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Abstract

This report summarizes the major research and development accomplishments for the
late start LDRD project (investment area: Enable Predictive Simulation) entitled
“Atomically Engineering Cu/Ta Interfaces”. Two ultimate goals of the project are:
(a) use atomistic simulation to explore important atomistic assembly mechanisms
during growth of Cu/Ta multilayers; and (b) develop a non-continuum model that
has sufficient fidelity and computational efficiency for use as a design tool. Chapters
2 and 3 are essentially two papers that address respectively these two goals.

In chapter 2, molecular dynamics simulations were used to study the growth of Cu
films on (010) bcc Ta and CuxTa1−x alloy films on (111) fcc Cu. The results indi-
cated that fcc crystalline Cu films with a (111) texture are always formed when Cu
is grown on Ta. The Cu films are always polycrystalline even when the Ta substrate
is single crystalline. These polycrystalline films are composed of grains with only two
different orientations, which are separated by either orientational grain boundaries or
misfit dislocations. Periodic misfit dislocations and stacking fault bands are observed.
The Cu film surface roughness was found to decrease with increasing adatom energy.
Due to a Cu surface segregation effect, the CuxTa1−x films deposited on Cu always
have a higher Cu composition than that used in the vapor mixture. When Cu and
Ta compositions in the films are comparable, amorphous structures may form. The
fundamental origins for all these phenomena have been studied in terms of crystal-
lography and interatomic interactions.

In chapter 3, a simplified computational method, diffusional Monte Carlo (dMC)
method, was developed to address long time kinetic processes of materials. Long
time kinetic processes usually involve material transport by diffusion. The corre-
sponding microstructural evolution of materials can be analyzed by kinetic Monte
Carlo simulation methods, which essentially simulate structural evolution by tracing
each atomic jump. However, if the simulation is carried out at a high temperature, or
a jump mechanism with a very low energy barrier is encountered, the jump frequency
may approach the atom vibration frequency, and the computational efficiency of the
kinetic Monte Carlo method rapidly decreases to that of a molecular dynamics sim-
ulation. The diffusional Monte Carlo method addresses the net effects of many atom
jumps over a finite duration, kinetically controlled process. First, atom migration due
to both random and non-random jumps is discussed. The concept of dMC is then
introduced for random jump diffusion. The validity of the method is demonstrated
using several diffusion cases in one-, two- and three- dimensional spaces, including
the dissolution of spinodal structures. The application of the non-random diffusion
theory to spinodal decomposition is also demonstrated.

Keywords: Ta/Cu multilayer, MD simulation, surface roughness, grain
structure, misfit dislocation, stacking fault, amorphization, diffusional Monte
Carlo method
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Chapter 1

Introduction

Atomic scale interfaces are essential to nanotechnologies that exploit high interfa-
cial area to system volume ratios. For instance, creation of a bimodal distribution
of grain boundaries in nanocrystalline metals (e.g., copper, aluminum, etc.) signifi-
cantly improve both strength and ductility of the materials.[1] Control of interfacial
structures is essential for multilayered thin film solar cells.[2] Other vapor deposited
multilayer structures, such as giant magnetoresistance multilayers,[3, 4, 5] magnetic
tunnel junction multilayers,[6, 7, 8] X-ray mirror multilayers,[9] and microelectronic
multilayers,[10, 11], all require chemically sharp, uniform interfaces. The atomic scale
structures of the interfaces formed during vapor deposition process, are determined
by complicated thermodynamic and kinetic processes that are extremely sensitive to
interrelated processing conditions, material properties, surface chemistry, and crystal
orientations. Because the fundamental origins for the formation of atomic interfacial
structures are complicated and are not well understood, the current application of
many nanotechnologies is far below their potentials. Understanding atomic assembly
mechanisms via the study of a few representative interfacial systems could be vital
to many of the nanotechnologies.

Copper/tantalum (Cu/Ta) multilayer system is a good example for study. This sys-
tem is of particular interest for two important reasons. First, Ta is an effective barrier
to Cu diffusion. The insertion of a thin Ta layer between Cu and semiconductors
would then enable Cu to be used as interconnects in large scale integrated circuits
without Cu diffusion into the semiconductor devices.[12] The low electrical resistance
of Cu promises a significant improvement in device performance over more conven-
tional Al interconnects. Second, amorphous films can be obtained during growth of
Cu/Ta multilayers.[13, 14, 15] Amorphous metals have high strength, high corrosion
resistance, and special magnetic properties suited for communication, aerospace, mili-
tary, and transport applications.[16, 17, 18] Cu interconnects require sharp crystalline
Cu/Ta interfaces, while amorphization requires highly mixed interfaces. Both types
of interfaces can be synthesized through physical vapor deposition. Vastly different
interfaces arise from many interrelated factors including interfacial roughness/mixing,
point/extended defects, relative Cu and Ta crystallographic orientations, growth se-
quence (Cu on Ta or Ta on Cu), film composition, and growth conditions (e.g., adatom
energy, adatom incident angle, substrate temperature, growth rate, and inert gas ion
assistance etc.). Because this system enables the fundamental origins for a wide spec-
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trum of atomic scale interfaces to be explored, it may provide the essential knowledge
for many nanotechnologies.

Molecular dynamics (MD) simulation is a highly desired approach to study the growth
of multilayers as it can accurately predict the atomic assembly mechanisms and the
origins of the formation of different atomic scale interfaces provided that a high fi-
delity interatomic potential is used. MD, however, cannot address long time kinetics
problems due to a very high computational cost. The use of MD in the simulation
of thin film growth is therefore limited to accelerated growth rates that can be up
to ten orders of magnitude higher than those used in experiments. Long time scale
simulation methods are needed to compliment an MD analysis. Here we carry out
MD simulations to explore surface roughness, grain structure, misfit dislocation, and
amorphization as well as their formation mechanisms during growth of Cu films on Ta
and Cu-Ta alloy films on Cu. We also attempt to develop a simplified computational
method for studying long time kinetics problems.

12



Chapter 2

Atomic Assembly of Cu/Ta
Multilayers: Surface Roughness,
Grain Structure, Misfit
Dislocation, and Amorphization

Gong and Liu have used a Finnis-Sinclair potential in molecular dynamics (MD) sim-
ulations to explore relative stabilities of various combinations of manually created
interfaces between Cu and Ta (100), (110), and (111) atomic planes.[19, 20] They
found that the energy of unstable interfaces can be sufficiently large to drive inter-
diffusion of Cu and Ta and cause solid state amorphization. However, it is not clear
how an unstable interface can form during deposition in the first place. Molecular
dynamics simulations of growth of Cu/Ta multilayers have also been carried out by a
continuous injection of adatoms to the growth surface.[21] The approach created more
realistic interfaces and shed light on atomic assembly mechanisms during growth and
the formation of solid-state amorphization. However, the effect of vapor phase com-
position was not explored and the computational size was too small to reveal realistic
atomic assembly phenomena. The present work carries out larger scale molecular
dynamics simulations of Cu/Ta multilayer growth to study the formation of different
Cu/Ta interface morphologies and grain structures as a function of conditions and
vapor phase composition. These phenomena were unlikely to be accurately revealed
in previous, smaller scale simulations[21]. Through collaboration with the University
of Virginia, selected experiments were also carried out to verify the results of our
simulations.

2.1 Embedded Atom Method Potential

The interatomic interactions between metal atoms can be well described by the em-
bedded atom method (EAM) potentials.[22] A literature embedded atom method
interatomic potential database has included 16 metal elements (Cu, Ag, Au, Ni, Pd,
Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr) and their alloys.[23, 24] This po-
tential database has been successfully applied to simulate the growth of a number

13



(a) Cu (b) Ta (c) Cu0.6Ta0.4

Figure 2.1. Atomic images of (a) Cu; (b) Ta; and (c)
Cu0.6Ta0.4 bulk structures after the two-step energy mini-
mization simulations.

of metal multilayers.[23, 25] The same potential was hence used in this study. The
potential was well fitted to the lattice constant, cohesive energy, elastic constants,
and vacancy formation energy of elements.[23, 24] The cross pair potentials between
dissimilar species were not fitted. Instead, they were constructed based upon an alloy
embedded atom method model.[26], and were found to realistically predict the heat of
mixing of many selected binary systems. To characterize the behavior of the potential
for the present case, we calculate the heat of mixing of Cu-Ta alloy.

A series of fcc substitutional CuxTa1−x (0 ≤ x ≤ 1) crystals were used as initial
configurations to evaluate the heat of mixing. The cubic computational cell was
assumed to be in the cubic crystal orientation (i.e., x - [100], y - [010], z - [001]).
The lattice contains a total of 13500 atoms. The systems were treated as infinitely
large bulk by using periodic boundary conditions in all three coordinate directions.
To ensure a full relaxation of the systems, two-step simulations were used: First, a
simulated-annealing was carried out for a nanosecond of simulated (real) time using
zero pressure molecular dynamics simulations where the system was slowly cooled
down to 300 K from an initial temperature of 800 K. Second, zero pressure molecular
statics was carried out to further minimize the potential energy of the system. Figs.
2.1(a), 2.1(b), and 2.1(c) show respectively the images of Cu, Ta and Cu0.6Ta0.4

structures after the energy minimization simulations. Not all systems maintained
their original crystal configurations. It can be seen that while Cu remained a perfect
fcc phase, Fig. 2.1(a), the initial fcc Ta transformed to multiple domains separated
by boundaries, Fig. 2.1(b). Analysis showed that these domains are bcc crystalline
grains. This is expected as bcc Ta has a lower cohesive energy than fcc Ta. Finally, the
Cu0.6Ta0.4 system was found to transform to an amorphous structure, Fig. 2.1(c). To
confirm these observations, radial distribution functions were calculated for systems
with different compositions, and selected results are shown in Fig. 2.2. The peak
neighbor distances shown in Fig. 2.2 clearly indicate that the Cu remained an fcc
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crystal, and Ta transformed to a bcc structure. There is no peak distribution for the
next nearest neighbor distance for the Cu0.6Ta0.4 structure, indicating that it lost its
long-range ordering and became amorphous.

