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1. Introduction

Most large sample surveys conducted by agencies such as the U.S. Bureau of the Census pro-
vide accurate statistics at the national level. Many policymakers and researchers, however,
also want to obtain statistics for smaller domains such as states, counties, school districts,
or demographic subgroups of a population. These domains are called small areas—so called
because the sample size in the area or domain from the survey is small. The goal is to
estimate θi, the mean value (or other characteristic) of a variable of interest y in small area
i, for some or all of the small areas.

Small area estimates of income and poverty are employed in the allocation of more than eight
billion dollars each year in the U.S. In that setting, no single source of information currently
being collected is capable of producing reliable estimates of the number of poor people
under age 18 in each county, or the number of poor children in each school district. Thus,
the current practice to estimate poverty at the state level (see National Research Council,
2000, p. 49) uses auxiliary information from tax returns, food stamp programs, and the
decennial census to supplement the data from the Current Population Survey (CPS). The
model used is based on that in the pioneering paper by Fay and Herriot (1979). Let θi be
the proportion of school-age children who are poor in state i. The direct estimate ȳi of θi is
calculated using data exclusively from the CPS, and V̂ (ȳi) is an estimate of the variance of
ȳi. A regression model for predicting θi using auxiliary information is

θi = α0 +
k∑

j=1

αjxji + vi (1)

where the xji’s represent covariates for state i (e.g., x2i is the proportion of people receiving
food stamps in state i) and vi (assumed to follow a N(0, σ2

v) distribution) is the model error
for state i. The regression parameters and σ2

v may be estimated using maximum likelihood.
The predicted value from the regression equation for state i is combined with the direct
estimate ȳi from the CPS according to the relative amounts of information present in each
estimate:

θ̂i = γ̂iȳi + (1− γ̂i)(α̂0 +
k∑

j=1

α̂jxji), (2)

where γ̂i = σ̂2
v/[σ̂

2
v + V̂ (ȳi)]. If the direct estimate is precise for a state, i.e., V̂ (ȳi) is small,

then γ̂i is close to one and θ̂i relies mostly on the direct estimate. Conversely, if the CPS
contains little information about state i’s poverty rate, then γ̂i is close to zero and θ̂i relies
mostly on the predicted value from the regression. The estimator in (2) generally has smaller
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mean squared error (MSE) than the direct estimator ȳi because it uses information available
from other sources. In the extreme case where area i has no observations from the CPS and
hence ȳi cannot be calculated, the improvement in MSE is infinite.

Traditionally, as is done for state estimates of school-age poverty, small area estimation
relies on a model relating the responses of interest in the small areas to each other and to
covariates. The model allows the estimate of θi to “borrow strength” from other small areas
through random effects terms and regression parameters. Small area estimation models have
been used in many settings to obtain more accurate estimates for subpopulations without
additional cost for data collection. A thorough review of research in small area estimation
is given in Rao (2003).

As detailed in Rao (2003), two main types of models are used in small area estimation,
distinguished by the nature of the auxiliary information. The model described above for
estimating poverty rates is an example of an area-level model : ȳi, the estimate of θi from the
survey, is related to area-level covariates. In an area-level model, the auxiliary information
does not need to be known for individual persons in area i, since the covariates are summary
information for the small areas. In a unit-level model, the response of interest for each person
in area i is modeled as a function of covariates available for that person. A unit-level model
might, for example, model log(income for jth person in area i) using covariates of tax return
and food stamp data for that person. The unit-level model thus requires that the covariate
values are known (and can be linked to the income data) for the persons in the survey.

Both unit- and area-level models assume that the model covariates are measured without
error. In many situations, though, auxiliary information is available that can help in the
estimation, but that information is not exact. Auxiliary information may be available from
another survey, or from an administrative source in which imputation has been used to
fill in missing values. In both of these cases, the auxiliary information is measured with
error—sampling and nonsampling error for survey data, and imputation error for incomplete
administrative data. For example, the American Community Survey (ACS) will sample
about 3 million households each year. For most small areas, the ACS will give relatively
precise estimates of quantities it measures, and thus can be used as auxiliary information
for estimating small area characteristics on many topics. The ACS still contains sampling
error for many small areas, however, and that error should be included in standard errors
reported for the estimates.

