Beaufort Sea Play 7: Rift

Geological Assessment:

<u>GRASP UAI</u>: (AAAAABAK) <u>Play Area</u>: 7,940 square miles <u>Play Water Depth Range</u>: 5-300 feet <u>Play Depth Range</u>: 1850 – 23000 feet <u>Play Exploration Chance</u>: 0.405

Play 7, Rift, Beaufort Sea OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas											
Assessment Results as of November 2005											
Resource	R	Resources	*								
(Units)	F95	Mean	F05								
BOE (Mmboe)	0	1,157	3,296								
Total Gas (Tcfg)	0.000	2.002	4.804								
Total Liquids (Mmbo)	0	801	2,441								
Free Gas** 0.000 1.153 2.190											
Solution Gas (Tcfg)	Gas 0.000 0.850 2.614										
Oil (Mmbo)	0	773	2,385								
Condensate (Mmbc)	0	27	56								
* Risked, Technically ** Free Gas Includes F95 = 95% chance th given quantity	-Recoverable Gas Cap and I pat resources w	Non-Associate vill equal or ex	ed Gas ceed the								
F05 = 5% chance tha quantity	t resources wil	l equal or exc	eed the given								
BOE = total hydrocar equivalent, where 1 b gas	bon energy, ex parrel of oil = 5,	pressed in ba 620 cubic fee	rrels-of-oil- t of natural								
Mmb = millions of bai Tcf = trillions of cubic	rrels feet										

Table 1

Play 7, The Rift play is the 4th ranked play of the Beaufort Province containing just under 9% of the province's endowment (1161 Mmbo mean: BOE). The overall assessment results for play 7 are shown in table 1. Oil and condensate liquids form 69% of the hydrocarbon energy endowment of this play. Table 5 reports the detailed assessment results by commodity for play 7.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of Beaufort Sea play 7. Table 4 reports the risk model used for play 7. The location of play 7 is shown in figure 1.

Play 7 sediments are locally derived clastics of the Beaufortian sequence preserved in fault blocks (e.g., Dinkum graben) associated with an Early Jurassic to Early Cretaceous rifting event. It also includes correlative strata deposited beyond the rift zone. The stratigraphic bounds for the play are from the Pebble Shale at the top to the Kingak formation at the base, and includes the Kuparuk formation. The reservoirs are marine and fluvial sandstones. The traps are anticlines, faulted anticlines, fault blocks, unconformity truncations, and stratigraphic terminations of reservoir beds. Potential source rocks may occur in the underlying Shublik or Kingak Formations or the overlying Pebble Shale and HRZ ("Highly Radioactive Zone") sequences. The play was penetrated by six OCS tests (that targeted deeper formations), including Mars, Beechy Pt., Fireweed, Antares, Mukluk, and Phoenix wells.

There are several fields in the correlative onshore play, including the Kuparuk field with 2.9 billion barrels of recoverable oil, the Milne Point field with 680 million barrels of recoverable oil, the Point McIntyre field with 582 million barrels of recoverable oil, and the Point Thomson field with 300 million barrels of condensate. Eight fields with rift age reservoirs have been discovered in NPRA. Prior to the year 2000 the South Barrow gas field with 26 billion cubic feet of recoverable gas, East Barrow gas field with 13 billion cubic feet of recoverable gas, Walakpa gas field with 38 billion cubic feet of recoverable gas, and the Alpine field with 556 million bbl oil were discovered. Since the year 2000 hydrocarbons were discovered in the Lookout, Spark, Rendezvous, and Moose's Tooth wells in rift age reservoirs. These discoveries all contain high GOR, and highgravity oil, condensate, and gas.

The primary risk for the Rift play is adequacy of reservoir facies. The presence of source rock and porosity and permeability are also risk factors. This is in part due to the depth of rift age sediments in the Dinkum Graben.