The procedure used above only identified a local minimum of the Ta energy because
the elimination of domain (grain) boundaries requires energy activation. As a result,
we created a body-centered-cubic (bcc) Ta to calculate the energy for Ta. The com-
putational cell of the bcc Ta has a cubic dimension, a cubic crystal orientation, and
2000 atoms. The heat of mixing ∆Hmix was calculated as

∆Hmix = ECuxTa1−x − x · Efcc Cu − (1− x) · Ebcc Ta (2.1)

where ECuxTa1−x , Efcc Cu, and Ebcc Ta are the minimized potential energy per atom
(i.e., cohesive energy) of CuxTa1−x, fcc Cu, and bcc Ta phases respectively. The
results of heat of mixing as a function of Cu mole fraction x is shown in Fig. 2.3. Fig.
2.3 indicates that the potential correctly captures a positive heat of mixing when the
Cu composition in the alloy is low.[14, 19] The heat of mixing at x = 0.5 is between
0.01 and 0.02 eV/atom. This is a little smaller than the 0.03 eV/atom predicted by
another EAM potential.[21] Our result is likely to be well relaxed as the two-step
simulations enabled phase transformation whereas the previous work constrained the
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structure to the CsCl-type of crystal.[21]

2.2 Molecular Dynamics Method of Growth

In the present work, deposition of a Cu film on a (100) bcc Ta surface was simulated
to mimic the growth of Cu interconnects on a Ta diffusion barrier, and deposition of
a CuxTa1−x alloy film (0 ≤ x ≤ 1) on a (111) fcc Cu substrate surface was simulated
to explore possibilities of amorphization. The growth on (111) fcc Cu was chosen
because the fcc crystal is the lowest energy phase of Cu and its (111) surface is
the lowest energy surface. The lowest energy phase of bulk Ta is the tetragonal β
phase. However, experiments indicated that for thin films, the β-Ta phase becomes
metastable and would transform to a bcc (α-Ta) phase.[27] We therefore simulated
the Cu growth on a (100) bcc Ta surface.

Sandia’s parallel MD code LAMMPS[28] was used for our simulations. A computa-
tional substrate was first created by assigning positions of atoms according to crystal
structure, equilibrium lattice constant, and crystallographic orientation of the sub-
strate. The bcc Ta substrate includes 180 (200) planes in the x- direction, 5 (020)
planes in the y- direction, and 180 (002) planes in the z- direction. The initial Ta sub-
strate contains 40500 Ta atoms. An example of the substrate can be seen as the blue
region in Fig. 2.4. Two fcc Cu substrates were used. One contains 232 (22̄0) planes
in the x- direction, 4 (111) planes in the y- direction, and 402 (2̄2̄4) planes in the z-
direction, and the other one contains 232 (22̄0) planes in the x- direction, 13 (111)
planes in the y- direction, and 402 (2̄2̄4) planes in the z- direction. The two initial
Cu substrates contain respectively 62176 and 202072 Cu atoms. The horizontal sizes
of the Ta and Cu substrates are about the same, around 300×300 Å2. However, the
thickness of the two Cu substrates is about 8 and 27 Å respectively, compared with
that of the Ta substrate of about 8 Å. The use of an additional thicker Cu substrate
is to increase the distance between the Ta/Cu interface and the bottom boundary so
that the mixing across the interface between deposited film and the Cu substrate can
be studied.

With the substrates created, an initial substrate temperature was introduced by as-
signing velocities to atoms based upon a Boltzmann distribution. Periodic boundary
conditions were used in the two horizontal (x- and z-) coordinate directions so that
the simulated systems can be viewed as large planes in the x-z dimension. A free
boundary condition was used in the vertical (y-) coordinate direction to allow for
the surface growth. During simulations, adatoms were continuously injected to the
top y- surface. The atom types were statistically assigned to match the desired com-
position of the vapor. The adatom injection frequency was assigned to match the
desired growth rate. Newton’s equations of motion were then used to solve for the
positions of all system atoms as a function of time. A constant system volume con-
dition was used so that the system size matched that of a simulated thick substrate.
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Figure 2.4. (Color) Cu-on-Ta surface morphology obtained
from MD simulations. (a) adatom energy 0.1 eV; (b) adatom
energy 0.5 eV; (c) adatom energy 1.0 eV; (d) adatom energy
2.0 eV; (e) adatom energy 3.0 eV; and (f) adatom energy
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differentiates y coordinates.
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To prevent the shift of the computational system due to the impact of the adatoms
with the top surface, the positions of two bottom atomic plane of atoms were fixed
during simulations. Due to the remote kinetic energy of adatoms and the latent heat
release during adatom condensation, the system temperature arises. To mimic an
isothermal growth condition, an intermediate region that is above the fixed region
but several atomic planes below the surface was maintained at a desired substrate
temperature using a Nose-Hoover algorithm.[29] This leaves a free surface zone that
realistically captures various events induced during adatom impacts. It also naturally
introduces a heat conduction zone through which the energy created at the surface
during impacts is conducted to the temperature controlled region for dissipation. To
minimize the change of heat conduction dimension, the temperature controlled region
is expanded as the surface grows. To prevent the temperature controlled region from
exceeding any surface boundary in the worst case scenario of forming a large surface
roughness, the expansion rate of the temperature controlled region is adjusted to be
smaller than the surface growth rate. For most simulations, about 30 Å thick films
were grown. This corresponds roughly to 200,000 deposited atoms. All simulations
were carried out at a room temperature and a deposition rate of about 0.5 nm/ns.

2.3 Experiments

Experimentally, 30 nm Cu on 30 nm Ta bilayer films were deposited on six inch silicon-
silicon oxide wafers at room temperature using a biased target ion beam deposition
(BTIBD) technique.[30] A base pressure of about 3×10−8 torr, a working pressure of
about 8×10−4 torr, a depositing flux direction perpendicular to the growth surface, a
fixed Ta sputtering energy of 400 eV, and various Cu sputtering energies between 400
eV and 1200 eV were used in all depositions. Depending on the depositing material
and sputtering energy, the growth rate was found to roughly lie between 0.4×10−10

nm/ns and 1.5×10−10 nm/ns. X-ray diffraction measurement was used to characterize
the film texture. A tapping mode atomic force microscopy (AFM) was used to analyze
film surface morphology and the root mean square (RMS) surface roughness.

2.4 Growth of Cu on Ta

Synthesis of Cu interconnects is done by first depositing a thin Ta diffusion barrier
layer on semiconductor devices and then depositing the Cu interconnecting layer on
the Ta layer. Properties of the system are sensitive to the atomic structures of the
Cu on Ta bilayer. For good performance, Cu on Ta interface must be chemically
sharp and atomically uniform. High purity, high density, and high crystallinity are
essential for the Cu layer to exhibit a high electrical conductivity. This also means that
concentrations of defects such as surface roughness, growth islands, grain boundaries,
voids, and dislocations must all be low. The control of surface roughness and growth
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island density is critical because they can result in the formation of other defects such
as grain boundaries, voids, and dislocations. Island coalescence is also a source for
stress.[31] Here, the growth of Cu on Ta is first explored.

2.4.1 Observations of Atomic Structures as a Function of
Adatom Energy

A series of molecular dynamics simulations were carried out to grow Cu films on Ta
at different adatom energies between 0.1 eV and 5.0 eV. The resulting atomic images
of the deposited films are shown in Fig. 2.4(a) - 2.4(f) at selected adatom energies,
where the blue color is used to indicate the Ta substrate, and other color schemes are
used to show the contrast for the y coordinate of the atoms so that the Cu film surface
morphology can be clearly revealed. Fig. 2.4 indicates that as the adatom energy is
increased, the surface roughness decreases. To verify this observation, a series of Cu
films were experimentally grown on Ta using BTIBD technique at different sputtering
energies between 400 eV and 1200 eV. According to previous analyses,[32, 33] the
applied sputtering energy range roughly corresponds to the simulated adatom energy
between 0.1 and 4.0 eV. AFM was used to measure the surface morphology of the
deposited films. The results are shown in Fig. 2.5. Fig. 2.5 also shows that the Cu
film surface roughness decreases with increasing adatom energy.

While both simulations and experiments show that the Cu surface roughness de-
creases with decreasing adatom energy, simulations were obtained at a deposition
rate of about 0.5 nm/ns whereas experiments were done at a deposition rate of about
0.5×10−10 nm/ns. In addition, the horizontal dimension scale used in Fig. 2.4 is at
least one order of magnitude smaller than that used in Fig. 2.5. To some extent, the
effects of accelerated growth rate and short length scale cancel out. This is because
surface atoms diffuse significantly less due to reduced diffusion time at accelerated
deposition rates. It is to this perspective that MD results shown in Fig. 2.4 agree
quite well with the AFM results shown in Fig. 2.5.

2.4.2 Surface Roughness as a Function of Adatom Energy

To quantify the effects of adatom energy on morphology, the root-mean-square (RMS)
deviation of surface atoms from their mean height (y coordinate) was calculated from
the atomic configurations of simulated Cu-on-Ta films as a function of adatom energy.
The results of the calculations are shown in Fig. 2.6(a). Fig. 2.6(a) indicates that
the RMS roughness of the Cu films decreases as adatom energy increases from 0.1
eV to 4.0 eV, with the rate of decrease higher at small adatom energies and lower
at high adatom energies. RMS roughness was also measured experimentally from
AFM samples. The results are shown in Fig. 2.6(b) as a function of sputtering
energy. A similar trend to that shown in Fig. 2.6(a) is obtained. In particular,
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the surface roughness decreases with increasing sputtering energy, and the rate of
decrease is higher at small sputtering energies and lower at high sputtering energies.
Quantitatively, smaller roughness is obtained in MD than in experiments. This is
consistent with a much smaller thickness of the simulated films. The adatom energy
effect on surface roughness of growth films has been well studied.[23, 32] When an
adatom with a higher energy impacts a surface with a local asperity, the impact is
more likely to cause the collapse of the asperity, resulting in a flattening of the surface.

2.4.3 Grain Structure Observation

Examination of atomic images indicated that crystalline Cu films were obtained in
all of our simulations. A detailed analysis was carried out to identify the atomic
stacking of the Cu films. It was discovered that only the first atomic plane of Cu was
somewhat epitaxial to the (100) bcc Ta substrate surface. Starting from the second
plane, Cu quickly evolved to an fcc phase. In all simulations, Cu films grew in a [111]
direction. Our subsequent XRD experiments using BTIBD samples verified that Cu
films deposited on Ta were fcc crystals with a very strong [111] texture.