For another example, the U.S. National Crime Victimization Survey (NCVS) provides re-
liable estimates of victimization rates for the country as a whole. If separate estimates of
victimization rates are desired for each state, however, some states have very small sample
sizes, and standard errors using a direct estimate are unacceptably large. The same problem
occurs when one desires to estimate characteristics of subgroups of the population such as
victims of domestic violence—the sample sizes of domestic violence victims are not suffi-
ciently large to give adequate precision for estimates of interest (Ybarra and Lohr, 2002).
The Uniform Crime Reports (UCR), which provides statistics compiled by the FBI from
law enforcement agencies, could be used as auxiliary information; Wiersema et al. (2000)
found high correlations between NCVS and UCR estimates of number of victimizations using
data from ten metropolitan statistical areas (MSAs). The UCR data, however, have many
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limitations. They only include crimes known to police; moreover, reporting is voluntary so
many agencies have missing data. Even when agencies do report the data, reporting is not
uniform. Maltz (1999) discussed the extent of missing data in the UCR, and described some
current imputation schemes. For the UCR to be used as auxiliary information to the NCVS,
imputation errors need to be incorporated into estimates of precision.

Many survey designs in the U.S. are now being integrated to allow combination of estimates.
The U.S. National Health Interview Survey (NHIS) and National Health and Nutrition Ex-
amination Survey (NHANES) currently share the same primary sampling units (psu’s): the
psu’s selected for NHIS are used as a sampling frame for NHANES. NHIS is a stratified
multistage probability sample of about 100,000 persons (40,000 households) per year. The
design is described in detail in Botman et al. (2000). NHANES conducts medical examina-
tions of participants, however, and the mobile examination unit can only visit 15 psu’s per
year (about 5000 persons), as opposed to 358 psu’s for NHIS. Because of the small sample
size, NHANES data are usually accumulated over time in order to produce estimates. The
small sample sizes also cause state and local estimates from NHANES to have low precision.
The NHIS data provide more precise estimates of quantities measured at some localities, but
the data come from an interview rather than an examination: For example, in NHANES,
prevalence of diabetes may be estimated using the results of the medical exams, while in
NHIS respondents are asked questions about health problems. We would expect, though,
that the questionnaire results would be highly correlated with the medical examination re-
sults, and thus that the NHIS would provide high-quality auxiliary information for use with
NHANES data for improved small area estimation.

The following situation is considered in this paper. Suppose there are t areas of interest (for
example, t = 50 if states are small areas). We are interested in a characteristic θi of area
i, for i = 1, . . . , t. We have data from the primary survey for some (or all) areas, and data
from an auxiliary survey for some (or all) areas. Often the characteristic of interest will be
a mean or proportion. For estimating state victimization rates, θi might be the proportion
of persons who are victims of violent crime in state i. The NCVS is considered the primary
survey, and the UCR can be used to provide auxiliary information (although with error).
The main questions to be considered for incorporating auxiliary information with error into
small area estimates are: (1) How should the information be used in a small area model?
and (2) How does the error in the auxiliary information affect the MSE of the small area
estimates?

In this paper, we summarize some of our recent research on combining information from
surveys to obtain more accurate estimates at the small area and national level. In Section 2,
we discuss unit-level models for combining information, and in Section 3 we discuss area-
level models that allow for uncertainty in the auxiliary information. Section 4 presents recent
work on estimation in multiple frame surveys that can be used in small area estimation, and
Section 5 discusses directions for future work.
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2. Unit-level Models for Use with Multiple Surveys

Lohr and Prasad (2003) developed a framework for combining information from multiple
surveys when information is available at the unit level. Let yij denote the characteristic
of interest for the jth unit in area i. Let xij = (xij1 · · ·xijk)

T denote a vector of other
characteristics for unit j of area i. For estimating assault rates, yij might be the number of
assaults that would be reported to the NCVS by person j in small area i over a specified
time period, and xij1 the number of assaults for that person that would be included in the
UCR for the same time period. For estimating income, yij might be the log of income of
household j in area i (measured in the CPS), and xij might be related quantities asked in
the ACS. In addition, there may exist various covariates aijl that come from administrative
records.

The above paragraph described applications in which y and x are measured from different
surveys. However, the methods also apply to the “sampling on two occasions” setting. Many
surveys such as the NCVS have a panel design in which the same households are sampled
during several administrations of the survey. In this setting, y may be taken as the value of
a characteristic on the second occasion and the auxiliary variable x is the same variable for
the first occasion.

