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The van der Waals interaction between two ground-state atoms is calculated for two electrically or magneti-
cally polarizable particles embedded in a dispersive magnetodielectric medium. Unlike previous calculations
which infer the atom-atom interaction from the dilute-medium limit of the macroscopic, many-body van der
Waals interaction, the interaction is calculated directly for the system of two atoms in a magnetodielectric
medium. Two approaches are presented, the first based on the quantized electromagnetic field in a dispersive
medium without absorption and the second on Green functions that allow for absorption. We show that the
correct van der Waals interactions are obtained regardless of whether absorption in the host medium is explic-

itly taken into account.
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I. INTRODUCTION

The van der Waals interaction between ground-state at-
oms in vacuum is often regarded as a consequence of the
vacuum fluctuations of the electromagnetic field. It is well
known that the interaction between two macroscopic, un-
charged dielectric bodies cannot be obtained by the pairwise
addition of this interatomic van der Waals interaction except
in the dilute-medium limit. In this limit Lifshitz, for instance,
obtained the retarded and unretarded pairwise van der Waals
interaction between electrically polarizable atoms from a
more general expression for the interaction energy of two
dielectric half-spaces [1]. The van der Waals interaction ob-
tained in this way is identical to that obtained more directly
by Casimir and Polder [2] for the system of two atoms in
vacuum.

The continuing interest in Casimir effects and the related
effects of vacuum field fluctuations in the case of dielectric
media has stimulated some interest in the van der Waals
interactions of atoms embedded in magnetodielectric media.
Recent work in this area [3-7], takes essentially the original
approach of Abrikosov er al. [8] using Green functions for
radiation in an absorbing medium and taking the dilute-
medium limit to infer the atom-atom interaction. In this pa-
per we obtain the atom-atom van der Waals interaction di-
rectly, rather than from a dilute-medium limit of an
interaction between macroscopic bodies, and we show that
this interaction can be correctly obtained without explicit ac-
count of absorption in the host medium.

We consider both electrically polarizable and magneti-
cally polarizable atoms embedded in a magnetodielectric me-
dium. A possible physical scenario to have a well-defined
embedding of the atoms in the medium corresponds to two
spherical cavities centered at the positions of the atoms, from
which the medium has been removed [9]. The surrounding
medium can be considered continuous as long as the radii of
the cavities and the separation between them is much larger
than the interatomic distances in the medium. In order to
proceed to calculate the van der Waals interaction between
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the two atoms, one needs to quantize the electromagnetic
field in this configuration, which is a complicated boundary
problem [10]. In the following we will simplify the problem
by assuming that the cavities have negligible radii, effec-
tively embedding the atoms as pointlike particles in a me-
dium approximated as a continuum. We will present two
derivations of the van der Waals interaction between the two
atoms embedded in the magnetodielectric medium. The first,
presented in Sec. II, is based on the (electric or magnetic)
dipole-dipole interaction induced in the two atoms by the
“vacuum” field in the magnetodielectric medium. For this
purpose we employ simple expressions for the quantized
electromagnetic field in a dispersive magnetodielectric me-
dium in which absorption is ignored [11]. The second, the
subject of Sec. III, employs Green functions and takes ex-
plicit account of absorption [12]. The fact that the same re-
sults are obtained regardless of whether absorption is ac-
counted for appears to us to be of some interest, and physical
reasons for it are given in Sec. IV, which also includes some
further discussion and a brief summary of our results.

