Compositional Variability Among Corn Stover Samples

A.D. Sluiter, T.K. Hayward, C.K. Jurich, M.M. Newman, D.W. Templeton, M.F. Ruth, K.W. Evans, B.R. Hames, S.R. Thomas National Renewable Energy Laboratory **Golden, CO 80401**

1. Abstract

Corn stover (stalks+leaves+cobs) is currently employed in the DOE-funded Biofuels Program as a model feedstock for integration of enzymatic cellulose hydrolysis-based biomass conversion technology. The chemical composition of corn stover is quite variable from lot to lot, and there are also indications that different lots of stover exhibit differential reactivity to dilute acid pretreatment, as practiced at NREL. These observations are also likely to apply to other herbaceous feedstocks. Biomass composition and quality have therefore emerged as important issues in the development of integrated conversion technology.

Since input feedstock chemical composition directly influences process yield, process economics can be dramatically impacted by changes in feedstock quality. Our goal is to determine the range of compositional variation as well as the potential causes of variability in mature corn stover. Over 1000 specimens from the 2001 North American crop were obtained from a wide variety of sources, including various commercial grain trials, experimental plots, and germplasm collection seed renewal plots. Samples therefore include a fairly broad cross-section of the maize germplasm, including commercial hybrids, inbreds, open-pollinated varieties, foreign accessions, primitive landraces, and related species. Samples were also obtained that had been produced under a variety of conditions in order to evaluate the relative extent to which genetic and environmental factors impact stover quality. We report here on the statistical analysis of the composition of over 700 stover specimens measured using a calibrated near-infrared spectroscopic method developed at NREL, including the results of an analysis of variance of these data as a function of genetic and environmental factors. Results show that corn stover composition varies over an unexpectedly large range and that both genetic and environmental factors are important influences on stover composition.

5. Population Distributions (n = 738)

8. Composition vs. Plant Anatomy

Stover Anatomical Fractions

protein inorganics	<u> </u>	<u> </u>	<u> </u>	3.5 3.5	<u> </u>	<u> </u>	<u>3.2</u> 1.5	4.0 3.5
□ lignin	16.4	17.9	18.9	14.3	20.6	20.3	22.0	16.5
■ xylan	19.7	30.8	19.4	25.0	19.8	19.6	18.7	18.3
glucan	36.3	36.8	37.4	40.4	42.1	43.2	44.4	41.4

9. ANOVA: University of Wisconsin Samples

Example: Structural glucan (South Central zone)

			Hybrid			ate	Galesville, WI		Fond du Lac, WI		ancock, WI
		Dekalb	DKC5	1-88	1		32.	76	33.66		32.57
					2	2 34.29			33.85		32.67
					3		32.22		34.33		33.39
	r	Мусоде	en 411	1	1		32.	24	34.13		34.39
a					2		33.	36	34.00		33.59
alucan					3		31.	26	34.66		33.92
gradan	r	Northru	up King	g N58-D1	1		32.	44	35.77		33.09
					2		32.	12	35.56		31.86
					3		31.	77	35.10		31.93
	F	Pionee	r 37H2	6	1		32.	14	35.24		32.18
					2		32.	99	33.54		32.70
					3		31.	30	35.12		33.16
	ANOVA: Two	o-facto	r with	replication				Struc_glu	ucan		
	Source of	Variatio	on	SS	df		MS	F	P-valu	е	F crit
	Rows (geneti	ics)		0.5644	3	0.1	18813 0.4149		5 0.7438103		3.00879
	Columns (en	vironm	ient)	30.6548	2	15	.3274	33.8064	1.04E	-07	3.40283
	Interaction (C	G x E)	9.92103		6	1.6	65351	3.64701	1701 0.01026		2.50819
	Within			10.8813	24	0.4	45339				
	Total			52.0215	35						
			Sumn	nary of ANC	OVA resi	ults	(P-valı	ues)			
			Const	ituent		Ge	netics	 Envir	vironment In		raction
y of AN			Struc	alucan			0.7	44 1			0.010
or maio	r		Xvlan	_3.4.0411			0.0	15 4	4 30 - 08		0.903
			Lianir	n			2.02E-	05	1.302-00		0.029
ents across			Protoi	'n			0.5	45 1	1 085_09		0 135

2. Methods

- Five to ten pound stover samples (10–20 stalks) were collected by suppliers at several institutions.
- Samples were thoroughly dried at 50°C and milled individually to pass a 0.25-inch screen.
- Representative aliquots were selected for NIR spectroscopy.
- Compositions of samples were determined using a calibrated NIR/PLS1 method developed at NREL.
- Analysis of variance was performed using the Analysis ToolPak functions in Microsoft Excel 2001.