Play 7, Rift, Beaufort Sea OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools													
Assessment Results as of November 2005													
Pool Rank	Pool Rank BOE Resources *												
	F95	Mean	F05										
1	77	838	3287										
2	36	244	679										
3	21	125	352										
4	12	76	200										
5	8	50	133										
6	5	34	93										
7	3	24	67										
8	2	18	50										
9	1.1	13	38										
10	0.7	10	30										
 * Conditional, Technically-Recoverable, Millions of Barrels Energy-Equivalent (Mmboe), from "PSRK.out" file F95 = 95% chance that resources will equal or exceed the given quantity F05 = 5% chance that resources will equal or exceed the given quantity BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural 													

Table 2

A maximum of 38 hypothetical pools is forecast by the aggregation of the risk model

and the prospect numbers model for play 7. These pools range in mean conditional (unrisked) recoverable volumes from 0.4 Mmboe (pool rank 38) to 838 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 77 Mmboe (F95) to 3,287 Mmboe (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 7.

Table 6 reports statistics for the simulation pools developed in the GRASP computer model for play 7. In the computer simulation for the play, a total of 121,607 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 10 contains the largest share (17,347 or 14%) of simulation pools (conditional, technically recoverable BOE resources) for play 7. Pool size class 10 ranges from 16 to 32 Mmboe. The largest pool among the 121,607 simulation pools falls within pool size class 19, which ranges in size from 8,192 to 16,384 Mmboe.

GRASP Play Data Form (Minerals Management Service-Alaska Regional Office)													
Basin: Beaufort A Play Number: 07 Play UAI Number: AAAABAK				:	Johnson/ Rift	Scherr			<u>Date</u> :	10/13/2005			
Play Area: mi ² (million acres)	7940 (5081	.6)			Play Dept	h Range: feet		1850	7000	23000			
<u>Reservoir Thermal Maturity</u> : % Ro					Expected	Oil Gravity: ^O API	. *	27	60	200			
					Flay Wate	<u>r Deptir Kange</u> . Te	51	5	00	500			
POOLS Module (Volumes of	of Pool	s, Acre-	Feet)										
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Prospect Area (acres)-Model Input	35	580		2158	5380		13414			49929	86873	90000	95000
Prospect Area (acres)-Model Output													
Fill Fraction (Fraction of Area Filled)	0.1	0.144		0.289	0.499		0.746			0.949		0.99	1
Productive Area of Pool (acres)	5	206	364	926	2638	010.775/14631.66	7752	13767	20503	31654			93322
Pay Thickness (feet)	1.34	8.93	12.44	21.63	40.00	61.079/69.202	73.97	102.87	128.62	179.11	260.00	333.33	668.71
MPRO Module (Numbers of Pools)													
Play Level Chance	0.9		Prospect L	evel Chan	се	0.45		[Exploratio	n Chance		0.405	
Risk Model	Play C	Chance	Petroleum System Factors								Chance		
			presence of reservoir facies								5		
			presence of closure)		
	0	0.9	Presence of porosity and permeamility										
Fractile	F99	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Numbers of Prospects in Play	19.00	21.50	23.00	25.50	29.00	30.03/ 5.60	33.00	35.00	36.50	39.00	42.00	44.00	57.00
Numbers of Pools in Play			0	10	13	12.16/5.37	15	17	18	20	22	23	38
Minimum Number of Pools	0		Mean I	Number of	Pools	12.16		Maximu	ım Numbeı	of Pools	38		
POOLS/PSRK/PSUM Modu	les (Pla	ay Reso	urces)										
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Oil Recovery Factor (bbl/acre-foot)	32	81	96	125	169	187.019/ 89.236	228	268	299	351	422	476	884
Gas Recovery Factor (Mcfg/acre-foot)	47.50	173.20	217.24	317.18	483.00	589.83/417.786	735.50	921.70	1073.90	1346.91	1738.03	2060.02	4900.00
Gas Oil Ratio (Sol'n Gas)(cf/bbl)	90	170	230	390	720	1075.25/ 1034.163	1350	1900	2300	3200	4700		6000
Condensate Yield ((bbl/Mmcfg)	0.45	3.21	4.51	7.97	15.00	22.833/23.660	28.24	39.66	49.91	70.18	102.99	133.00	141.00
Pool Size Distribution Statistics from POOL	S (1,000 B	OE):	μ (mu)= 9.7	4404262	σ ² (sigma	squared)= 3.71465	174		Random N	umber Gene	rator Seed=	847796	
BOE Conversion Factor (cf/bbl)	5620		Probabilitv	Any Pool	Contains E	Both Oil and Free O	Gas (Gas C	ap)		25			
Probability Any Pool is 100% Oil	0.5		Fraction of	Pool Volu	me Gas-B	earing in Oil Pools	with Gas (Cap		0.25			
Probability Any Pool is 100% Gas	0,25	L				5		•					
	0.20												