II. VAN DER WAALS INTERACTIONS FROM THE
QUANTIZED FIELD WITHOUT ABSORPTION

We consider two identical atoms in a homogeneous and
isotropic magnetodielectric medium which we regard as a
continuum with real electric permittivity e(w) and magnetic
permeability u(w), and therefore real refractive index n(w).
The calculation of the van der Waals interactions in this sec-
tion will be based on the following expressions for the elec-
tric and magnetic fields in the nonabsorbing magnetodielec-
tric medium [13]:

o TALE . .
E(r.)=i> (—“‘k> [a ()€™ = al, (e ™ ey,
o\ YV
(1)
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We employ a standard notation in which ay,(f),aj,(f) are
Heisenberg-picture photon annihilation and creation opera-
tors for the plane-wave mode with wave vector k [|k|=k
=mwi/c, ny=n(wy)] and (linear) polarization unit vector ey,
[k-e,=0, N\=1,2]. The refractive index is n,=(eu)',
where €, and u,; are the electric permittivity and magnetic
permeability, respectively, at frequency wy. The group index
is y=ni+widn;/dwy, and V is the quantization volume for
the box normalization of the plane-wave modes. The Hamil-
tonian is

H=HA +HB +HF_ dA(t) . E(rA,t) - dB(t) . E(I‘B,t)
—my(t) - H(ry,t) = mpg(z) - H(rg,1), (3)

where H,, Hg, and Hy are the Hamiltonian operators for
atom A, atom B, and the electromagnetic field, respectively.
The electric dipole moment operators are denoted by d(z)
and the magnetic dipole moment operators by m(r).

A. van der Waals interaction between electrically polarizable
particles

We first consider the van der Waals interaction between
two electrically polarizable atoms separated by a distance R
in the magnetodielectric medium. The approach we will take
follows closely that used by various authors for the deriva-
tion of the van der Waals interaction in the case in which the
particles are in vacuum (n=1) [14]. The basic idea of this
method is that quantum vacuum fluctuations of the electro-
magnetic field in the medium induce in the atoms fluctuating
electric and magnetic dipoles that interact with each other.
The electric dipole moment induced in an atom at r by an
electric field is d(¢)=a,(t)E(r,1), where «, is the (real) elec-
tric polarizability of the atom. (Since it is only the real part
of the polarizability that determines shifts in energy levels,
we can assume without loss of generality throughout this
paper that the polarizabilities of the guest atoms are real.)
The dipole interaction energy between the two induced, fluc-
tuating electric dipoles is then

W,o(R) = 2 o) (w)al(w)(E,(r kNE;(rp. kN Vi (0, R),
kA

(4)

where R=rz-r,, R=|R|. The two-point vacuum electric-
field correlation function, summed over polarization states,
follows easily from Eq. (1)

2arh oy py

D (E(ry, KNE;(r5,k\) = (8, - kik)e ™R,

A Yk
&)
with k;=k,/k. The interaction potential Vii(0,R) between

two oscillating electric dipoles embedded in the magnetodi-
electric medium is calculated as follows. From the Hamil-
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tonian (3) and the Heisenberg equations of motion for the
annihilation and creation operators, one obtains a formal ex-
pression for the electric field generated by the electric dipole
B at the position of the electric dipole A as follows:

E(ry1) = %F don(w)w(w)o’
meJo

sin kR sin kR cos kR
X|a bl 55 -7,
kR kR k°R

t
Xf dt'pB(t’)ei‘”(',_')+H.c., (6)
0

where a=dz—(dz-R)R, b=dz-3(dz-R)R, and R=R/R. We
have used the notation d(r)=dp(r), with d a unit vector
specifying the direction of the electric dipole moment. We
are interested in the case of two electric dipoles, both oscil-

lating at frequency ': pp(f)=Cpe ™ '+Cre'®" and p,(r)

=Cue @'+ Che®"", where Cy,Cy are arbitrary constants. We

define the interaction V*(R)=—=d p,(¢)-E,(r,,1). After per-

forming the time integration for times r>1/w’, and taking

the time average of the resulting expression, we get

sin kR ( sin kR
kR KR

[

Ve(R) = - % Re f dwn(w),u(w)w{a

0

cos kR C,C CyCj
- 22 ) A, = —+ A, = . 5 (7)
k°R w-0 —-in o+ -iyn
where as usual 7— 0. Here a=d,-dgz—(d,-R)(dg-R) and
b=dA-dB—3(dA'IA{)(dB'IA{). We can also define the interac-
tion as V**(R)=-dgpg(t)-E,(rg,), which amounts to inter-
changing A and B above. This implies that we can take