Our test simulations indicated that when relatively small horizontal dimensions (e.g.,
50 Å) were used, the simulated Cu films usually contained only one grain in the
simulated film area. Small systems are not realistic even when the use of periodic
boundary condition removes the surfaces in the x- and z- directions. This is because
the periodic boundary condition imposes constraints on the motion of atoms near
cell boundaries. For our systems that contained about 300 Å horizontal dimension,
polycrystalline Cu films were observed in all of our simulations of Cu growth on a
single crystalline Ta. The grain structure was found to be relatively insensitive to
adatom energy. As an example, Fig. 2.7 shows four consecutive atomic planes inside
a Cu film deposited on Ta at an adatom energy of 4.0 eV, where four different colors
are used to distinguish y coordinates (planes). Clearly, the film exhibits two grains,
one in orientation marked as “A” and the other in orientation marked as “B”. Both
grains have fcc stacking with a (111) surface. One interesting discovery is that all of
our simulated Cu films contained only the two orientations shown in Fig. 2.7.

Further examinations of grain structures were carried out. Fig. 2.8 shows an example
of a Cu film deposited at 0.1 eV, where several consecutive atomic planes inside the Cu
film are viewed at a tilted angle from top with different colors showing the y coordinate
of the atoms. It can be seen that multiple grains were formed. These multiple grains
appeared to result in the formation of grain boundary junctions where three “grain”
boundaries meet. Normally grain boundary junctions require that the three joining
boundaries are between grains with different orientations with respect to each other.
As pointed out above, only two orientations were observed in the Cu films. Careful
examination of Fig. 2.8 indicates that only two boundaries at the grain boundary
junctions are the regular orientational boundaries that separate grains with different
orientations. The remaining boundary, however, is a translational boundary that
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Figure 2.7. (Color) Four consecutive atomic planes inside
a Cu film deposited on Ta at 4.0 eV adatom energy.

z [001] Ta

x [100] Ta

translational boundarytranslational boundary

orientation boundary

stacking fault

void

Figure 2.8. (Color) Tilted top view of a few consecutive
atomic planes inside a Cu film deposited on Ta at 0.1 eV
adatom energy. Circles mark grain boundary junctions where
three grain boundaries meet.
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separates “two” grains with the same orientation except that they are translationally
shifted with respect to each other. As a result, such a boundary originated from a
dislocation. In addition to grain structures, Fig. 2.8 reveals the presence of other
defects such as voids and stacking faults (bounded by dislocations). The change of
color within the stacking fault bands suggests that these stacking fault planes are
tilted from the surface plane. It should be noted that the translational boundary,
which is essentially a dislocation, should also cause stacking fault. In this case,
however, the stacking fault plane coincides with the surface plane.

Fig. 2.7 and 2.8 reveal the grain structures that form during accelerated deposition
of Cu on (010) bcc Ta. It is not clear how stable these grain structures are and if
they can maintain in the films when the growth rate is significantly decreased. To
address these issues, the time evolution of grain configurations was studied. Fig. 2.9
examines a Cu film deposited at an adatom energy of 0.1 eV, where Fig. 2.9(a) is a
three dimensional view of the film, Figs. 2.9(b) - 2.9(d) are time evolution snapshots of
plan view of a narrow layer of material inside the Cu film as indicated in Fig. 2.9(a).
It can be seen from Figs. 2.9(b) - 2.9(d) that little change in the grain structure
occurred during a 2031 - 2995 ps time period. As molecular dynamics simulations at
finite temperatures are fairly effective in finding low energy configurations, the results
shown in Fig. 2.9 verify that the observed grain structures were fairly stable. It is
not surprising that the orientational grain boundary is stable at least when the grain
sizes are not too small because the migration of grain boundaries requires significant
reconstruction of atoms. The translational grain boundary is also seen to be stable.
Furthermore, we noticed that very thin films were usually absent of translational
grain boundaries and only after the films grew beyond a critical thickness then the
translational boundaries (dislocations) were nucleated within an otherwise relatively
perfect grain. This is similar to the formation of misfit dislocations to release the
misfit strain energy when the film thickness exceeds a critical value.[34, 35] Because
the translational boundary is likely to correspond to a lower misfit strain energy, it
is therefore stable.

2.4.4 Grain Structure Formation Mechanisms

The results discussed above showed mainly two grain phenomena: (a) the forma-
tion of grains with two characteristic orientations and (b) the formation of stable
translational boundaries (dislocations). Atomistic simulations allow us to explore
fundamental mechanisms for these two phenomena. As a representative example, a
Cu film deposited at an adatom energy of 3.0 eV is examined in Fig. 2.10. In Fig.
2.10(a), a plan view of three consecutive atomic planes inside the Cu film is displayed
using different colors to distinguish different planes. A periodic band structure is
seen. In the relatively dark bands, atoms with all three different colors are shown,
indicating local a ABCABC. . . hexagonal stacking in the [111] fcc (growth) direction.
In the relatively bright bands, only atoms with two different colors are shown, indi-
cating a local ABAB. . . stacking in the [111] fcc direction. As a result, these bands
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Figure 2.9. (Color) Grain structure formation during de-
position. (a) three-dimensional geometry; (b) plan view at
2030.7 ps; (c) plan view at 2487.6 ps; and (d) plan view at
2995.3 ps.
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Figure 2.10. (Color) Grain orientation. (a) overall top
view of three deposited Cu atomic planes near the Cu-on-Ta
interface; (b) high resolution scanning tunneling microscopy
(STM) image of a Cu film deposited on local (0001) Ru sur-
face; (c) local view [circular region in (a)] of a tri-grain bound-
ary junction; and (d) film-substrate symmetry relation, where
dark area shows {010} bcc Ta symmetry, light area shows
{111} fcc Cu symmetry.
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are periodic stacking faults on the surface plane. In fcc Cu, these stacking faults
are separated by partial dislocations with Burgers vectors 1

6
〈112〉a, where a is the

lattice constant of Cu. It can be seen that these partial dislocations are not only
present at the translational “grain” boundaries, but also inside each grain. High res-
olution scanning tunneling microscopy experiments revealed similar periodic stacking
faults on a Cu-on-(0001)Ru surface, Fig. 2.10(b),[36] which has been elucidated using
simulations.[37]

In order to examine the structure in more details, the circular region marked in Fig.
2.10(a) is magnified and is examined in Fig. 2.10(c). The orientation of a grain
can be visually represented by a triangle connecting, for instance, the six red atoms
on the hexagonal (111) surface. It can be seen that the two grains at the left side
have the same orientations as they are represented by the same lay-out of triangles,
whereas the grain at the right has a different orientation as it is represented by a
different lay-out of triangle. As a result, boundary “A” between left and right grains
are the orientational boundary and boundary “B” between the two left grains is the
translational boundary. Furthermore, we superimpose the two different orientations
of the triangle identified in Fig. 2.10(c) over the square symmetry of the [010] bcc
Ta, and display the result in Fig. 2.10(d), where the light shaded squares represent
the (010) symmetry of the bcc Ta, and the dark shaded triangles represent the (111)
symmetry of the fcc Cu. We can see that one side of the triangle, which is a 〈110〉
fcc Cu direction, is always parallel to the diagonal of the square, which is a 〈110〉
bcc Ta direction. The parallel relationship between 〈110〉 fcc Cu and 〈110〉 bcc Ta
is not surprising as both directions are close packed when projected on the surface
plane. It can now be seen from Fig. 2.10(d) that because there are only two diagonal
directions of the square, there are only two orientations for the triangles (therefore,
grains). As the two diagonals are perpendicular, the two Cu grain orientations are
related by a 90◦ rotation.

During growth simulations using small horizontal dimensions, new grains are nucle-
ated at locations close to existing grains. This creates high energy configurations and
new grains are likely to be eliminated (eaten) by existing grains at the nucleation
stage. As a result, simulated films often exhibited a single crystal. During growth
of the Cu films on a large plane of Ta surface, Cu grains are nucleated at random
locations. The probabilities of forming either of the two orientations are exactly the
same when the nucleated gains are far apart and therefore independent. When these
grains grow to meet each other, the grain sizes are already big and therefore, rela-
tively stable orientational boundaries are formed. This explains why two and only
two grain orientations were observed in all simulations.

The observed periodic stacking faults / partial dislocations were caused by lattice
mismatch. Unlike the misfit dislocations that accommodate the size difference be-
tween the two layers,[34, 35] the observed misfit dislocations must accommodate both
size and structure differences between bcc Ta and fcc Cu. The origin of the observed
misfit dislocation configurations are explored in Fig. 2.11, where in Fig. 2.11(a), the
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Figure 2.11. Origin of misfit dislocations. (a) stacking ge-
ometry of a (111) fcc Cu grain on the (100) bcc Ta substrate;
and (b) blow-up of the white dashed triangle shown in (a).

alternate dark and light shaded squares represent a (100) bcc Ta surface, and the
triangles represent a (111) Cu plane in the orientation of the two left grains shown in
Fig. 2.10(c), whereas in Fig. 2.11(b), a blow-up of the white dashed triangle in Fig.
2.11(a) is shown. In the figure, the relative size of the triangles with respect to that
of the squares matches the real material lattice constants so that misfit is reflected.
To examine the periodicity of the (111) Cu on the (100) Ta, two of the triangles are
marked black in Fig. 2.11(a) and the lower black triangle is aligned (corner on corner)
with the underlying square. It can be seen from Fig. 2.11(a) that a perfect (111) Cu
on (100) Ta does not have a short range periodicity along the vertical direction. As a
result, the misfit energy becomes large as the feature size increases. However, if the
upper-left part of the (111) plane is shifted with respect to the lower-right part of the
plane by a vector marked inside the white dashed triangle, a periodicity of a length
of six squares is created. Fig. 2.11(b) indicates that this shift vector corresponds
to the Burgers vector of a partial dislocation 1

6
〈112〉a of the Cu lattice. As a result,

the long range misfit strain energy is well released by the creation of the low energy
partial dislocations. The dislocation line direction seen in Fig. 2.11(a) matches the
stacking fault band direction shown in Fig. 2.10(c), and the periodicity identified in
Fig. 2.11(a) gives a stacking fault band width slightly shorter than that seen in Fig.
2.10(c). Because both dislocations and stacking faults introduce additional energies,
it is expected that the actual stacking fault band width (misfit dislocation separation
distance) is longer than the one shown in Fig. 2.11(a).
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Fig. 2.11 identifies only one dislocation (line and Burgers vector) characteristic of
one grain orientation. Because there are two perpendicular grain orientations, two
perpendicular arrays of stacking fault bands / dislocations are seen in Fig. 2.10(a),
with each array coming from one grain orientation.