 Table 3. Input data for Beaufort Sea play 7, 2006 assessment.

		Risk Analysis Form - 20	06 National Assessn	nent					
As	sessment Province:	Beaufort	Play Number, Name:	Play Number, Name: 07, Rift					
	Assessor(s):	Johnson/Scherr	AAAA	ABAK					
	Date:	20-Oct-05							
For cert prol	each component, a <i>qu</i> ainty) based on consid pability that the minimu	antitative probability of success (i.e., between zero a eration of the <i>qualitative</i> assessment of ALL elemen m geologic parameter assumptions have been met o	and one, where zero indicates its within the component was r exceeded.	no con assigne	fidence and one ind d. This is the asse	icates absolute ssment of the			
					Play Chance Factors	Averge Conditional Prospect Chance ¹			
1.	Hydrocarbon Fill	component (1a * 1b * 1c)		1	1.0000	1.0000			
	a. Presence of a Q Probability of effi rock of adequate	uality, Effective, Mature Source Rock cient source rock in terms of the existence of sufficien quality located in the drainage area of the reservoirs ion and Migration	nt volume of mature source	1a	1.00	1.00			
	Probability of effe reservoirs.	ective expulsion and migration of hydrocarbons from t	the source rock to the	1b	1.00	1.00			
	Probability of effe	ective retention of hydrocarbons in the prospects afte	r accumulation.	1c	1.00	1.00			
2.	Reservoir compo	nent (2a * 2b)		2	0.9000	0.5000			
	a. Presence of res Probability of pre specified in the re	ervoir facies sence of reservoir facies with a minimum net thickne: esource assessment).	ss and net/gross ratio (as	2a		0.50			
	b. Reservoir qualit Probability of effe permeability (as	y activeness of the reservoir, with respect to minimum e specified in the resource assessment).	effective porosity, and	2b	0.90				
3.	Trap component	(3a * 3b)		3	1.0000	0.9000			
	a. Presence of trap Probability of pre assessment).	b sence of the trap with a minimum rock volume (as sp and the trap wi	ecified in the resource	3a	1.00	0.90			
	b. Effective seal m Probability of effe	echanism ective seal mechanism for the trap.		3b	1.00	1.00			
Ö	arall Blay Change	(Marsinal Brobability of hydrogarbons, MD	(ha)						
0	(1 * 2 * 3) Produ	ct of All Subjective Play Chance Factors			0.9000				
Av	erage Conditional (1 * 2 * 3) Produ	Prospect Chance ¹ ct of All Subjective Conditional Prospect Chance Fac	tors			0.4500			
	' Assumes that Must be consis	the Play exists (where all play chance factors = 1. stent with play chance and prospect distribution -	0) See discussion on Page 3	s of Gui	de				
Ex	Ploration Chance (Product of Over	all Play Chance and Average Conditional Prospect C	hance)		0	4050			
Co Inc	mments: See guida creased play risk	nce document for explanation of the Risk Analysis For from 1.0 to 0.9 to reflect lack of discover	orm ries in the OCS. Assig	ned ris	sk to 3b (reserv	oir quality).			
\vdash									

 Table 4. Risk model for Beaufort Sea play 7, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005) Computes the Geologic Resource Potential of the Play