C:CB; CxC,. Note also that the time average p,(1)pp(t)
=C,Cy+C,Cp, 5o that we can write

[

, 1 —
V(R) =~ — 3PP Re f don(w)u(w)w’®

0
sin kR sin kR cos kR
X|a -b\ 5~ Tam
kR k’R- k°R
1 1
x( —+ PR ) (8)
w-0' -in w+o' -iy

Next we use the fact that n and u (or actually their real parts
which are implicit here) are even functions of w to rewrite
this as

1 . oo
Ve(R) = — FpApr don(w)u(w) o’

sin kR sin kR cos kR
X|a b\ 55 - Tam
kR kKR’ k°R
1 1
X — 4 — |
w-—w —-in Ww-w +iy

Performing the trivial contour integrations, writing  instead
of ' for the dipole frequencies, and using again k
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=n(w)w/c, we obtain the electric dipole-dipole interaction
tensor needed in Eq. (4)

11 .
Vl?je(w’R) = _F[(é}j - 3R;R))(cos kR + kR sin kR)
€ X7
— (8- RR))K*R? cos kR]. )

Using Egs. (5) and (9), and passing to the continuum limit
Sy — (VI87) [5dkk?* [ dQy=(VI8TC3) [dwyniw? [ dQy,
we obtain the van der Waals interaction energy between elec-
trically polarizable particles

% o0 3 2
W.R)=——=—3 dwaﬁ(w)af(w)w'u—(w)[kR sin 2kR
mc’ R ) n(w)
sin 2kR cos 2kR sin 2kR
+2cos 2kR -5 —6——— 5 +3—5;
kR k°R k°R

(10)

The integration path can be rotated using the fact that there
are no poles in the upper half of the complex plane. We
obtain finally

» 1
- . B
Wtk == | el o
F[ M} e_2n(iu)uR/C’ (l 1)
C

where F(x)=x*+4x>+20x%+48x+48. Recall that along the
imaginary frequency axis the electric permittivity and refrac-
tive index are real and positive. The electric-electric van der
Waals force that results from Eq. (11) is therefore always
attractive, regardless of the frequency dependence of e(w)
and n(w).

Our calculation based on the quantized fields (1) and (2)
gives a van der Waals interaction (11) with the correct
vacuum (e€=pu=1) limit [15], and the same is true for the
other van der Waals interactions we calculate in this paper
[16]. Moreover, for material systems (€, # 1), they are in
full agreement with those obtained recently by Tomas [4], for
instance. The main point of this section is to show that cor-
rect results for van der Waals interactions involving ground-
state atoms in dispersive media can be obtained straightfor-
wardly, without having to go to a dilute-medium limit of an
interaction between macroscopic bodies, and without having
to introduce complexities arising from absorption. We dis-
cuss this further in Sec. I'V.

B. van der Waals interaction between magnetically polarizable
particles

We next use the same approach to calculate the van der
Waals interaction between magnetic dipoles induced in the
atoms by fluctuations of the zero-point magnetic field. For
this the relation between an induced magnetic dipole mo-
ment at position r and the magnetic field is m(z)
=a,,(t)H(r,1), where ,, is the (real) magnetic polarizability
of the atom. The dipole interaction between the two induced,
fluctuating magnetic dipoles is
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Won(R) = 2 alp(w) (@) (H,(r, KN H(r5, kM) Vi (w,R),
k\

(12)

where the two-point vacuum magnetic field correlation func-
tion summed over polarizations is found from Eq. (2) to be

Zﬂﬁnkwk

5. —kk;)e ®R,
vV ( i)e

i

> (H,(r,, kKN H,(rg,k\)) =
A

(13)