In area i, both x and y are measured on the nxy
i units in Sixy; x (but not y) is measured on

the nx
i units in the set Six; y (but not x) is measured on the ny

i units in the set Siy. If unit
(ij) in the population is included in both surveys, m = k + 1 measurements are recorded.

We use a multivariate mixed model to describe the relationship between x, y, and covari-
ates. We assume that observations in different small areas are independent. To simplify
expression of results, we assume that the multivariate response vector ui is arranged with
all observations from Sixy first, followed by those from Six and Siy, so

uT
i = [xT

i1, yi1, . . . ,x
T
i,nxy

i
, yi,nxy

i
,xT

i,nxy
i +1, . . . ,x

T
i,nxy

i +nx
i
, yi,nxy

i +nx
i +1, . . . , yi,nxy

i +nx
i +ny

i
].

Let
ui = Aiµ + Zivi + ei (3)

where µ is a vector of fixed effects parameters, Ai and Zi are known matrices, and vi and
ei are independent random vectors with mean 0. Cov (vi) = Σv and

Cov (ei) = Ri = [Inxy
i

⊗
Σe]

⊕
[Inx

i

⊗
Σexx]

⊕
[Iny

i

⊗
Σeyy],

where the matrices Σv and Σe are partitioned as

Σv =

[
Σvxx Σvxy

ΣT
vxy Σvyy

]
, Σe =

[
Σexx Σexy

ΣT
exy Σeyy

]

and where
⊕

represents direct sum and
⊗

represents Kronecker product. Thus

Vi = Cov (ui) = Ri + ZiΣvZ
T
i (4)

        80



with

Zi =

 1nxy
i

⊗
Im

1nx
i

⊗
(Ik 0k)

1ny
i

⊗
(0T

k 1)


where 1j is a j-vector of ones.

For simplicity of presentation, we take µ to be the m-vector of fixed effects means, parti-
tioned as µT = [µT

x µy]. However, all results are easily extended to the case where µ is
a general vector of parameters, and Ai is a matrix of fixed effects covariates. In this way
information from a census or from administrative records may be incorporated into the small
area estimates through regression.

Under this setup, Lohr and Prasad (2003) showed that if µ and the covariance component
matrices are known, then the best linear unbiased predictor (BLUP) for µi = (µT

ix, θi)
T is

µ̃i = µ + nxy
i MiΣ

−1
e (ūixy − µ) + Min

∗
i (Σ

∗
e)
−1(ū∗i − µ). (5)

Here, ūixy is the average of the nxy
i vectors (xT

ij, yij)
T for j ∈ Sixy; ū∗i = (x̄T

ix, ȳiy)
T contains

the averages of the xij’s for j ∈ Six and of the yij’s for j ∈ Siy;

Σ∗
e =

[
Σexx 0

0 Σeyy

]
, (6)

n∗i =

[
nx

i I 0
0 ny

i

]
, (7)

and
Mi = (Σv

−1 + nxy
i Σ−1

e + n∗i (Σ
∗
e)
−1)−1. (8)

This estimator reduces to the multivariate estimator in Datta et al. (1999) if nx
i = ny

i = 0.

The BLUP θ̃i for θi is the mth component of µ̃i, and MSE(θ̃i) = Miyy, the (m,m) entry of
Mi. As a special case, the BLUP of θi when nxy

i = ny
i = 0 is θ̃i = µy + ΣT

vxyΣ
−1
vxx(µ̃ix − µx):

the estimator then borrows strength by using the between-area covariance of x and y.

If the quantities from the two surveys are correlated, θ̃i is more efficient than the corre-
sponding estimator that does not use the auxiliary survey data. Lohr and Prasad (2003)
derived the gain in efficiency, and showed that θ̃i has smaller MSE than the estimator from
the univariate unit-level model of Battese et al. (1988) if nx

i n
xy
i Σexy 6= 0 or nx

i Σvxy 6= 0.

2.1. Estimation of Unknown Quantities

The estimator in (5) was calculated assuming that the parameters µ, Σv, and Σe are known.
In practice, these must be estimated from the data.

