mathbf{z} \mid \mathbf{x}, \mathbf{s}) = P(\mathbf{z} \mid \mathbf{x} = [\mathbf{x}, \mathbf{s}])$ is the required likelihood for inference

Step III: Assigning Labels

Human DDF Node

- Human operator input:
 - Metric Information
 - Labels
 - Context
- On-line estimation of "operator likelihood"
- Anonymous network queries

Example External Data Source: Hyperspectral Imagery

Feature-Based Tracking

- General probability models:
 - Non-Gaussian location
 - Feature properties
 - Target IDs

System Configuration and Design

- Each module
 - Presents a likelihood
 - Generates a posterior
 - Computes a mutual information wrt a prior
- Mutual information in network determines
 - Who does what
 - Who talks to who
- Network properties
 - Survivable
 - Scalable

PerMIS August 2006

ORCA System Configuration File

Mission System Implementation

ANSER II System Demonstration

ANSER II Conclusions

- Fusion
 - General probabilistic models can be effectively decentralised
 - Modular, scalable, heterogeneous systems
 - Network management
- Systems design
 - Quantitative metrics for information-gathering systems
 - A priori and context dependent performance prediction
- This is a limited class of systems

Extending the Paradigm

- Information maximisation control:
 - Decentralised structure
 - Scalable and system-robust
- Other information-maximising control
 - Resource use (platform, communications)
 - Target cuing, hand-off, etc
 - Search
 - Exploration

Multi-UAV Simple Search

2000 4000

Exploiting Domain Knowledge: Dynamic, soft and hard constraints

Multi-UAV, Multi-Objective Control

Exploration

$$J_i^{(expl)} = \int_0^T [\omega_i \delta_i(t) (i_i(t) - i_{\max}(t)) + (\omega_i - 1) || \mathbf{\dot{u}}_i(t) ||] dt$$

Search

$$J_i^{(search)} = \int_0^T f(t)dt$$

Tracking

$$J_i^{(track)} = m \int_0^T \dot{v}(t)dt$$

Engagement

$$J_i^{(engage)} = T$$

- AFRL WP AFB Vehicles Directorate and AOARD
- Objectives:
 - A general information framework for cooperative control
 - On-line decentralised controllers for networks

Cooperative plume-source localisation

Putting the "physics" in the network

Human UAV Cooperation

Conclusions

- Information
 - Mathematical basis for network fusion
 - An a priori measure of performance
 - An integrated idea of context
 - A system design measure
- Future directions
 - Automate system design process
 - Extend complexity of information-gathering
 - Non-information problems and pay-off seperability

Questions?