One can derive the magnetic dipole-dipole interaction tensor
following steps similar to those above for the electric dipole-
dipole interaction

11 A A
Vi"(w,R) = ——[(8;; - 3RR))(cos kR + kR sin kR)
M R
~ (8~ RR)K*R? cos kR], (14)
which differs from Eq. (9) simply by the replacement of €,
by . The details of the evaluation of Eq. (12) are essen-
tially the same as for the electric van der Waals interaction
and lead straightforwardly to the expression
h
167R®

W,m(R) = f duaﬁ(iu)aﬁ(iu)ﬁ

0

X F{M]e‘m"”)”mﬁ (15)
C

Recall that along the imaginary frequency axis the magnetic
permeability is real and positive. The magnetic-magnetic van
der Waals force that results from Eq. (15) is always attrac-
tive, regardless of the frequency dependence of w(w) and
n(w).

C. van der Waals interaction between an electrically
polarizable particle and a magnetically polarizable particle

In calculating W,,(R) and W,,,(R) it has not been neces-
sary to account for the fact that the field operators in Egs. (4)
and (12) do not commute. Because of this noncommutativity,
it is more appropriate to write W,.(R), for instance, in the
symmetrized form

Wl (R) =3 S o)) ()L CE (5, KNE (£ K0)
kA

+(E(rp KNE,(r, kA)IVE (@,R)

=Re 2, a(w)a(0)(E(ry , KNE,(rp.kN)Vi(w,R).
kN

(16)

The forms (5) and (9), however, show that symmetrization is
actually not required because the summation over k does not
require us to distinguish between (E;(r,,kN)E(rg,kN)) and
<Ej(rB’k)\)Ei(rA’k)\)>-

The situation in the case of the van der Waals interaction
between an electrically polarizable particle and a magneti-
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cally polarizable particle, however, is different because the
electric-magnetic correlation function summed over polariza-
tion states,

2mhw, o~
2 <Ei(rAsk)\)Hj(rB>k)\)> = —kaijlkle_lk'R: (17)

\ Y

is not purely real when summed over k. (¢ is the Levi-
Civita tensor.) Moreover, the interaction tensor in this case,
which we calculate to be

m w
ij ((.U,R) = ?nz(w)eiijp

3 R [sin kR
k*R? kR

_ cos kR} (18)

in a manner directly analogous to the electric-electric and
magnetic-magnetic tensors, is antisymmetric.

Let E,, (r4,7) be the electric field operator at r, due to a
magnetic dipole at rz. We write the interaction between the
fluctuating electric and magnetic dipole moments in the sym-
metrized form

Won(R) = —Re >, a(0)(EX (14, KNES) (14, kN)),
kX

(19)

where E®(r,,1) is the positive-frequency (photon annihila-
tion) part of the source-free (“vacuum”) electric field opera-
tor at ry, and Ef;)(rA,t) is the negative-frequency (photon
creation) part of the electric field produced by the magnetic
dipole moment at rg. This electric field is induced by the
source-free magnetic field H(rg,7), so that the evaluation of
Eq. (19) involves the electric-magnetic correlation function
(17). The calculation is essentially just the same as that pre-
sented by Farina et al. [17] for the case where the two par-
ticles are in free space, except of course that in our case the
refractive index n(w) appears

o

h
W,,.(R) = mfo duuzaé(iu)aﬁ(iu)

G{M}e—bz(iu)uk/c’ (20)
c
where G(x)=(x+2)>. n(iu) is real and positive, so that
W,,.(R) is always repulsive, regardless of the frequency de-
pendence of the refractive index.