Using the generalized least squares estimator µ̂ of µ, and using consistent estimators of the
covariance components, the multivariate estimator becomes

µ̂i = µ̂ + nxy
i M̂iΣ̂

−1
e (ūixy − µ̂) + M̂in

∗
i (Σ̂

∗
e)
−1(ū∗i − µ̂). (9)
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Lohr and Prasad (2003) derived the second order asymptotic properties of this estimator.
As with the BLUP, θ̂i is the mth component of µ̂i.

The method has been implemented in R and S-Plus, with restricted maximum likelihood used
to estimate the covariance components. A simulation study demonstrated that θ̂i was much
more efficient than an estimator that did not use the information from the auxiliary survey,
particularly when Σvxy was large relative to Σvxx and Σvyy. Even with relatively modest
sample sizes in the auxiliary survey (say, nx

i = 5), when the survey quantities were highly
correlated the MSE of θ̂i was about 1/5 of the MSE of the univariate unit-level estimator
that did not use the x information.

When using the multivariate estimator with separate surveys, in most cases it will not be
necessary to match sample observations between the two surveys. Even when the survey
designs share the same primary sampling units, it is unlikely that the same persons are
included in the surveys. Thus, it is overwhelmingly probable that in most small areas,
nxy

i = 0. Consequently, the estimator in (5) will involve Σv and Σ∗
e but not Σexy. The

vector Σexy is the only quantity, however, whose estimation requires that units in the two
surveys be matched. The matrix Σ∗

e can be estimated from the two separate surveys, and
Σv can be estimated provided that the number of small areas that contain observations from
both surveys is sufficiently large.

2.2. Robust Estimation of Covariance Components

The unit-level multivariate approach depends on a model, and the estimates are therefore
sensitive to departures from that model. The estimates of the fixed effects and of the covari-
ance components can perform badly in the presence of aberrant observations. In particular,
the restricted maximum likelihood estimates of the covariance components that were used
in (9) are affected by outliers. Outliers will not be too great of a problem for estimating Σe

because in most situations there will be sufficient degrees of freedom at the within-area level
to mitigate the effect of a few moderate outliers. There are fewer degrees of freedom for
estimating Σv, however, so if the estimated mean of a small area is aberrant, this outlying
area may greatly affect the REML estimate of Σv.

Dueck and Lohr (2003) developed a method for robust estimation of multivariate covariance
components. They used multivariate M-estimation of random effects to reduce the influence
of outliers—at both the within-area and between-area levels—on the estimated covariance
components. Preliminary research indicates that use of this method, together with robust
estimation of the fixed effects, improves the accuracy of small area estimates when some
data may be contaminated.

3. Area-level Models for Multiple Surveys

The models in Section 2 result in improved efficiency when unit-level auxiliary information
exists and observations can be matched across surveys. Matching is easy when sampling
on two occasions, where y is the response of interest measured at time 2 and the auxiliary
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information is the same response measured at time 1. In other settings, only areas may
need to be matched, since different units will be used in the two surveys. For some ap-
plications, however, matching units may be infeasible: records from the NCVS cannot in
general be matched with the same persons’ records from the UCR. In addition, there may
be concerns that using unit-level data across surveys or other data sources may compromise
confidentiality of the data (see Lohr, 2003). For some surveys, respondents may not have
given permission to have their data combined with individual-level information from other
sources. In such cases, area-level models are preferred.

In this section, we examine area-level models for use with two surveys. To simplify presen-
tation, we consider the case where θi is a population mean, although extensions to other
parameters are readily made. Let ȳi be an unbiased estimator of θi from the primary survey,
with sampling variance V (ȳi) = ψi. Administrative data for area i, Ai, is assumed to be
measured without error. We consider the k-vector Xi to be population characteristics for
area i which in some areas can be estimated by a vector xi from the auxiliary data source.
Often, Xi will be a vector of population means for area i. We assume here that when xi is
measured, E(xi) = Xi and V (xi) = Σi.