The analysis above indicates that the formation of polycrystalline Cu films, transla-
tional boundaries, and periodic stacking fault bands / dislocations are all low energy
configurations. They are therefore stable. Because they are not metastable defects
created under kinetically constrained conditions, they are difficult to eliminate by
controlling kinetic growth conditions or by use of high quality single crystalline sub-
strates.

2.5 Growth of CuxTa1−x on Cu

The diffusion barrier application requires only the growth of Cu on Ta. Simulations
of Ta on Cu are motivated by the experimental discovery that alternate electron
beam deposition of Cu and Ta under Ar ion assistance can produce amorphous films
around a film composition of Cu0.3Ta0.7.[14] In the experiment, the film composition
was controlled by the relative thickness of the deposited Cu and Ta layers. This means
that extensive mixing occurred either during deposition of Cu on Ta or Ta on Cu. This
mixing can be caused by high energy Ar impacts.[38, 39, 40, 41] Simulations discussed
above shows that at the absence of Ar assistance, little mixing occurs during growth
of Cu on Ta. It is not clear if mixing can occur during growth of Ta on Cu. Our bulk
simulation results shown in Figs. 2.1 and 2.2 indicated that crystalline metals are
readily formed when the material is either Cu (or Cu-rich) or Ta (or Ta-rich). In these
cases, crystallization is difficult to inhibit as the kinetics is extremely fast in metals.
When mixing occurs, especially when the Cu and Ta compositions in the alloy (solid
solution) are comparable, an amorphous phase is likely to form because the lattice
mismatch strain energy is so large that it cannot be fully released by any crystal-
maintaining density of defects such as misfit dislocations. This effect is predicted in
Figs. 2.1(c) and 2.2. It is therefore critical to create highly mixed region and inhibit
separation to Cu-rich and Ta- rich phases in order to initiate amorphization.

Previous studies [23, 25, 32] have indicated that when the underlying surface is com-
posed of atoms with a lower cohesive energy, a larger lattice spacing, and a lower
surface energy with respect to the depositing atoms, the depositing atoms are more
likely to penetrate the underlying surface through the lattice interstices and the un-
derlying atoms are more likely to be exchanged to the surface to release both surface
tension and surface energy. A continuous surface segregation of the underlying atoms
to the surface then causes them to be mixed into the overlying deposited layer. Al-
though the radius of Cu is smaller than that of Ta, the cohesive energy of Cu, -3.54
eV/atom, is significantly smaller in magnitude (less negative) than that of Ta, -8.09
eV/atom. This suggests that Cu atoms are likely to segregate to the Ta surface to
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release the high surface energy (which is caused by the broken Ta bonds), and that
the depositing Ta atoms are likely to penetrate a weakly bonded Cu surface to cause
the Cu-Ta exchange. This observation suggests that there could be a significant mix-
ing across the Ta-on-Cu interface. If this is the case, it provides a new avenue for
the synthesis of amorphous films. An alternative approach that offers control of film
composition is to deposit CuxTa1−x films on Cu, with x somewhere between zero and
one. Considering that surface segregation and phase separation may occur during the
growth, it is not clear how the film composition relates to the vapor phase compo-
sition. The atomic assembly mechanisms during growth of Ta on Cu can therefore
provide useful insights that lead to better design concepts. Here we explore the for-
mation of amorphous films by simulating the growth of CuxTa1−x films on Cu using
a variety of compositions x.

2.5.1 Atomic Structure Observations

A series of MD simulations were carried out to grow CuxTa1−x films on Cu at a
constant adatom energy of 3.0 eV and various compositions of x, 0 ≤ x ≤ 1. Here
the composition x refers to the vapor composition and the actual film composition is
likely to be different considering that Cu atoms in the underlying Cu substrate may be
mixed into the deposited film. Examples of atomic configurations of deposited films
are shown in Fig. 2.12, where plan views of a small area of three consecutive atomic
planes inside the deposited films are shown in Figs. 2.12(a) - 2.12(d) for four selected
film compositions x = 0.0, 0.2, 0.4, and 1.0. It can be seen that at x = 0.0, Fig.
2.12(a), the growth of Ta on Cu resulted in a film that in most part is composed of
crystalline grains. Following the same analysis above, we found that all the Ta grains
have a (110) plane parallel to the (111) Cu substrate surface. The grain orientation
can be represented by a rectangle connecting the eight red (orange) atoms. The short
side of the rectangle is parallel to the 〈100〉 bcc Ta direction, and the long side of the
rectangle is parallel to the 〈110〉 bcc Ta direction. We further found that for all of
the Ta grains, one of the 〈100〉 bcc Ta direction is parallel to one of the 〈110〉 fcc Cu
direction. Because on the hexagonal Cu surface, there are only three nonequivalent
〈110〉 directions. As a result, only three Ta grain orientations were discovered in all
of our simulations. An additional finding in Fig. 2.12(a) is that the regions between
grains are disordered, which is characteristic of an amorphous phase. The width of
these disordered regions increased toward the Ta-on-Cu interface. These observations
indicate that the amorphization is driven by a combination of lattice mismatch across
the Ta/Cu interface and the grain boundaries.

Fig. 2.12(b) shows that the structure of the Cu0.2Ta0.8 film is very similar to that
of the Ta film. However, when the film composition was increased to x = 0.4, Fig.
2.12(c), the area of disordered regions increased significantly. These regions essentially
formed a considerable volume fraction of an amorphous structure. Finally, when the
composition is x = 1, the growth of Cu on Cu resulted in the formation of a relatively
perfect fcc Cu single crystalline film on Cu substrate, Fig. 2.12(d).
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Figure 2.12. (Color) Top views of the first three atomic
planes of CuxTa1−x films deposited on Cu at an adatom
energy of 3.0 eV. (a) Ta on Cu; (b) Cu0.2Ta0.8 on Cu; (c)
Cu0.4Ta0.6 on Cu; and (d) Cu on Cu.
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Figure 2.13. Radial distribution functions for selected
films.

To verify the observation from Fig. 2.12, radial distribution functions were calculated
for films deposited at different compositions. Selected results are shown in Fig. 2.13.
Comparison between Figs. 2.2 and 2.13 indicates that the Cu films on Cu exhibited
an fcc crystalline structure, the Ta films on Cu is dominated by a bcc crystalline
structure, and the Cu0.4Ta0.6 films on Cu is dominated by an amorphous structure.

2.5.2 Interlayer Mixing

Amorphization in binary metal atoms is believed to be driven mainly by heat of mix-
ing, atomic size difference, and crystal structure difference.[15, 42, 43, 44] When the
heat of mixing is high, the system tends to be separated to two elemental phases.
Only when the heat of mixing is low, a highly mixed solid solution forms. Amor-
phization then occurs if significant atomic size and crystal structure difference result
in significant energy in crystalline structures. The use of vapor deposition offers
unique means to create mixed film composition than other bulk synthesis methods.
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Figure 2.14. Front view of a Cu0.4Ta0.6 film deposited on
Cu at an adatom energy of 3.0 eV.

Interlayer mixing created during vapor deposition is hence important to understand.

The film compositions marked in Figs. 2.12 and 2.13 are the vapor compositions used
in simulations. Due to effects such as surface segregation, the actual local composition
in the film differs from the vapor composition. Obviously, amorphization is a result of
local composition in the film. To show possible composition distribution expected in
the films, the front view of a Cu0.4Ta0.6 film deposited on Cu at an adatom energy of
3.0 eV is shown in Fig. 2.14, where darker balls represent Ta atoms and lighter balls
are Cu atoms. It can be seen that Cu has a strong surface segregation effect, consistent
with its lower cohesive and surface energies. Due to this surface segregation, the Cu
composition near the surface is expected to be higher than that deep inside the film.

The key to create amorphous structure is to induce mixing. Due to the Cu surface
segregation effect, Cu tends to be mixed in the later deposited Ta films. As a result,
depositing Ta on Cu, in conjunction with Ar ion assistance to induce atomic exchange
at the surface, helps create a mixed interface. This accounts for why an alternate
deposition of Cu and Ta can be used to experimentally synthesize thicker amorphous
films. On the other hand, directly depositing CuxTa1−x alloy films offers a useful
means to better control film composition. However, due to Cu surface segregation,
Cu composition tends to increase as the film thickness increases when using this
approach. In addition, phase separation may occur. Experimental efforts are required
to identify the growth of amorphous films using the CuxTa1−x alloy vapor flux.

2.6 Conclusions

Molecular dynamics simulations and selected microscopic experiments have been per-
formed to study the growth of fcc Cu films on (010) bcc Ta substrate and CuxTa1−x

alloy films on (111) fcc Cu substrate. The following results have been obtained.

(a) The roughness of Cu films deposited on Ta decreases as adatom energy is in-
creased due to an impact induced flattening mechanism.
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(b) Cu deposited on (010) Ta always forms fcc polycrystalline films with a (111)
texture. The crystalline grains only have two orientations and are separated
by either orientational boundaries or translational boundaries (dislocations).
Formation of two crystal orientations is due to crystalline symmetry between
Cu film and Ta substrate. Formation of translational boundaries is due to misfit
dislocations.

(c) A characteristic array of periodic stacking fault bands / misfit dislocations is
formed within each Cu grain orientation to release misfit strain energies. Two
grain orientations then result in two perpendicular arrays of stacking fault bands
/ misfit dislocations in polycrystalline Cu films.

(d) Cu has a strong surface segregation effect when Ta is deposited on Cu. This
causes underlying Cu to float up and mix in subsequently deposited Ta or
CuxTa1−x films. As a result, the Cu composition in the CuxTa1−x layer is
always higher than vapor composition.