III. VAN DER WAALS INTERACTIONS FROM THE
QUANTIZED FIELD WITH ABSORPTION

In this section we will calculate the van der Waals inter-
actions considered in the previous section for two atoms em-
bedded in a magnetodielectric medium, but now taking ab-
sorption in the host medium into account. We use the
quantization procedure for the EM field in a dispersive and
absorbing medium based on the Green-function formulation
[12]. The dyadic Green function G(r,r’, w) satisfies [12]
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2
V X k(r,) V X - %e(r,w)](;(r,r',w) = 8(r,r' o),
C

21

as well as the appropriate boundary conditions. Here
k(r,w)=u"!(r, ). In an infinite, homogeneous material,

Gij(l',l',,w) = %[lg(ﬂ))(ﬁu - ﬁiﬁj) - (5lj - 3ﬁiﬁj)
1 ik(w) ) | e*@R
X(Rz_ R )} R’ 22)

where R=r-r’, R=|R|, R=R/R, and k(w)=n(w)w/c. The
refractive index of the medium is given by n*(w)
=e(w)u(w), with e(w)=€'(w)+i€'(w) the complex electric
permittivity and w(w)=pu'(w)+iu"(w) the complex magnetic
permeability.

The quantized electric field in dispersive, absorbing media
may be written in the form [12]

&r'G,(r,r',w) - f,(r',w) + Hc.,

Er,o)= 2,

A=e,m

(23)

where the operators f), are bosonic operators satisfying the
usual commutation relations

[ri(r ). (0 0] = 88,80 — o) dr 1),
(24)

[fx,i(l'»w)»fw,j(l",w')] =0.

These operators may be regarded as being variables of the
system composed of the EM field and the medium including
the dissipative system. The electric and magnetic dyadic
Green functions are defined in terms of the full Green func-

tion as
o |k
G, (rr'w)=i—\/— Imer',0)Grr' v, (25)
c T
o) h
G,(r,r',w)=—i—\/- —Im k(r',0)[G(r,r' ;@) X V].
c T

(26)

Note that for an absorbing medium Im €(r,w)>0,
Im u(r,w)>0, and Im «(r,w) <0. The quantized magnetic
field, similarly, may be written as

H(r,o)= > — Jd3r,Vr X Gy(r,r',0) - f,(r', w)
A=e,m l(J),bL((D)
+Hec., (27)

and the total Hamiltonian for the free field is
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H=

A=e,m

dr f dotiof](r,0) - fy(r,0).  (28)
0

We will require the following two-point vacuum field corre-
lation functions obtained from these expressions:

% 2
(E,-(r,w)E}(r’,w’)) = ;%5((» - ") Im[G(r,r',w)]

ij>

(29)
(roH 0 )= S0 o
B0 = 7 b= )
XIm[V, X V. X G(r,r', 0)];,
(30)
B (0 = - —— 2 )
AL @@= iou (w) 7 ¢ w-e

XIm[V, X G(r,r',w)];. (31)

The electric and magnetic fields at the position of the
atom A are given by the sum of the “vacuum” contributions,
Ey(ry,w) and Hy(r,,w), plus the fields generated by the
atom B which contain both electric dipole and magnetic di-
pole components. An electric dipole located at position rg
generates fields at position r, given by

PHYSICAL REVIEW A 75, 052117 (2007)

E,(r;,») = 0*ad®(0)G(r,,rg0) - Eo(rg o) + He.,
(32)

H,(ry,w)=- iwcx(w)af(w)
><[VrA X G(ry,rz, )] Ey(rg,w) + Hc.,
(33)

while the fields generated by a magnetic dipole at position rp
are

E, (ry,0) =—iok(o)d(v)
X[V, X G(ry,rp )] Hy(rg, ) + He.,
(34)

Hm(r/h w) = CK(w)kz(w)ali

(U))G(rA,rB, (1)) . Ho(rB, (l)) +H.c.
(35)

The vacuum expectation value of the van der Waals en-
ergy may be written as the sum of three contributions, one
purely electric, one purely magnetic, and one mixed. Using
the above expressions for the two-point correlation functions
of the EM field, one can easily find each of these terms. The
purely electric part stems from the p-E interaction, and is
found to be