3.1. What if Error in Auxiliary Information is Ignored?

The Fay-Herriot (1979) model leads to the BLUP of θi. If ȳi and θi are assumed to be
normally distributed, the Fay-Herriot estimator can be motivated in an empirical Bayesian
framework (see Rao, 2003, chapter 9). It is assumed that ȳi | θi, ψi ∼ N(θi, ψi); a regression
model for the population quantity is given by

θi|Ai,Xi, σ
2
v ,α,β ∼ N(AT

i α + XT
i β, σ2

v). (10)

If the quantities (ȳi, θi) are independent for i = 1, . . . , t, then the posterior distribution of θi

is
θi|ȳi,Ai,Xi, σ

2
v ,α,β, ψi ∼ N [γ∗i ȳi + (1− γ∗i )(A

T
i α + XT

i β), ψiγ
∗
i ] (11)

where γ∗i = σ2
v/(σ

2
v + ψi). The mean of the posterior distribution of θi is

θ̃iEB = γ∗i ȳi + (1− γ∗i )(A
T
i α + XT

i β). (12)

Now let us examine what happens if an estimator X̂i with MSE(X̂i) = Ci is substituted for
the population quantity Xi in (12); either xi or another estimator may be used for X̂i. Let

θ̃∗i = γ∗i ȳi + (1− γ∗i )(A
T
i α + X̂T

i β). (13)

Then MSE(θ̃∗i ) = ψiγ
∗
i + (1− γ∗i )

2βTCiβ, and the posterior variance in (11) underestimates
the true variance. If the matrix Ci is large, the mean squared error of the θ̃∗i can be larger
than ψi, so that the supposedly improved small area estimator can perform worse than the
direct estimator that uses no auxiliary information. In addition, if the error in estimating
Xi is ignored and ψiγ

∗
i is naively reported to be the MSE, the estimator will be thought to

be more precise than it really is.
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We can correct the MSE by incorporating the error in estimating Xi into the model in
(10). If xi|(Xi,Σi) ∼ N(Xi,Σi), Xi|(µx,Σ) ∼ N(µx,Σ), and the quantities (xi,Xi) are
independent across areas, then the posterior distribution of θi has mean

γ∗i yi + (1− γ∗i )(A
T
i α + cT

i β)

and variance
ψiγ

∗
i + (1− γ∗i )

2βTDiβ,

where
ci = Σ(Σi + Σ)−1xi + Σi(Σi + Σ)−1µx

and
Di = Σ(Σi + Σ)−1Σi = Σi(Σi + Σ)−1Σ.

With the additional assumptions on the distribution of the auxiliary survey data, the poste-
rior variance is correct for the MSE. The relative weight γ∗i , however, still does not account
for the error in estimating Xi; it is possible for the posterior variance to be larger than ψi

so that incorporating the auxiliary x information may result in a decrease in precision. The
methods in the following sections use the uncertainty about xi when determining the relative
weightings of the direct and indirect estimators.

3.2. Multivariate Fay-Herriot Model

Fay (1987) and Datta et al. (1991) developed a Fay-Herriot-type model for a multivariate
response, and showed that it often results in more efficient estimators for a small area quantity
of interest than the univariate Fay-Herriot model. Datta et al. (1991) were interested in
estimating the median income of four-person households in state i. The direct estimate
was from the CPS. The auxiliary information, xi = (3/4) (median income of five-person
households) + (1/4) (median income of three-person households) also came from the CPS.
The multivariate model they used reduced the MSE of the estimator of θi through correlations
with the other variables. Lohr and Ybarra (2003) extended this model to allow for missing
observations, and to allow the observations to come from different sources. The following
summarizes the results for the notationally simpler case when xi and ȳi are independent.

Let Ui = [XT
i , θi]

T represent the population values for each of the i areas, i = 1, . . . , t. Define
Ti to be the matrix whose jth row is [0T , · · · ,0T ,AT

i ,0
T , · · · ,0T ] where the AT

i occurs as
the jth column. Consider the model

Ui = Tiα + vi (14)

where vi ∼ N(0,Σb) and α is a vector of regression coefficients. As in the unit-level model,
the covariance matrix Σb is partitioned as

Σb =

[
Σbxx Σbxy

ΣT
bxy Σbyy

]
.

Define the vector ui and the matrices Zi and Ψi for three cases:
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1. If x and y are both observed for area i then ui = [xT
i , ȳi]

T , Zi = Ik+1, and

Ψi =

[
Σi 0
0T ψi

]
.

2. If x is observed in area i but y is not observed then ui = xi, ZT
i = [Ik,0k] and Ψi = Σi

3. If y is observed in area i but x is not observed then ui = ȳi, ZT
i = [0T

k , 1], and Ψi = ψi.