(e) Amorphous phase can form when the Cu and Ta compositions in the deposited
films are comparable. This can be achieved by either alternatively depositing Cu
and Ta with inert gas ion assistance, or directly depositing CuxTa1−x alloy films
with controlled vapor composition and highly kinetically constrained growth
conditions, or combination of both.
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Chapter 3

Simplified Computational Methods
for the Study of Diffusional
Problems

The study of kinetic processes in materials has been immensely aided by the devel-
opment of mathematical models and computational methods that retain the conse-
quences of fundamental atomic scale processes in predictions of microstructural evo-
lution over physically realistic time scales.[45] Continuum models and kinetic Monte
Carlo methods have been used to do this. The most widely used continuum ap-
proaches coarse grain the atomic phenomena into diffusion and chemical reaction
processes and set up diffusion partial differential equations to deduce composition
fields and second phase distributions. Numerical methods must be used to solve
these equations. For systems involving the random diffusion of multiple elements,
multiple second order parabolic partial differential equations (e.g., Fick′s law) need
to be simultaneously solved.[46] For non-random diffusion, higher order partial dif-
ferential equations (e.g., Cahn Hilliard′s equations [47, 48]) are necessary. On curved
surfaces, diffusion is also a function of local surface curvature, which increases the
order of the partial differential equations.[49] The solution of these equations then
becomes much more difficult because of the increase in the order of the partial differ-
ential equations. To study kinetic processes on surfaces, the diffusion equations may
need to be integrated into other methods such as the level set method developed by
Sethian.[50]

Continuum methods require a material structure to be represented by continuous
functions. This introduces constraints upon their use for vapor deposition simulations.
During deposition, adatoms randomly condense on the surface. This means that
regions on the local surface frequently advance within very short times leading to
non-continuous derivatives of the surface profile and a divergence of the numerical
calculations.

Kinetic Monte Carlo (kMC) methods are suited for studies of the evolution of signifi-
cant atomic structures (involving millions of atoms). They enable a simulation of the
individual atomic jumps (based on a prior calculation of their relative jump frequen-
cies) of all atoms in the system over physically meaningful periods of time.[51, 52]
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The kMC method has limitations for some problems. Atom jump frequencies ex-
ponentially increase with temperature according to the Arrhenius equation. Because
each atom jump is simulated, the time that can be analyzed during a kMC simulation
decreases with jump frequency. Furthermore, some systems can have very high jump
frequencies, even at ambient temperatures. For instance, the diffusion of a single cop-
per atom on a (111) copper terrace has a diffusion activation energy barrier of only
0.026 eV.[53] This leads to a jump frequency of 7×1011/s at 300K. If such a single
adatom falls on a (111) surface during a crystal growth simulation, most of the com-
putational resources will be allocated to a tracking of the random walk of this atom,
and relatively little will be learnt about the overall structural evolution. In these
scenarios, the usefulness and efficiency of the kMC simulations can be significantly
reduced. In the limit, as the jump frequency approaches atom vibration frequency,
kMC calculations must be carried out with a jump time scale that approaches the
surface atom vibration period. At this point, the computational efficiency of kMC
approaches that of molecular dynamics methods.

Here we investigate a diffusional Monte Carlo (dMC) approach that may permit an
alternative means for the study of material transport processes. Unlike kMC methods
that simulate each atom jump, the dMC method self-consistently selects the net dif-
fusion effect of all of atom jumps during the simulated time. As a result, the approach
is well suited for slow processes. The simulation efficiency is found to depend only
weakly upon problem space conditions such as temperature and diffusional activation
energy barriers. To develop the approach, we begin with a discussion of atomistic
diffusion theory and use this to define continuum diffusion equations for random and
non-random diffusional processes. The dMC approach is then introduced and in-
vestigated in the context of composition-driven random diffusion processes in one-,
two-, and three-dimensions including the dissolution of a spinodal structure (reverse
spinodal decomposition). We also demonstrate that the non-random diffusion theory
can be applied to predict spinodal decompositions.[47]

3.1 Atomistic Theory for Random Diffusion

To compare the results of atomistic and continuum simulations, atom jumps need
to be related to continuum diffusion equations. The simplest case to consider is the
situation where each atom randomly diffuses in a material. An illustration of the atom
jumps between adjacent atomic planes during a random diffusion process is shown in
Fig. 3.1(a), where the two thick solid lines represent the two adjacent atomic planes
separated by a spacing, a, and the thick solid curve is the energy variation when an
atom jumps from one plane to the other. Random diffusion occurs when the energy
curve is symmetric with equal minimum energies at both the left and the right atom
planes and when this is independent of local composition. Under these conditions,
any given atom would have an equal probability of occupying a lattice site in either
the left or the right plane. It can be seen from Fig. 3.1(a) that the energy barriers
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Figure 3.1. Atom jumps between adjacent planes. (a)
random diffusion; and (b) non-random diffusion.

to the left and to the right are equal and so they are both represented by a value, Q.
At a given temperature, the energy barrier defines the jump frequency through the
Arrhenius equation. As a result, the jump frequencies to the left and to the right are
also equal and are represented by a single value, Γ.

If it is assumed that a volume unit at the center (dash-dot) line between the two planes
has an average composition (atoms per volume) of C, and an average composition
gradient of ∂C

∂x
, to first order, the compositions at the left and the right planes can be

written as C − 1
2

∂C
∂x
· a and C + 1

2
∂C
∂x
· a respectively. The net flux of atoms, J, flowing

from the left to the right plane, can be written as

J =

(
C − 1

2

∂C

∂x
· a

)
· a · Γ−

(
C +

1

2

∂C

∂x
· a

)
· a · Γ = −Γ · a2 · ∂C

∂x
= −D

∂C

∂x
(3.1)

where D = Γ · a2. It can be seen that the net flow of atoms is driven by composition
gradient as individual atoms have an equal probability to jump in either direction. Eq.
(3.1) is essentially Fick′s first law of diffusion with D being the diffusivity coefficient.

A partial differential equation can be constructed to solve for the composition profile
as a function of time. Again consider a small volume unit at the center line shown
in Fig. 3.1. If the flux flowing into the unit volume through its left hand side equals
the flux flowing out of its right side, then no composition change would occur within
the unit. Because the composition change always results from differential fluxes, the
rate of composition change can be written as

∂C

∂t
= −∂J

∂x
(3.2)
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Substituting Eq. (3.1) into Eq. (3.2) gives Fick′s second law of diffusion,

∂C

∂t
= Γ · a2 · ∂2C

∂x2
(3.3)

3.2 Atomistic Theory for Non-Random Diffusion

When the energy changes with lattice site occupancy, atoms preferentially occupy
sites that reduce the system energy. The atom flow then depends not only on the
composition difference, but also on the energy difference. If a significant energy
driving force is present, atoms can flow from a low composition region to a high
composition region, resulting in uphill diffusion. Such a scenario is considered in Fig.
3.1(b), where the minimum energy at locations to the right is higher than that to
the left by ∆E. For comparison, we superimpose the symmetric energy curve in Fig.
3.1(b) using a dashed line. In the simplest case, the minimum energy is shifted by
∆E/2 to the right and by -∆E/2 to the left from the symmetric case. It can be seen
that the energy barrier for atoms to jump from the right to the left plane, Ql = Q -
∆E/2, is lower than that for atoms to jump from the left to the right plane, Qr =
Q + ∆E/2. As a result, the frequency for atoms to jump from the right to the left,
Γl, is higher than that for atoms to jump from the left to the right, Γr. This means
that atoms can flow from the right to the left even when the composition at the left
is higher than that at the right. The net flux of atoms then becomes

J =

(
C − 1

2

∂C

∂x
· a

)
·a·Γr−

(
C +

1

2

∂C

∂x
· a

)
·a·Γl = (Γr − Γl)·a·C−Γr + Γl

2
·a2 · ∂C

∂x
(3.4)

It can be seen that if Γr = Γl = Γ, Eq. (3.4) reduces to Eq. (3.1).

In our discussion, we assume that the material density Nv (total number of atoms per
unit volume) is a constant. For the diffusion species, its composition, C, is related to
its atomic fraction X as C = Nv · X. Because the Gibbs free energy for equilibrium
solid solutions is a function of atomic fraction,[54] the local energy (per atom) can be
taken as a function of local composition so that we can write E = E(C). E(C) is a
material property and can be pre-determined. E(C) and the local composition profile
determine the energy change during atom jumps, which in turn determines the atom
jump frequency.

Consider a system where a uniform composition is maintained. In this case, atom
jumps do not change the energy. As a result, atom jumps are associated with a
constant energy barrier. Note that atom jumps will be associated with a different
constant energy barrier if the system is maintained at a different uniform composi-
tion. This means that the activation energy barrier of jumps in systems with uniform
compositions can also be viewed as a function of composition, Q = Q(C). Like E(C),
Q(C) can also be pre-determined. Q(C) can be extracted from the average diffusion

38



distance of atoms as a function of temperature for systems with constant composi-
tions. Using the Arrhenius equation, the jump frequency in a uniform system can be
expressed as a function of composition:

Γ0 (C) =
1

2
· ν · exp

[
−Q (C)

k · T
]

(3.5)

where k and T are respectively Boltzmann constant and temperature, ν is vibration
frequency, and the factor 1

2
is introduced to account for the jumps in two directions.

If the composition is not uniform, atoms experience a composition change to their
environment during the jumps. Due to the dependence of energy on composition, the
energy barrier of the jump becomes a function of the local composition gradient and
jump direction. To calculate the energy barrier, the energy change during the jump
needs to be determined. The expression for the energy change associated with an atom
jump to an adjacent plane needs to be sufficiently precise so that the non-random
diffusion processes responsible for phenomena such as a spinodal decomposition can be
addressed. It is necessary to note that when an atom jumps from one plane to another,
the compositions, and hence, the energies, change at both planes. Referencing Fig.
3.1, we assume that the total number of atoms per plane is N, and the left and the
right planes have Nl and Nr jumping atoms, respectively. The corresponding volume
compositions at the left and the right planes are then Cl = Nv · Nl

N
and Cr = Nv · Nr

N
.

The energy per unit area of the cross section of the material will then become

Et = N · E (Cl) + N · E (Cr) (3.6)

If number of atoms per plane is constant (equivalent to constant Nv and constant
lattice constant), dNl + dNr = 0. The derivative of Et with respect to Nr then gives,

dEt

dNr

= Nv

[
∂E (Cr)

∂Cr

− ∂E (Cl)

∂Cl

]
≈ Nv · ∂2E

∂C2
· (Cr − Cl) (3.7)

Here unless explicitly specified, the derivatives (e.g., ∂2E
∂C2 ) are evaluated at the average

composition (Cl+Cr)/2. From Eq. (3.7), we can write the energy change for an atom
to jump from the left to the right plane as,

∆E = Nv · ∂2E

∂C2
· ∂C

∂x
· a (3.8)

It can be seen that Eq. (3.8) incorporates the second derivative of the energy with
respect to composition which is the essential driving force for spinodal decompositions.
Because the energy barrier equals Q(C) + ∆E/2 for jumps to the right and Q(C) -
∆E/2 for jumps to the left, the two Arrhenius equations are:

Γl = min

[
ν, Γ0 · exp

(
∆E

2 · k · T
)]

(3.9)
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and

Γr = min

[
ν, Γ0 · exp

(
− ∆E

2 · k · T
)]

(3.10)

Note that we bound Γl and Γr in Eqs. (3.9) and (3.10) by the vibration frequency
ν. This is because the jump frequency cannot exceed the vibration frequency even if
the energy barrier becomes zero or negative. Substituting Eqs. (3.9) and (3.10) into
Eq. (3.4) gives,

J =

{
min

[
ν

Γ0

, exp

(
− ∆E

2 · k · T
)]

−min

[
ν

Γ0

, exp

(
∆E

2 · k · T
)]}

· Γ0 · a · C

− 1

2

{
min

[
ν

Γ0

, exp

(
− ∆E

2 · k · T
)]

+ min

[
ν

Γ0

, exp

(
∆E

2 · k · T
)]}

· Γ0 · a2 · ∂C

∂x
(3.11)

If E(C) and Q(C) are known, Eq. (3.11) provides a complete description of the flux.
It can be seen that if energy is independent of composition, ∂E

∂C
= 0, Eq. (3.11)

correctly reduces to Eq. (3.1). Moreover, substituting Eq. (3.11) into Eq. (3.2) gives
a partial differential equation for the non-random diffusion process.