1 * * . ’ A A
W,.(R) =— Ef f dwdw’af(w)e’(“"‘” MEy(ry, o) - El(rA,w’)> +H.c.
0 Jo

=— Efw dwd}(w)a?(w) o Re[G(ry,rp, o) ]; Im[G(r s, 15,0)];;. (36)

0

Comparing this expression with Eq. (4) we see that w? Im[G(r,,rp, »)];; is related to the electric dipole-dipole interaction
tensor V;7(w,R), and that w? Re[G(ry,rp, w)];; is related to the solid-angle integration of the two-point vacuum electric-field
correlation function summed over polarization states, given in Eq. (5). After rotation in the complex plane (w— iu), we can
rewrite this expression as

ﬁ oo
W,.(R) =— 2—f du0[‘/;,\(1'11)af‘(iu)u4 Tr{G(ry,rp,iu) - G(ry,rp,in)]. (37)
T
The purely magnetic part, similarly, comes from the m-H interaction:

1 o0 o0 ) , R .
Wom(R) = = 5 f f dwde' o (w)e" ™ (Hy(ry, ) - H' (ry,0")) + H.c.
0 0

5[
=— —J dwa‘;‘n(w)aﬁ(w) < Re[K(w)kz(w)G(rA,rB,w)]ij Im[VrA X VrB X G(ry,rg, w)],-j

m™Jo |,u(w)|2
” Ay B/ \ 4 62(1”) . .
=—— | dua,(iv)a,(iu)u"— ~Ti[G(rs,rp,iu) - G(rs,rp,iu)], (38)
277 0 ,LL (lu)

where Eq. (21) and a rotation in the complex plane were used in obtaining the last equality. Finally, there are two electric-
magnetic terms, one arising from the p-E interaction, and one from the m-H interaction. They result in the mixed interaction
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1 * * . ’ A A A A
Wen(R) =~ 5 f f dwdw' "o (w)(Ey(ry, w) - Ef (rs,0")) + @ (0)(Hy(ry, 0) - H (ry, ') + Hc.]
0 0

% 2
= —J dold(w)al(w) + af‘n(w)af(w)]—w Re[Kz(w)VrA X G(rprp0)]; Im[V, X G(ry,rp )],
m™Jo C

ﬁ ee]
= Z_J dul o (i) o (iu) + afn(iu)af(iu)]uzTr[VrA X G(ry,rp,ilt) - VFB X G(ry,rg,in)]. (39)
mJo

The traces appearing in the integrands of Egs. (37)—(39) can
be explicitly computed given the form of the dyadic Green
function evaluated at the imaginary frequency w=iu. The
final result for the complete van der Waals interaction energy
between two ground-state atoms embedded in an absorbing
and dispersive medium is then

o0

W(R) =— %f due—Zn(iu)uR/cF|: M]
16mR" J, A
X [ o (W (in)  a(in)a,(iu) ]

h i j 2n(iu)R
+ ﬁj dunle 2 wuRle L
47c“RY ) ;

X[af(iu)aﬁ(iu) + aﬁl(iu)af(iu)], (40)

where again F(z)=z*+473+2022+48z+48 and G(z)=(z+2)%.
This is identical to the complete van der Waals interaction
obtained in Sec. II.

IV. DISCUSSION

Since the van der Waals interaction between electrically
polarizable particles is the most important, a rough model for
the modification of the vacuum interaction by the medium
might be of interest. Let us consider a two-level model in
which the polarizabilities are

2wd?/3h

a)(w) = a(w) = a(w)=— 7 > (41)
wy—

where d and wy are, respectively, the (real) transition electric
dipole moment and the transition angular frequency, and
similarly

n(w)=[1+47Na(w)]"?, (42)

where N is the atomic density of the host medium and we
take w=1. It is useful to normalize Eq. (11) to the familiar,
nonretarded London form of the interaction:

2 2 \2
W (R) =~ 3hwya?(0) =_3ﬁw0( 2d ) @)