Then the observations ui follow the model

ui = ZT
i Tiα + ZT

i vi + ei, (15)

where ei ∼ N(0,Ψi). The covariance matrix of ui is

Vi = Vi(ui) = ZT
i ΣbZi + Ψi.

The ui’s are assumed to be independent. This model then fits into the block diagonal
covariance structure model described in Section 6.3 of Rao (2003). Define

α̃ =

(∑
i

TT
i ZiV

−1
i ZT

i Ti

)−1 (∑
i

T−1
i ZiV

−1
i ui

)
,

Ki = (Σbxx + Σi)
−1,

and

κi =
Σbyy −ΣT

bxyKiΣbxy

Σbyy −ΣT
bxyKiΣbxy + ψi

,

The BLUP for (XT
i , θi) is then

θ̃iMFH = κiȳi + (1− κi)
[
[0T , 1]Tiα̃ + ΣT

bxyKi (xi − [I,0]Tiα̃)
]

(16)

if both xi and ȳi are observed in area i;

θ̃iMFH = [0T , 1]Tiα̃ + ΣT
bxyKi(xi − [I,0]Tiα̃) (17)

if xi is observed in area i but ȳi is not;

θ̃iMFH = κiȳi + (1− κi)[0
T , 1]Tiα̃ (18)

if ȳi is observed but xi is not.

The weighting κi in the small area estimator in (16) to (18) depends on the variability of xi as
well as on the sampling variability of ȳi: κi is smaller, and the small area estimator depends
more heavily on the direct estimator, if the variability of xi is larger. If Xi is measured
exactly (i.e., all entries of Σi are 0), then θ̃iMFH , using assumptions of normality, coincides
with the univariate Fay-Herriot estimator that incorporates the Xi’s as covariates.

The MSE of the estimator in (16) to (18) can be obtained using standard methods and
is given in Lohr and Ybarra (2003). As occurred with the unit-level model, use of the
multivariate Fay-Herriot model results in improved efficiency.

In practice, Σb as well as α must be estimated from the data. Method of moments, maximum
likelihood, or restricted maximum likelihood may be used. See Datta et al. (2001) for a
comparison of the estimators of Σb in the univariate case.
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3.3. Measurement Error Model

As shown in Section 3.1, ignoring the error in xi gives a biased mean squared error and
a non-optimal weighting of the direct and indirect estimators. The motivation for using a
measurement error model comes from the observation that omitted or inaccurate covariates
can cause bias. Suppose that the model in (10) holds, but it is fitted omitting the term XT

i β.
Then estimates of the regression parameters α and the predicted values may be biased. This
bias leads to an increase in the MSE of the predicted values. If xi or another estimator X̂i is
included in the covariates, however, the error in measuring Xi must be accounted for in the
estimation and mean squared error. Fuller (1987, 1990), Carroll et al. (1995) and Cheng and
Van Ness (1999) discussed measurement error models for estimation of regression parameters
and for prediction.

As before, let X̂i be an estimator of the population quantity Xi with MSE (X̂i) = Ci. We
assume that such an estimator exists for every area: If x is not measured in area i, then an
empirical Bayes estimator or imputed value may be used for X̂i. Consider the model

ȳi = AT
i α + X̂T

i β + ri(X̂i,Xi) + ei (19)

where
ri(X̂i,Xi) = vi + (Xi − X̂i)

T β.

Here, vi ∼ N(0, σ2
v) represents the model error and ei ∼ N(0, ψi) represents the design-based

survey error for ȳi. We assume that vi is independent of both X̂i and ȳi. For simplicity, we
also assume here that all X̂i’s and ȳi’s are independent; Ybarra (2003) develops theory for
the more general case. Consequently, MSE(ri) = σ2

v + βTCiβ. Now let

θ̃iME = γiȳi + (1− γi)(A
T
i α + X̂T

i β), (20)

where

γi =
σ2

v + βTCiβ

σ2
v + βTCiβ + ψi

. (21)

Then θ̃iME has minimum mean squared error among all linear combinations of ȳi and AT
i α+

X̂T
i β of the form aiȳi + (1− ai)(A

T
i α + X̂T

i β) where 0 ≤ ai ≤ 1. The estimator in (21) may
also be derived as the “best” estimator in the Rao-Blackwell sense if normality is assumed.