In many practical processes where smoothly varying energy functions and composition
profiles are encountered, ∆E can be very small. In this case, Eq. (3.11) can be
simplified to first order as

J = − ∆E

k · T · Γ0 · a · C − Γ0 · a2 · ∂C

∂x
(3.12)

It is clear that the first term captures the energy driven diffusion and the second term
is the normal composition driven diffusion. Substituting Eq. (3.8) into Eq. (3.12)
results in

J = −Γ0 · a2

k · T
(

Nv · C · ∂2E

∂C2
· ∂C

∂x
+ k · T · ∂C

∂x

)
(3.13)

Using Eq. (3.2), we obtain a partial differential equation:

∂C

∂t
=

a2

k · T
∂

∂x

(
Γ0 ·Nv · C · ∂2E

∂C2
· ∂C

∂x
+ k · T · Γ0 · ∂C

∂x

)
(3.14)

Eq. (3.14) essentially incorporates the same energy driven diffusion term encountered
in Cahn-Hilliard equations [48]. It can be seen that if ∂E

∂C
= ∂2E

∂C2 = ∂Q
∂C

= 0, Eq. (3.14)
correctly reduces to the Eq. (3.3). It should be noted that the equations derived above
do not consider the effects of stress. These effects, however, can be incorporated by
analogous modifications of Eq. (3.8).
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3.3 Diffusional Monte Carlo Simulation Method

for Random Diffusion

Conventional kinetic Monte Carlo methods simulate each atom jump based upon the
relative jump frequencies of all the atoms. Regardless of atom jump sequences, all
atoms reside at lattice locations after completion of the diffusion process. We can
assume that the probability density distribution function for an atom i to exist in a
small spatial region between ri and ri+dri from its original site is ρ(ri), where i = 1,
2, . . ., N, and N is the total number of atoms in the system. During random diffusion,
the diffusion of each atom can be considered independent. The probability density
for the total diffusion distance of each of the atoms (a function of the annealing time
and diffusivity coefficient) can be found from random walk statistics as summarized
in Appendix, section 3.6. Once ρ(ri) is known, then the diffusion of each atom over
the entire diffusion process could be simulated in one step by statistically moving the
atom to the corresponding location ri in accordance with the relative probability ρ(ri).
A system containing N atoms then requires N such steps to simulate the diffusion of
all atoms and the final atom positions well represent the annealed structure.

Just like the conventional kMC methods, the N-step simulation results in a discrete
structure. The atomic composition profiles obtained using such a simulation may be
substantially different to that obtained using the continuum theories. It is useful to
recall that Metropolis Monte Carlo methods[55] calculate the average properties of
a large number atomic configurations (atom positions) that are sampled based upon
Boltzmann energy distribution that is representative of equilibrium structures. As
a result, Metropolis Monte Carlo methods are able to predict accurate equilibrium
properties.[55] The only difference between the kinetically determined structure and
the equilibrium one is that the atom positions satisfy a kinetic position distribution
ρ(ri) instead of the Boltzmann distribution. As a result, the conceptual framework
of Metropolis Monte Carlo methods could in principle be used to address kinetics
problems. Details are discussed in the following.

A material system configuration can be denoted by an assembly of position vectors,
{ri}, to all the N atoms in a system; i = 1, 2, . . ., N. Any change of position of any
of the atoms then results in a change of the system configuration. If a material is
annealed at a temperature T for a period of time t, its configuration continuously
changes due to the diffusion of atoms in the system. The diffusion distance of a
given atom is not deterministic, but satisfies a known probability density distribution.
For random diffusion in one-, two-, and three- dimensions, the diffusion distance
probability density functions are given by Eqs. (3.26), (3.28), and (3.30) in Appendix,
section 3.6. Each equation relates the diffusion distance to an annealing time, t, and a
diffusivity coefficient, D. The diffusivity coefficient depends on absolute temperature,
T, through the Arrhenius equation: D = D0 · exp

(− Q
kT

)
, where D0 is pre-exponential

diffusion coefficient, Q is activation energy barrier of diffusion, and k is Boltzmann
constant. As a result, the effects of both T and t are incorporated in the diffusion
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distance probability density functions.

The simulated structures after diffusion in a system containing a limited number
of atoms are unlikely to be exactly that experimentally observed. However, if the
calculations are repeated many times, the averaged experimental observations and
predictions should converge. This means that any measurable property of the system,
such as the composition profile, can be accurately calculated as the average property
of all the possible configurations of the system. Here the property, p, of a given
system configuration can be viewed as a unique function of the atom positions {ri}
so that it is possible to write p = p({ri}).
Given that the probability density for an atom i to exist in a small spatial region
between ri and ri+dri is ρ(ri), and if this probability density is independent of the
positions of the other atoms, then the probability density for the system to have atoms
occupying sites between {ri} and {ri+dri} (i = 1, 2, . . ., N) is ρ(r1)ρ(r1). . .ρ(rN). The
average property of the system can then be defined as weighted sum of the properties
of all possible configurations:

p̄ =

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
p ({ri}) ρ (r1) ρ (r2) . . . ρ (rN) dr1dr2 . . . drN (3.15)

However, since a material system includes a very large number of atoms, the direct
use of Eq. (3.15) to calculate the property of a system is not a computationally
practical approach to material property prediction.

Suppose a large number, Ns, of system configurations are sampled in such a way
that positions of each atom i (i = 1, 2, . . ., N) collected from these configurations
statistically satisfy the corresponding distribution, ρ(ri). The average property of
the system is then simply approximated as the average property of these sampled
configurations:

p̄ =
1

Ns

Ns∑
m=1

pm (3.16)

where pm is the property of the m-th sampled configuration. From these definitions,
it is obvious that Eqs. (3.15) and (3.16) give exactly the same average property when
Ns →∞.

In the dMC simulation approach suggested here, an initial material configuration
is created as an assembly of atoms whose coordinates are assigned according to a
desired initial structure (prior to annealing). This configuration can be sampled as
the first configuration. The property of interest is calculated for this configuration
and recorded.

The second configuration is sampled as a variation of the first configuration by al-
lowing a randomly selected atom to diffuse. Unlike the kMC method that simu-
lates individual atomic jumps, each dMC step simulates the total diffusion of one
atom over the entire annealing period using the random walk probability distribu-
tion, ρ(r), given in Eqs. (3.26), (3.28), and (3.30). To statistically choose the total
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diffusion distance r such that it satisfies a normalized probability density function
ρ(r)

(
i.e.,

∫∞
0

ρ (r) dr = 1
)
, a random number R between zero and one is first created

and r is then deduced from solution of the equation
∫ r

0
ρ (r) dr = R. An explicit

expression relating r to R can be derived for the two-dimensional case as r = 2√
−Dt · ln (1−R). No simple explicit expressions of r have been found for the one-

and three-dimensional cases but they can be numerically pre-computed. To avoid
solving for r during each dMC step, r can then be explicitly expressed as a cubic
spline function of R for the one- and three-dimensional cases where the cubic spline
function parameters are pre-tabulated by fitting to the numerical calculations.

Once r is known in terms of R, t, and T (via D), the selected atom is displaced by
the distance, r, in a selected direction. For one-dimensional simulations, the atom is
moved in either direction with an equal probability. For two- and three-dimensional
simulations, the direction of the displacement is randomly chosen. Once the selected
atom is displaced, the property of the resulting configuration is calculated and is
included in the calculation of a running average of the data recorded for previous
configurations (in this case, the first configuration).

The third configuration is sampled by a variation of the second configuration. In
this dMC step, a new randomly selected atom is displaced with respect to its initial
position (i.e., the coordinates in the first configuration) according to the random
walk diffusion statistics. The property of the third configuration is calculated and is
included in the calculation of the running average along with data recorded for all
previous configurations. The fourth configuration is sampled similarly, and so on,
until a sufficiently large number, Ns, of configurations are sampled to result in a well
converged average property of the system.

It should be pointed out that as the dMC steps continue, the diffusion is simulated
for more and more atoms, and the currently sampled configuration may be quite
close to the true post-annealed structure. Even so, a single configuration is always
less accurate than the averaged configuration for representation of the post-annealing
structure. In addition, since the data is averaged over a very large number of config-
urations, the result becomes insensitive to the choice of the first configuration even
though it is taken as the initial configuration (prior to annealing) and therefore might
deviate significantly from the post-annealing structure. Alternatively, a designated
number of the earliest sampled configurations could be excluded from the average
property calculations to improve the convergence. It can now be seen that a differ-
ence between kMC and dMC methods is that a single kMC simulation represents a
single measurement of the material structure while the result of a single dMC sim-
ulation is the averaged outcome of a large number of dMC steps, each measuring a
sampled configuration. As a result, dMC simulations of diffusion can be viewed as
averaged simulations of many kMC runs and are anticipated to produce results much
closer to those obtained from Fick′s laws of diffusion than is usually possible with
kMC simulations.

The dMC method is not diffusion time limited. As a result, it can be used to address
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diffusion over time scales that are unlikely to be achievable with conventional kMC
methods. For example, the dMC method can be used to simulate a kinetic process
that persists for 1010 years. While the dMC method appears to be more computation-
ally efficient than the kMC method in this case, it only calculates the final structure
at the (targeted) simulated time, while a kMC simulation yields many intermediate
structures at various times up to the (targeted) simulated time.