4R 4R® \ 3tw,

We define

WeR) 4 (7 ( 1 )21 4.4 4 333
D(R) =~ = > +2
B =W, R ~3n o T\ 2Ty 2y
+5n*r?y? + 6nry + 3]e7", (44)

where r=wyR/c and € and n are evaluated at iwgy

C
eliwgy) = n*(iwpy) =1+ 5, (45)
yo+1

where C=8mNd?/3hw,. In the limit C=0 and r—0, D—1;
for r—oo, D—23/37r, or W,,==23%ca’(0)/4mR’, the fa-
mous Casimir-Polder result. Figure 1 plots D(R) for C=0
(vacuum) and C=3.

This simple model is not in any sense meant to be a real-
istic, quantitative description of the van der Waals interaction
between two atoms embedded in a dielectric. It does, how-
ever, suggest that the predominant effect of the host medium
on the van der Waals interaction is to weaken it, without
substantially changing the distance dependence in either the
nonretarded or retarded regimes. More realistic models of the
van der Waals interaction in a liquid, for example, must take
into account local field corrections, as has been discussed,
for instance, by Abrikosov er al. [8] and McLachlan [18].
See also [19] for local field corrections in magnetodielectric
media. It might be noted that no local field correction ap-

0

-0.5

Log D

-1.5

0.5 1 1.5

0
Logr

FIG. 1. The van der Waals interaction (11) divided by the Lon-
don interaction for a two-level model. The upper curve is for two
atoms in vacuum (C=0), and the lower curve is for two atoms in a
dielectric defined by Eq. (45) with C=3.
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pears in the Lifshitz theory, which is based on a continuum
model in which there are no spaces between atoms and there-
fore no local field corrections. This is also clear from the fact
that the (electric-electric) van der Waals interaction obtained
from the dilute-medium limit of the Lifshitz theory involves
no local field correction.

Our results for the electric-electric, magnetic-magnetic,
and electric-magnetic van der Waals interactions between
two atoms embedded in a dispersive magnetodielectric me-
dium are in agreement with those obtained previously [3-7].
Unlike previous derivations, however, we obtained the inter-
actions directly rather than inferring them from the dilute-
medium limit of van der Waals interactions between macro-
scopic bodies, where the interactions can be obtained by
pairwise summations of interatomic interactions [1-8].

What is perhaps more interesting, however, concerns the
role of absorption in the host medium. In the preceding sec-
tion we accounted for dissipation (absorption) in the host
magnetodielectric medium, as in previous work. In Sec. II,
however, we ignored any possibility that the medium could
be absorbing: we worked with expressions for the electric
and magnetic fields that derive directly from the assumption
that the medium is nonabsorbing [13].

The same situation holds, for instance, in the case of the
Lifshitz formula for the van der Waals interaction between
infinite, plane-parallel dielectric media. Lifshitz’s original
derivation, and various derivations that followed, include the
imaginary (dissipative) part of the dielectric function €(w).
Derivations of the Lifshitz formula based on changes in zero-
point field energy arising from the dielectric media, however,
make no reference to dissipation [20-22]. In other words, the
Lifshitz formula can be derived without explicit accounting
for absorption.

Ginzburg [23] has also noted that (macroscopic) van der
Waals interactions can be correctly derived based on changes
in zero-point field energy, without accounting for absorption.
He remarks, in connection with such derivations [21], that
“oddly enough there is no mention that they consider directly
only transparent media,” and then gives reasons why the van
der Waals (electric-electric) interaction for real media can be
obtained by presuming nonabsorbing media: “Firstly, the
permittivities... are functions. Secondly, the function €(w) is
always real on the imaginary axis.” The results (11), (15),
and (20), for instance, all involve permittivities and perme-
abilities on the imaginary axis.