The relative weights γi depend on the error in estimating Xi: γi is smaller when X̂i is
measured without error. If X̂i is measured imprecisely, then γi is larger and the estimator
depends more heavily on the direct estimator ȳi. If ȳi is measured in area i then MSE(θ̃iME) =
ψiγi, which is at most as large as the variance ψi of the direct estimator, ȳi. If ȳi is not
measured in area i then MSE (θ̃iME) = σ2

v + βTCiβ.

Note that MSE (θ̃iME) ≤ MSE (θ̃∗i ) where θ̃∗i is the substitution estimator from (13): the two
MSE’s are equal if Ci = 0. If the empirical Bayes estimator is used for X̂i, then it can be
shown that the estimator in (20) is equivalent to the multivariate Fay-Herriot estimator.

In practice, the quantities σ2
v , α and β are unknown and must be estimated from the data.

Lindley (1947, p. 243) suggested using weighted least squares to estimate the regression
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parameters. For our model, the MSE of the errors (ri + ei) is ψi + σ2
v + βTCiβ. Thus, one

can solve for the unknown parameters by minimizing

Q(α,β) =
m∑

i=1

(ȳi −AT
i α− X̂T

i β)2

ψi + σ2
v + βTCiβ

where the sum is over areas i where ȳi is measured. Gleser (1981) gave large sample properties
of the resulting estimates of the regression parameters. If σ2

v is unknown, we can use modified
least squares to estimate the parameters (Cheng and Van Ness, 1999, pp. 85 and 146). In
this case an unbiased estimator of σ2

v is

Q1(α,β, ψ1, . . . , ψm) = m−1
m∑

i=1

[(ȳi −AT
i α− X̂T

i β)2 − ψi − βTCiβ] (22)

Minimizing Q2 with respect to α and β gives estimates of the regression parameters. Note,
though, that terms in (22) may be negative and it is possible that minimization will occur on
the boundaries of the parameter space. Ybarra (2003) modified the estimators so that the
expected values of the regression parameters are finite and derived properties of the models
using these estimators. She also explored effects of estimating the variances from the data.

Although in some situations the measurement error model and multivariate Fay-Herriot
method give similar results, we prefer the measurement error model for many practical
situations. It is more flexible for choice of estimator of Xi. In addition, robust methods may
be used for estimating the regression parameters and variance terms, so that the measurement
error model is adaptable for situations in which some of the xi’s are outliers due to variable
quality of the data sources.

3.4. Applications

The measurement error model has an advantage over the multivariate Fay-Herriot approach
in that means and variances of the auxiliary information can be estimated separately from
the quantities from the primary survey. Missing values may be imputed, and imputation
variance used for the MSE of X̂i. This approach would work better than the multivariate
Fay-Herriot approach for estimating victimization rates at the state level, using the Uniform
Crime Reports (UCR) data as auxiliary information.

The UCR data sets give crimes reported each month by each of the approximately 19,000
law enforcement agencies in the United States. In a typical year, however, approximately
1/3 of the total possible month/agency cells are missing. If complete records only are used
as auxiliary information in a Fay-Herriot-type model, the resulting small area estimates may
be biased and will have standard errors that are too small because they do not account for
the uncertainty in the auxiliary information. The multivariate Fay-Herriot approach can
reduce some of this bias by incorporating administrative covariates to improve prediction
of the UCR (essentially, including the imputation in the model). But the imputation will
be done at the state level for annual data; this will not be as good as an imputation done
separately using partial agency information and longitudinal trends with the monthly data.
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Schalk (2003) studied imputation methods for the western region of the Uniform Crime
Reports data. She evaluated the currently used hot deck method, nearest neighbor, and
several regression models for imputing missing cells and found that the hot deck method is the
least accurate. All of the models studied can give standard errors for the statewide quantities
by using bootstrap or multiple imputation. Thus, by doing the imputation separately, the
auxiliary information is more accurate and is accompanied by an estimate of precision Ci

that can be used with the measurement error model for estimating victimization rates with
NCVS data. With the imputed values from the UCR, we are now in a position to apply
the measurement error models in Section 3.3 to obtain more accurate estimates of local
victimization rates.