3.4 Results

In this section, we investigate the validity and precision of the dMC method. An ac-
tivation energy barrier for jumping, Q = 1.161 eV, and a pre-exponential factor, D0

= 3.607×10−6 Å2/ps, are used. These diffusion parameters are in the range of exper-
imental inter-diffusion coefficients for the Cu-Ni, Cu-Pd, and Cu-Pd-Fe systems.[56]
However, they do not refer to any particular materials and are used here only to ex-
plore the approach. Selected examples of one-, two-, and three-dimensional diffusion
at a temperature of 600 K are first solved, and the results are compared with those
obtained from Fick′s equation for random diffusion. The calculations are carried out
to examine the time evolution of the solute composition profiles in a solute-solvent
material system. The method is then applied to simulate the evolution of a spin-
odal structure composed of polystyrene (PS), poly(2-chlorostyrene) (P2CLS), and
di-n-butyl phthalate (DBP) during annealing at a single-phase temperature, and the
results is compared with the corresponding experiments.[57] Since volume composi-
tion scales with atomic fraction under our assumption, we present our work using
atomic fraction for convenience.

3.4.1 One-Dimensional Diffusion

The one-dimensional Fick′s equation of diffusion for an infinitely long rod placed on
the x- axis is described by Eq. (3.3). For problems with simple initial and boundary
conditions, Eq. (3.3) can be analytically solved. Two such simple examples were
chosen for study. The first explored the central diffusion problem where a solute-
rich region was placed in the middle of an infinitely long solvent rod. The initial
composition (referred here as atomic fraction) profile was represented by X (x, t = 0)

= X0 · exp
(
− x2

4Dt0

)
, where X0 is the peak solute composition at x = 0 and t0 is a

parameter with the unit of time. Here we assume X0 = 100% and t0 = 1.006×108

ps. In this composition profile, the high solute composition at x = 0 quickly decays
to near zero at x = ± 80 Å. Using this initial composition profile, Eq. (3.3) can be
analytically solved to yield:

X (x, t) = X0

√
t0
t
· exp

[
− x2

4D (t0 + t)

]
(3.17)
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The second example explored periodic diffusion along an infinitely long rod. The
initial composition profile was represented by a periodic function: X (x, t = 0) =

X0 + ∆X
2
· cos

(
2π
Lx

x
)
, where X0 is the average composition along the rod, ∆X is

the amplitude of the composition variation, and Lx is the periodic length in the rod
direction. Here we use X0 = 58.8%, ∆X = 80%, and Lx = 400 Å. With this initial
condition, Eq. (3.3) can also be analytically solved to give:

X (x, t) = X0 +
∆X

2
· exp

[
−

(
2π

Lx

)2

Dt

]
· cos

(
2π

Lx

x

)
(3.18)

To carry out the corresponding dMC simulations, a one-dimensional computational
rod with a total length of 400 Å was used (in conjunction with the periodic boundary
condition). This rod was divided into 50 grids with each grid measuring 8 Å. Each
grid was assigned 40 atoms of either solute or solvent. The relative numbers of the
two types of atoms were chosen to best match the initial composition profile. Atoms
in the grid were assumed to take the same position as the grid coordinates. This
simulated system contained a total of 2000 atoms. Note that the number of atoms
assigned to the grid affects the resolution of the calculated atomic fraction. It does
not have any implications on material density.

The dMC method described above was then used to calculate the average composi-
tion of all sampled configurations. The number of configurations required to produce
the highly converged results depends on the simulated conditions and system size.
During annealing, the initial composition profile continuously approached the final
composition profile. The composition uniformity that is characteristic of a compo-
sition profile can be quantified by mean square deviation of the composition profile
from the average composition. This composition uniformity parameter was used to
measure the converging status of the simulations. An example of a convergence test
with a simulated central diffusion that lasted for 1.006×108 ps is shown in Fig. 3.2. It
plots the running average of the mean square deviation of the composition profile as
a function of the number of the dMC steps. It can be seen that the simulated result
is well converged when the number of sampled configurations exceeds 2×105. We also
found that for the central diffusion conditions simulated, a dMC step number of 107

generally produced good results for all the annealing times simulated. For the peri-
odic diffusion case, we found that ∼109 dMC steps were required to yield converged
calculations for numerous simulations using different annealing times. In general,
larger systems and longer diffusion distances require more dMC steps to achieve well
converged results.1 It should be noted that a discrete annealed structure can always
be calculated using the N-step simulation described above. The N-step simulation is
not expected to produce results that precisely match those obtained from continuum
simulations. Its computational cost, however, always equals the N dMC steps.

With the parameters selected and convergence conditions determined, the annealing

1In our simulations, we found that 1010 dMC steps took 4-5 days on a single processor of a Birch
Linux Cluster.
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ation of the composition profile is shown as a function of the
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of the rods with both central and periodic initial composition profiles were simulated
for different annealing times at the fixed annealing temperature of 600 K. The results
are compared with the exact (Fick′s laws) solutions in Fig. 3.3(a) for the central dif-
fusion case and in Fig. 3.3(b) for the periodic diffusion case. Fig. 3.3(a) shows that
during the central diffusion simulations, the initial sharp peak of the composition at x
= 0 continuously decays and the width of the composition profile became continuously
broader. The detailed composition profiles predicted from the dMC simulations for
different annealing times between 0 and 4.022×108 ps are virtually indistinguishable
from the exact solutions. It should be noted that at an annealing time of 4.022×108

ps, the composition profile spreads to the entire simulated length scale of 400 Å. Due
to the periodic boundary condition used in the dMC simulations, a further increase in
the simulated annealing time would cause an interaction between adjacent (periodic)
images of the composition peaks. As a result, the simulated results for annealing
times beyond 4.022×108 ps could not be compared with the analytical solution that
corresponds to a truly isolated composition peak. The periodic diffusion problem
does not suffer from this problem and allows the results of the dMC simulations to
be compared with the analytical solution for any annealing time. Fig. 3.3(b) shows
that during periodic diffusion, the amplitude of the composition oscillation continu-
ously decreased as the annealing time was increased to 2.848×1019 ps. At 2.848×1019

ps, the composition became essentially uniform in the scale used in the figure. This
uniform composition had converged to the initial average composition, C0 = 58.8%.
During the entire time evolution from the initial composition profile to the final uni-
form composition profile, the results obtained from the dMC simulations are virtually
indistinguishable from the exact analytical solution. The dMC method clearly pro-
vides highly precise estimates of one-dimensional random diffusion processes.

3.4.2 Two-Dimensional Diffusion

Diffusion from a central source in an infinitely large plate can be described by a
radially symmetric, two-dimensional Fick′s equation of diffusion:

∂C

∂t
= D ·

(
∂2C

∂r2
+

1

r

∂C

∂r

)
(3.19)

For a simple case of central diffusion where a circular cylinder of solute-rich material
is placed in the middle of a large solvent plate, the initial composition profile can be

described by: X (r, t = 0) = X0 · exp
(
− r2

4Dt0

)
. Here it is assumed that X0 = 97.5%

and t0 = 1.006×108 ps. In this case, the high solute composition at r = 0 quickly
decays to near zero at r = 80 Å. With this simple initial condition, Eq. (3.19) has an
analytical solution:

X (r, t) = X0 · t0
t
· exp

[
− r2

4D (t + t0)

]
(3.20)

The two-dimensional dMC simulations used a 400×400 Å2 square-shaped compu-
tational material with periodic boundary conditions in the two orthogonal (x, y)
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Figure 3.4. Time evolution of composition profiles during
two-dimensional central diffusion.

directions of the plane. The plate was divided into 50×50 grids, each measuring 8×8
Å2. Each grid was assigned 40 atoms of either solute or solvent according to the
initial composition profile. This system therefore contained a total of 100,000 atoms.

A total of 1010 dMC steps were used to calculate the converged average composition
profiles. Due to the symmetry of the problem, the composition profile was represented
as a function of the radial distance, r =

√
x2 + y2, from the central point. The

composition profiles obtained from the dMC simulations for two annealing times of
0 and 2.011×108 ps are compared with the corresponding curves calculated using
Eq. (3.20) in Fig. 3.4. It shows that the annealing for 2.0×108 ps significantly
broadened the initial sharp distribution of the composition. Fig. 3.4 also shows
that the difference between dMC results and the exact solution becomes relatively
more significant when the r coordinate decreases. This is likely to be caused by
statistics because the material volume used to average the composition is reduced
when r decreases. Nonetheless, the general composition profile obtained from the
dMC simulation is seen to be very similar to the exact solution, and it would appear
that the dMC method effectively captures the two-dimensional diffusion processes.
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3.4.3 Three-Dimensional Diffusion

Central diffusion from a spherical source in an infinitely large bulk sample is the
simplest three-dimensional case to investigate. The diffusion in such a problem can
be described by a radially symmetric three-dimensional form of Fick′s equation of
diffusion:

∂C

∂t
= D

(
∂2C

∂r2
+

2

r

∂C

∂r

)
(3.21)

The initial central diffusion source is defined by an initial composition profile X (r, t = 0)

= X0 · exp
(
− r2

4Dt0

)
. Here it is assumed that X0 = 92.5% and t0 = 6.436×107 ps. In

this composition profile, the central peak composition decays to near zero at r = 70
Å. Given this initial condition, Eq. (3.21) has an analytical solution:

X (r, t) = X0 · t0
t
·
√

t0
t
· exp

[
− r2

4D (t + t0)

]
(3.22)

A three-dimensional computational bulk material with a 320×320×320 Å3 dimen-
sion and periodic boundary conditions (in x, y, and z directions) was used for the
three-dimensional dMC simulations. The computational volume was divided into
40×40×40 grids with each grid measuring 8×8×8 Å3. Each grid contained 40 solute
or solvent atoms that are assigned according to the initial composition profile. The
entire simulated system contained 2,560,000 atoms.

A total of 1010 dMC steps were used to calculate the converged average composition
profiles at two simulated annealing times of 0 and 6.436×107 ps. The resulting curves
of composition as a function of the radial distance, r =

√
x2 + y2 + z2, from the cen-

tral diffusion source are compared with those calculated using Eq. (3.22) in Fig. 3.5.
It can be seen that the 6.436×107 ps annealing significantly broadened the compo-
sition distribution. For the same reason as described above, the difference between
dMC results and the exact solution becomes relatively more significant when the r
coordinate decreases. However, the general annealing time dependent composition
vs. radius profiles obtained from the dMC method are again virtually indistinguish-
able from those solved from the Fick′s equation. The dMC method can hence be
accurately used to simulate the three-dimensional diffusion processes.