Computes	uie	Geologic	Resource	Fotential	or the r	lay

Play UAI	: AAAAABAK	K	Play No.		7	
World	Level	-	World	Level	Resources	
Country	Level	-	UNITED	STATES	OF	AMERICA
Region	Level	-	MMS	-	ALASKA	REGION
Basin	Level	-	BEAUFORT	SHELF		
Play	Level	-	Play		7 Rift	Play
Geologist	Peter	Johnson				
Remarks	Play		7 2005	Assessment		
Run Date & Time:		Date	19-Sep-05	Time	13:48:36	

Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	1,157,200	1,318,700
Oil (Mbo)	773,420	942,940
Condensate (Mbc)	27,437	103,800
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	1,152,900	2,656,200
Solution Gas (Mmcfg)	849,550	1,419,500

10000 (Number of Trials in Sample) 0.8999 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100	0	0	0	0	0
99.99	0	0	0	0	0
99	0	0	0	0	0
95	0	0	0	0	0
90	31,137	19,453	935	44,005	16,409
85	234,150	157,420	5,799	258,540	140,100
80	323,390	197,230	9,040	442,940	215,280
75	403,990	257,080	12,077	506,000	251,710
70	484,930	316,600	11,619	574,230	306,510
65	565,180	362,010	13,144	681,550	386,400
60	645,320	432,420	13,481	665,360	455,370
55	730,490	468,550	18,887	843,510	522,460
50	820,540	507,380	25,863	1,050,700	563,930
45	922,470	607,840	23,720	996,550	638,340
40	1,025,500	695,970	25,720	1,020,500	686,950
35	1,152,400	792,820	25,870	1,120,100	755,560
30	1,303,000	894,990	27,810	1,243,800	892,660
25	1,475,300	942,760	37,906	1,684,300	1,095,700
20	1,701,200	1,220,100	26,118	1,315,300	1,241,800
15	2,011,600	1,329,200	51,490	2,108,100	1,437,200
10	2,471,400	1,594,300	60,240	2,715,000	1,875,400
8	2,725,300	1,806,900	64,851	2,799,800	1,997,300
6	3,083,000	2,178,000	54,246	2,491,000	2,290,100
5	3,296,100	2,385,300	56,009	2,190,300	2,613,700
4	3,575,000	2,631,300	51,160	2,312,100	2,704,000
2	4,781,300	3,181,400	113,960	4,447,900	3,902,900
1	6,382,300	4,195,100	162,340	5,092,200	6,287,500
0.1	13,551,000	831,720	1,182,200	64,214,000	622,110
0.01	16,815,000	14,144,000	28,045	8,648,800	6,207,000
0.001	16,832,000	2,034,700	110,680	81,354,000	1,187,400

 Table 5. Assessment results by commodity for Beaufort Sea play 7, 2006 assessment.