We are also currently using the models discussed in this section to obtain small area estimates
of the prevalence of diabetes for 50 demographic subgroups based on race/ethnicity, gender,
and age. In NHANES, diabetes prevalence is estimated using medical exams of plasma
glucose levels, while in NHIS diabetes-related problems are assessed using the results of
questionnaires. Correlation between the items in the two surveys is about 0.4; using the NHIS
data as auxiliary information reduces the MSE for diabetes prevalence in small demographic
groups (with NHANES sample sizes between 5 and 7) by 40-80%.

4. Multiple Frame Surveys for Small Area Estimation

Up to this point, we have discussed using a second survey to provide auxiliary information
for estimating a quantity of interest measured in the primary survey. The models given in
Sections 2 and 3 use all available information for predicting θi; if area i has no observations
from either the primary or secondary survey, then θ̂i relies on the predicted value from the
regression using the administrative data. This may be the best that can be done with the
available information, but sometimes a different design can give more precision for the direct
estimators and for the estimated regression parameters.

One such design that can be used is a multiple frame survey. In a multiple frame survey,
probability samples are drawn independently from Q frames A1, . . . , AQ. The union of the
Q frames is assumed to cover the finite population of interest, U . The frames may overlap,
resulting in a possible 2Q − 1 nonoverlapping domains.

Rao (2003, chapter 2) discussed the use of multiple frame designs for improving small area
estimation. The primary purpose of many surveys is estimation of quantities such as un-
employment or criminal victimization at the national level; the designs for the surveys thus
are directed toward the national estimates, even though some surveys contain design fea-
tures useful for small area estimation. These surveys, though, can be supplemented with
additional samples from small areas of interest, so that the original survey and additional
samples can be considered as a multiple frame survey. Madans et al. (2001) discussed using
multiple frame surveys for supplementing information from NHIS; additional surveys may
be taken from different states and combined with NHIS data for improved estimation at the
state level. In this situation the same questions may be used in NHIS and the supplementary
surveys.
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Various estimators that have been proposed for combining information from the separate
samples were reviewed in Lohr and Rao (2000). These estimators modify the weights associ-
ated with sampled units from each frame, so that the overall population total is estimated by
a weighted sum of the observations from all of the samples using the modified weights. Many
of these methods, however, were developed for estimating one population total or mean at
a time, and use a different set of modified weights for each characteristic of interest. Such
an approach will give nearly optimal results for individual responses, but will not work well
for estimating small area totals or means directly from the surveys: If different weights are
used for estimating the population total in different small areas, the sum of estimated small
area population totals will not equal the estimated total for larger areas. It is thus desirable
to have methods for obtaining direct small area estimates from multiple frame surveys that
use the same set of weights for all variables. Skinner and Rao (1996) developed a pseudo-
maximum likelihood method that uses the same weights for all variables for the two-frame
situation.

Lohr and Rao (2002) developed estimation methods for multiple frame surveys with more
than two frames that use the same weights for each variable being estimated, and thus can
be applied when supplemental surveys are taken in several small areas. These methods easily
apply to the small area setting by letting the variable of interest be the value θi for the ith

small area. The improved direct estimators of the θi’s may then be used with an area-level
model to achieve greater efficiency.

5. Discussion and Future Work

In this paper, we have summarized recent research we have done on combining information
from different sources for small area estimation. In many situations, much greater efficiency
can be achieved by using auxiliary information from another survey. We believe that these
methods have the potential to increase the accuracy of small area estimates with no or
minimal increase in the cost of data collection, as they are all based on more efficient use of
existing data.

The American Community Survey is intended, through its large sample size, to provide
improved direct small area estimates for income and poverty. Those characteristics and
other quantities measured in the ACS can also provide valuable and timely auxiliary data
for small area estimation of quantities measured in other surveys. The methods summarized
in this paper can be used to take advantage of this new, detailed data source for small area
estimation of many different characteristics of interest.

Since the ACS uses rolling samples, longitudinal methods will also be helpful when using the
ACS as auxiliary information. We are currently working on incorporating time series models
into the estimation, and on obtaining longitudinal estimates from multiple frame surveys. A
related problem is using spatial models to better include geographic information.

Another important problem under study is robustness to the model and to methods for esti-
mating model quantities. One challenge of using UCR data as auxiliary information for the
NCVS, in addition to the missing values, is that some agencies provide inaccurate estima-
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tion. These inaccuracies could then bias the results. Using robust methods is expected to
reduce the effects of possible UCR outliers and result in more accurate small area estimates.
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