3.4.4 Dissolution of Spinodal Structure

Okada, Tao, and Nose have used electron microscopy to study the microstructure
evolution of a PS/P2CLS/DBP spinodal polymer during annealing at a temperature
in a single phase domain.[57] An example pre-annealed structure is shown in Fig.
3.6(a). Their two dimensional electron micrographs of the structure before annealing
were divided into 356×258 grids, with each grid measuring 188×188 Å2. A model
composition for each of the grids was then assigned based on the corresponding gray
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scale level in the experimental images. The two-dimensional dMC method was then
used to anneal the digitized structure. Electron micrographs of the experimental
structure before and after annealing, as well as the simulated structure after annealing,
are shown in Figs. 3.6(a)-(c) respectively. Note that while Fig. 3.6(c) corresponds to
the same area as Fig. 3.6(a), Fig. 3.6(b) is likely to correspond to a different area.
It can be seen that the simulation well captures the structure evolution during real
experiments.

3.4.5 Spinodal Decomposition

In section 3.2, we developed an atomistic theory of non-random diffusion that re-
sulted in analytical equations, Eqs. (3.11) - (3.14). In principle, the dMC method
described above can be applied to these non-random diffusion problems. However,
since the diffusion behavior of each atom depends on the varying composition profile,
the simulation of a slow process needs to be divided into small time intervals so that
the atom behavior within each of the short time slots can be approximately treated
as quasi-constant. This is also computationally acceptable if the N-step simulation
method is used (rather than sampling a large number of configurations). In that
case, a computational cost of 1010 dMC steps would allow total time to be divided
into 104 intervals for a system containing 106 atoms. The fine resolution of time in-
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(a) initial spinodal structure, electron micrograph

(b) after annealing, electron micrograph

(c) after annealing, dMC simulation

10 µm

Figure 3.6. Evolution of PS/P2CLS/DBP spinodal struc-
ture during annealing at a temperature in a single-phase do-
main. (a) electron micrograph of an initial spinodal struc-
ture; (b) electron micrograph of an annealed spinodal struc-
ture; and (c) the dMC predicted micrograph of the annealed
spinodal structure.
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tervals should then ensure the accuracy of the approach. Such a dMC method will
be explored in the future. Here we validate the theory by using MATHEMATICA′s
NDSolve function to directly solve Eq. (3.14) for a spinodal decomposition process
during annealing at 900 K. We assume that composition satisfies 0 ≤ C ≤ Cmax,
where the maximum composition Cmax refers to the one when all solute sites are
occupied.

For a solid solution to exhibit the spinodal decomposition behavior, its Gibbs energy
as a function of composition must have two minima. For simplicity, we assume that
E(X) = 0.5 cos (4π ·X). The Gibbs free energy, which is expressed as G(X) = E(X) +
k · T · [X · ln (X) + (1−X) · ln (1−X)], has two minimums as shown in Fig. 3.7(c).
The diffusion energy barrier is assumed to be independent of composition and the
same diffusion parameters as above are used. Two initial compositions of the solid
solution prior to the spinodal decomposition are considered. The first assumes that
the composition is near-uniform but with seven small oscillations to initiate the de-
composition. The second has a single large initial composition oscillation to enable
more detailed examination of the decomposition. These initial composition profiles
are shown using dashed lines in Figs. 3.7(a) and 3.7(b). Eq. (3.14) is then solved for
the structure evolution under the boundary condition that the flux at the left bound
(x = -200 Å) equals the flux at the right bound (x = 200 Å). The composition profiles
obtained after annealing at 900 K for 1 and 10 sec. respectively for the two initial
compositions are shown using solid lines in Figs. 3.7(a) and 3.7(b).

Fig. 3.7(a) indicates that after annealing at 900 K for 1 sec., the initial near-uniform
composition profile develops amplified oscillations. The difference between the min-
imum and the maximum composition in Fig. 3.7(a), however, is smaller than equi-
librium composition gap shown in Fig. 3.7(c). This is expected because diffusion is
driven by both the composition gradient and the energy differential. When the period
between spinodal oscillations is small, the composition gradient becomes large. Be-
cause the composition gradient always promotes uniform composition distribution, it
reduces the composition oscillation amplitude from the equilibrium composition mis-
cibility gap. Fig. 3.7(b) indicates that after annealing at 900 K for ten sec., the initial
big composition oscillation is even further separated. Because only one composition
oscillation is examined, the composition gradient is much less significant. It can be
seen that at the reduced composition gradient, the equilibrium compositions of the
two separated phases are indeed pushed towards the minimum energy compositions
of 25 % and 75 % shown in Fig. 3.7(c). As a result, Fig. 3.7 indicates that Eq. (3.14)
captures the physics needed for modeling the non-random diffusion processes such as
spinodal decomposition.
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Figure 3.7. Spinodal decomposition. (a) near-uniform ini-
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profile; and (c) Gibbs free energy as a function of composi-
tion.
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3.5 Conclusions

The atomistic diffusion theory of mass transport has been developed and used to
construct partial differential equations for both random and non-random diffusion.
A diffusional Monte Carlo method for simulating the kinetics of material evolution
has been proposed for random diffusion. Unlike the jump-based kinetic Monte Carlo
method, the diffusional Monte Carlo method is based on estimates of the total diffu-
sion distance during the entire simulated time. As a result, the simulation is relatively
efficient, especially when the jump frequency becomes extremely high. Because the
method calculates the ensemble average property of a large number of configurations,
it also produces more reliable results than the kinetic Monte Carlo method. Applica-
tions of the method to diffusion problems in one-, two-, and three-dimensions indicate
that the diffusional Monte Carlo method can produce almost the same results as those
obtained from direct solutions of Fick′s equations of diffusion. It has been success-
fully used to simulate the dissolution of a spinodal structure during annealing at a
temperature in a single-phase domain. The extension of the approach to non-random
diffusion is discussed and the application of the non-random diffusion theory during
spinodal decompositions is also demonstrated.

3.6 Appendix: Radom Walk Theory

If an atom randomly jumps in a one-dimensional space, then the probability density
ρ(r,n) for the atom to fall at a distance r from its starting position after a large
number of jumps, n, can be described by a Gaussian probability density distribution
function:[58]

ρ (r, n) =

√
2

π · σ (n)2 · exp

[
− r2

2σ (n)2

]
(3.23)

where σ(n) is the root-mean-square deviation of r from the mean of the Gaussian
distribution (r̄ = 0). σ(n) is a function of the jump number, n, and can be simply
expressed as

σ (n)2 = n× l2 (3.24)

Here l is the jump length. The total number of jumps, n, can be calculated from the
jump frequency Γ and jump time t as n = Γ · t. For diffusion problems, T and l
can be related to the diffusivity coefficient D. As a result, the random walk distance
distribution, Eq. (3.23), can be expressed in terms of D and t rather than n. Here we
show that the D and t dependent distance probability density distribution functions
can be easily derived from Fick′s equation of diffusion for a particle randomly walking
in one-, two-, and three- dimensions.

Consider a single atom at the origin point (x = 0) in a one dimensional x- axis. The
initial mass density of the species at x = 0 can then be defined as the average density
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over a small section
[−dx

2
, dx

2

]
as C(x = 0, t = 0) = 1

dx
. The initial mass densities

of the species at other positions are all zero C(x 6= 0, t = 0) = 0. C(x, 0) satisfies∫∞
−∞ C(x,0)·dx = 1, and hence can also be viewed as the position probability density

distribution of the atom at t = 0. It is recognized that the random walk of a single
atom is equivalent to the random diffusion of that atom. As a result, a continuous
function of the mass density of the atom after it randomly walks for a period of time
t (with a diffusivity coefficient D) can be solved from Eq. (3.3) using the initial
condition described above and the mass conservation condition

∫∞
−∞ C(x,t,D)·dx = 1:

C (x, t, D) =
1

2
√

πDt
· exp

(
− x2

4Dt

)
(3.25)

It should be pointed out that the mass density distribution of a single atom after one
random walk experiment is discrete. The continuous function C(x, t) then cannot
represent the discrete mass density distribution of a single random walk experiment.
Imagine, however, many such random walk experiments are carried out. The atom
is likely to reside at a different location in each experiment. All these locations can
then be combined to formulate a continuous position probability density distribution
function that can be precisely captured by C(x, t, D). To more clearly see this, we
recognize that the coordinates −x and x have the same distance r = |x| from the
origin point. The composition profile, Eq. (3.25), can then be directly rewritten as

ρ (r, t,D) =
1√
πDt

· exp

(
− r2

4Dt

)
(3.26)

where ρ(r, t, D) represents the probability density for the atom to migrate a distance
r away from its initial position after it jumps for a period of time t with a diffusivity
coefficient of D. For one-dimensional diffusion, σ2 = 2Dt. It can be seen that Eq.
(3.26) is exactly the same as Eq. (3.23).

Using a similar approach, the two-dimensional random walk distance probability den-
sity distribution was derived from Eq. (3.19). First, the solution of Eq. (3.19) yields
a mass density distribution function:

C (r, t, D) =
1

4πDt
· exp

(
− r2

4Dt

)
(3.27)

Since all positions along the 2πr circular periphery have the same distance from the
origin point, the distance probability density distribution can be modified from the
mass density distribution function as

ρ (r, t,D) =
r

2Dt
· exp

(
− r2

4Dt

)
(3.28)

The three-dimensional random walk distance probability density distribution was
derived from Eq. (3.21). The mass density distribution function is:

C (r, t,D) =
1

4πDt
√

4πDt
· exp

(
− r2

4Dt

)
(3.29)
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Since all positions over the 4πr2 spherical surface have the same distance from the
origin point, the distance probability density distribution can be written as

ρ (r, t,D) =
r2

Dt
√

4πDt
· exp

(
− r2

4Dt

)
(3.30)

Eqs. (3.26), (3.28), and (3.30) respectively represent the atom distance distributions
after its one-, two-, and three-dimensional random walk diffusion. These distributions
can be characterized by a characteristic diffusion distance d = 2

√
Dt. A small charac-

teristic diffusion distance results in a sharp distance distribution over a small diffusion
distance range. A larger characteristic diffusion distance is obtained at higher tem-
peratures (which increase D) and longer times. As a result, the diffusion distance
distribution becomes more diffused towards a larger distance range.
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