Basin: Play 0 UAI Ke	BEAUFOR - Rift Play y: AAAAA	T SHELF BAK				Model Simu	lation "Pools	" Report	ed by "I	ieldsiz	e.out" G	RASP M	odule										
	Classifica	ation and Siz	9	Poo	I Count Statis	stics		Pool	Types C	ount	Mixed P	ool Range	Oil Poo	ol Range	Gas Po	ool Range	Total F	ool Range		Pool Resource Statistics (MMBOE)			
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Pool	Gas Pool	Min	Max	Min	Max	Min	Max	Min	Max		Min	Мах	Total Resource	Average Resource
1	0.0312	0.0625	255	0.209692	0.0255	0.028333		40	75	140	1	1	1	1		1 1		1 2	1	0.031353	0.062073	11.901963	46.674367
2	0.0625	0.125	572	0.470368	0.0572	0.063556		143	201	228	1	2	1	2		1 2		1 2		0.062659	0.124886	53.836217	94.119258
3	0.125	0.25	1112	0.914421	0.1112	0.123556		237	391	484	1	2	1	2	2	1 3		1 3	5	0.125099	0.249799	211.451898	190.154582
4	0.25	0.5	2246	1.846933	0.2246	0.249556		486	825	935	1	2	1	3	3	1 3		1 3	1	0.250121	0.499995	835.341583	371.924132
5	0.5	1	4325	3.556539	0.4325	0.480556		957	1768	1600	1	3	1	3	3	1 3		1 5	i	0.500262	0.999992	3248.263000	751.043439
6	1	2	7289	5.993898	0.7289	0.809889		1577	3109	2603	1	3	1	4	ļ ,	1 5		1 5		1.000048	1.998733	10814.696000	1.483701
7	2	4	10921	8.980569	1.0921	1.213444		2658	4953	3310	1	4	1	5	; ·	1 4		1 8		2.000074	3.999885	32324.462000	2.959845
8	4	8	14800	12.170352	1.48	1.644444		3657	6811	4332	1	6	1	6	5 ·	1 5		1 8	1	4.000007	7.999912	86324.004000	5.832703
9	8	16	16997	13.976992	1.6997	1.888556		4285	8381	4331	1	5	1	7	, ·	1 5		1 10)	8.000703	15.999175	197615.561000	11.626496
10	16	32	17347	14.264804	1.7347	1.927444		4445	8776	4126	1	4	1	8	3	1 5		1 11		16.000123	31.999939	399952.450000	23.056002
11	32	64	15244	12.535462	1.5244	1.693778		3938	8135	3171	1	5	1	6	· ·	1 4		1 9		32.003002	63.999819	697634.518000	45.764530
12	64	128	12241	10.066032	1.2241	1.360111		3199	6714	2328	1	4	1	6	· ·	1 4		1 7	,	64.003102	127.994584	1109576.000000	90.644241
13	128	256	8259	6.79155	0.8259	0.917667		2202	4615	1442	1	4	1	4	۰ ۱	1 4		1 7	r -	128.015264	255.999081	1486619.000000	179.999863
14	256	512	5266	4.330343	0.5266	0.585111		1376	3035	855	1	4	1	4	۰ ۱	1 3	5	1 6		256.015921	511.873781	1872293.000000	355.543640
15	512	1024	2888	2.374863	0.2888	0.320889		762	1703	423	1	2	1	4	۰ I	1 2	1	1 5		512.025136	1023.464000	2053868.000000	711.173096
16	1024	2048	1139	0.936624	0.1139	0.126556		317	695	127	1	2	1	2	2 -	1 2		1 3		1025.150000	2047.334000	1611415.000000	1.414763
17	2048	4096	401	0.329751	0.0401	0.044556		111	247	43	1	2	1	2	2	1 1		1 2		2058.727000	4095.821000	1086788.000000	2.710195
18	4096	8192	94	0.077298	0.0094	0.010444		25	57	12	1	1	1	1		1 1		1 1		4122.313000	8108.378000	515160.072000	5.480426
19	8192	16384	35	0.028781	0.0035	0.003889		10	16	9	1	1	1	1		1 1		1 1		8560.688000	15758.811000	406906.896000	11.625911
20	16384	32768	0	0	0	0		0	0	0	0	0	0	0 0) (0 0		0 0)	0.000000	0.000000	0.000000	0.000000
21	32768	65536	0	0	0	0		0	0	0	0	0	0	0 0) (0 0)	0 0)	0.000000	0.000000	0.000000	0.000000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0 0) (0 0		0 0)	0.000000	0.000000	0.000000	0.000000
23	131072	262144	0	0	0	0		0	0	0	0	0	0	0 0) (0 0		0 0)	0.000000	0.000000	0.000000	0.000000
24	262144	524288	0	0	0	0		0	0	0	0	0	0	0 0) (0 0		0 0)	0.000000	0.000000	0.000000	0.000000
25	524288	1048576	0	0	0	0		0	0	0	0	0	0	0 0) (0 0		0 0		0.000000	0.000000	0.000000	0.000000
Not Clas	sified	T 1 1	176	0.144729	0.0176	0.019556	Below Class	29	56	91									Below Class	0.004211	0.031213	3.287063	18.676493
Numbe Numbe Numbe	Lotals 12160/1 100.000008 12.160/2 13.511889 Above Class 0 0 0 0 0.000000																						

Table 6. Statistics for simulation pools created in computer sampling run for Beaufort Sea play 7, 2006 assessment.

Figure 1. Map location of Beaufort Sea play 7, 2006 assessment.