A simple and more physical explanation can be given for
why (ground-state) van der Waals interactions calculated for
nonabsorbing media apply directly to real (absorbing) media,
as we have found for the electric-electric, magnetic-
magnetic, and electric-magnetic van der Waals interactions
between two atoms embedded in a magnetodielectric me-
dium. At zero temperature, for instance, any atom of the host
medium is in its ground state and can absorb radiation that is
resonant with one of its transitions to an excited state. It
cannot, of course, absorb from the vacuum field: in this case
the fluctuations in the field that might induce absorption are
exactly cancelled by fluctuations in the atom itself [22]. The
same is true when the atom is part of a magnetodielectric in
which is embedded, as in examples considered in this paper,
two guest atoms. Any atom of the host medium still finds
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itself in a vacuum field state, regardless of the nature or the
number of guest atoms. The host and guest atoms modify the
modes of the field from the simple plane waves of a pure
vacuum, but the field remains in a vacuum state |vac)
(fy.ilvac)=0 for any mode). Just as in free space, therefore,
there is no absorption unless it is possible to populate one or
more field modes; this would be the case only if there were
an applied external field or if one or more atoms is excited,
leading to the possibility that a different atom could absorb
its emitted (real) photon. In other words, absorption by the
host medium would play a role if we were to consider a van
der Waals interaction involving excited atoms. Otherwise,
one can expect to obtain correct van der Waals interactions
without having to account for the absorption that is always
present in a real medium. This expectation applies, of course,
regardless of how many atoms are involved and regardless of
the shape of any macroscopic bodies for which the van der
Waals forces are to be calculated.

Of course the polarizabilities, permittivities, and perme-
abilities in our expressions for W,,(R), W,,,,(R), and W,,,(R)
will be absorption-dependent. For example, a more general
form for the real part of the polarizability o/ (w) than that
used in Eq. (41) is

2wyd? w(z) -’

h (wf— )’ +4B 0

(46)

@(w) =

where [ is the linewidth characterizing the absorption
associated with the imaginary part of the polarizability. Simi-
larly, the permittivity and permeability of the host medium
will have both real and imaginary parts as a consequence of
absorption, which of course cannot be zero at all frequencies.
But our analyses show that the only effect of host-medium
absorption on the van der Waals interactions is through such
functional dependence of the permittivity and the permeabil-
ity on the parameters that determine the absorption coeffi-
cient for real photons.

In light of recent interest in negative-index media [24,25],
let us reconsider specifically the most important of the van
der Waals interactions we have calculated in this paper,
namely, that between two electrically polarizable atoms. First
we note that the expressions for the quantized fields in Sec.
IT are directly applicable to negative-index media [13]. In a
negative-index medium n, €, and w are all negative at some
frequency or range of frequencies. This would at first glance
suggest that the dipole-dipole interaction Vi/(w,R) [Eq. (9)]
changes sign at frequencies for which the refractive index is
negative. To see that this is not the case, note that Eq. (8) is
unchanged whenever n(w), e(w), and w(w) all change sign
within any frequency range. This means that the dipole-
dipole interaction in a negative-index medium does not
change sign, and, in particular, that Eq. (9) is directly appli-
cable, in general, provided we just replace n(w), €(w), and
u(w) by their absolute values. It follows similarly that the
van der Waals interaction does not change sign or undergo
any other significant change in a negative-index medium.
The same conclusion applies to the magnetic-magnetic and
mixed van der Waals interactions, and is in agreement with
the conclusions of Buhmann ef al. [5].
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The pairwise electric-electric and magnetic-magnetic van
der Waals interactions are always attractive, whereas the
pairwise electric-magnetic interaction is always repulsive.
These results apply also in the case of negative-index media,
at least to the extent that such media can be modeled as
continua. It is well known, however, that nonpairwise van
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der Waals interactions can be repulsive [26]. Evidently, re-
pulsive Casimir effects such as those recently suggested by
Henkel and Joulain [27] and by Leonhardt and Philbin [28]
in the case of negative-index media must in some way in-
volve either nonpairwise interactions or electric-magnetic
van der Waals interactions.
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