6. Correlations Between Constituent Pairs

		S					U,
	Xylan	0.03					
	Lignin	0.60	0.16				
Xylan	Protein	0.70	0.18	0.32			
Correlation	Acetyl	0.19	0.02	0.15	0.10		
	St_inorg	0.10	0.41	0.32	0.13	0.12	
Matrix	Soluble Solids	0.53	0.14	0.57	0.27	0.16	0.0

3. Sources of 2001 Corn Stover

Source	Contacts	# Samples	Comments
Monsanto	Diane Freeman, Brad Krohn, Dale Sorensen	221	this study
University of Minnesota	Dale Hicks, Tom Hoverstad, Steve Quiring	150	this study
University of Wisconsin, Madison	Joe Lauer	202	this study
USDA/ARS, Lincoln, NE	Wally Wilhelm	96	this study
University of Nebraska, Lincoln	Ken Russell	61	this study
Iowa State University	Wayne King	30	
ARS, Ames, IA	Linda Pollak	45	
ARS, NCPIS, Ames, IA	Mark Millard	242	
ProdiGene, Inc.	Donna Delaney, Beth Hood	14	
Total		1061	

7. Effect of Stover Composition on Ethanol Cost

Histogram of MESPs for 735 Stover Compositions

10. ANOVA: USDA/ARS, Lincoln Samples

Struc_glucan + Xylan

St_inorg

Example: Xylan

South Central Wisconsin

Raw da

%Struc

ANOVA

Summa

results

constit

ANOVA

Summary of ANOVA

results for major

constituents

			Non-irr	igated	Irriga	ated
	Hybrid	Replicate	No fertilizer	fertilizer	No fertilizer	fertilizer
	Pioneer 3162	1	16.31	17.42	20.01	19.60
		2	19.01	15.24	20.98	17.67
		3	17.90	21.22	20.69	20.27
	Pioneer 3394	1	17.39	18.14	20.23	17.21
		2	18.63	19.89	17.62	17.55
u doto		3	20.71	17.97	20.82	20.35
wuala	Pioneer 33R88	1	18.98	17.74	19.97	14.44
vlan		2	18.21	18.99	16.88	14.93
		3	19.32	20.22	20.83	16.71
	Pioneer 34G82	1	20.85	16.25	19.27	12.58
		2	17.13	18.75	19.54	13.33
		3	20.45	19.36	19.92	13.24
	B73 x Mo17	1	20.66	19.72	18.47	17.82
		2	17.64	18.80	16.83	17.60
		3	18.87	10 16	18 55	17 10

Variation	SS	df	MS	F	P-value	F crit
Sample	14.8383	4	3.70957	1.79713	0.14845	2.60597
Columns	60.4766	3	20.1589	9.7661	5.8E-05	2.83875
Interaction	78.5386	12	6.54488	3.17072	0.00298	2.00346
Within	82.5666	40	2.06417			
Total	236.42	59				

Constituen Genetics Environment Interaction Struc_glucan 1.06E-07 1.28E-0 0.175 0.148 5.81E-05 0.003 Xylan Lignin 0.062 0.112 0.002 0.435 Protein 1.46E-06 9.48E-11 0.014 0.355 St Inorg 0.171 0.086 Struc_glucan + Xylan 0.001 0.002

0.008

0.181

4.97E-0

8.38E-0

0.142

0.175

11. Summary and Conclusions

Corn stover composition varies widely

4. Population Statistics													
	Total_glucan	Struc_glucan	Xylan	Lignin	Protein	Acetyl	Uronic Acids	Structural Inorganics (Silica, Ash)	Soil	Calculated Soluble Solids	Total	Struc_glucan + Xylan	Total Structural Carbohydrates
Minimum (% dry wt.)	34.5	27.9	14.5	11.5	1.3	0.9	1.4	-1.2	0.9	2.0	90.0	43.3	45.3
Maximum (% dry wt.)	50.3	39.6	25.5	20.4	7.0	3.9	3.9	10.2	1.7	19.6	101.9	63.3	68.5
Span (% dry wt.)	15.8	11.7	11.0	8.9	5.7	3.0	2.5	11.3	0.8	17.5	11.9	19.0	23.2
Mean (% dry wt.)	42.0	33.8	20.0	15.8	3.6	2.7	2.9	4.2	1.3	8.2	97.4	53.8	58.7
Standard Deviation (% dry wt.)	1.5	2.0	1.6	1.4	0.7	0.5	0.3	1.6	0.1	2.2	1.7	2.8	3.2
Total Values	738	738	738	738	738	738	738	738	738	738	738	738	738

- Total structural carbohydrates range from 45.3–68.5%
- Statistically normal distributions for most major constituents
- Stover composition has a large influence on Minimum Ethanol Selling Price (MESP)
- The stover composition used to produce the most recent ethanol process economic model is overly optimistic
- A few weak correlations between constituent pairs
- Struc_glucan positively with Lignin ($r^2 = 0.60$)
- Struc_glucan inversely with Protein ($r^2 = 0.69$)
- Xylan inversely with St_inorganics (r² = 0.47)
- Struc_glucan inversely with Soluble Solids (r² = 0.56)
- Lignin inversely with Soluble Solids ($r^2 = 0.58$)
- All other pairs are not correlated
- Preliminary analysis of variance results indicate that stover composition varies as a function of:
- Genetics
- Location grown (environmental influences)
- G x E interaction

This work was funded by the Office of Biomass Programs of the **United States Department of Energy.** Charnell Clarke, summer intern (University of D.C.) Jonathan Meuser, summer intern (UC Davis)