High Temperature Solar Splitting of Methane to Hydrogen and Carbon

Allan Lewandowski (NREL) Alan Weimer (University of Colorado, Boulder) Team Members: CU: Jaimee Dahl, Karen Buechler, Chris Perkins NREL: Carl Bingham, Judy Netter

2003 Hydrogen and Fuel Cells Merit Review Meeting May 19-22, Berkeley, CA

Thermal Decomposition of Methane

- Demonstrated by Thagard in late 70's
 - electrically heated, porous wall reactor
- Simple in concept
 - essentially single step to end products
- Extremely high reaction rates at 1600-2000°C
- Various end-product configurations possible
- Co-products both have economic value

△H_{1800°C} = -76 kJ/mole -394 kJ/mol C
 CH₄ + → C + 2H₂
 -890 kJ/mol CH₄
 -572 kJ/2mol H₂

Project Goals

Near term

- Current status:

- 70-95% CH₄ conversion to H_2 @ 1850°C
- \$0 -12/kg depending on process configuration and co-product value
- Targets:
 - 70% conversion on a continuous basis
 - \$3/kg for fleet fueling station with carbon black at tire market price

Long-term

– < \$2/kg for water-splitting cycles</p>

Historical Perspective

- Initiation of Project: FY2000
 - University of Colorado awarded competitive DOE GO subcontract
- Significant Results:
 - FY00: demonstrated proof-of-concept at HFSF
 - FY01: achieved 80% conversion in new reactor
 - FY02: demonstrated fluid-wall (aerosol) reactor
 - FY03: achieved 94% conversion
 - Limited funding to complete Ph.D. thesis experimental work
 - Overall:
 - very high reaction rates demonstrated
 - no technical showstoppers
 - near-term commercialization opportunities

Why Use Solar Energy?

- Environmentally benign energy source

 little or no CO₂ emissions (depending on process)
- High concentrations possible (>1000 W/cm²)
 - high temperatures easily achieved (>3000 °C)
 - reduced reactor size; low thermal mass
- Rapid heating rates (>>1000 °C/s)
 quick start/stop operation
- Abundant resource (both US and worldwide)
 - Sufficient to power the world (if we choose to)
- Advantages tradeoff against collection area
 - this is true for all technologies using sunlight
 - heliostat costs are significant fraction of capital
 - importance depends on overall process efficiency

World Class Direct Resource in US

- World Class area in US: 5.8*10⁵ km²
 - >6 kWh/m²/day
- Annual US Energy Usage: 2.9*10¹³ kWh (Year 2000 EIA data)
 - At η=10%, area required:
 1.3*10⁵ km² (50% of Arizona)
- Annual World Energy Usage: 1.2*10¹⁴ kWh
 - At η=10%, area required:
 5.5*10⁵ km²
 - (95% of Arizona +Nevada)

Vision for Solar Thermal Processing

- Apply advantages to a clean hydrogen economy producing hydrogen from water
- Near-term (0-5 years): Methane as transition fuel
 - Identify/develop promising processes
 - e.g. NG dissociation, dry reforming
 - Develop aerosol flow reactor and process understanding
 - technical and economic
 - Introduce solar technology on small scale in appropriate markets/locations (SW United States)
 - HCNG fleet fueling stations
- Longer-term (3-15 years): Move to water as the fuel
 - Initially through thermochemical cycles
 - e.g. 2-step metal oxide reduction, others as identified
 - Eventually to direct, high-temperature splitting/separation
 - significant materials separation issues need to be overcome
 - If renewable electric power is ever cheap enough: electrolyzers

Potential Application Areas

- Bulk Hydrogen
 - large-scale systems, pipeline feeds
- Distributed Fleets
 - fueling stations
 - HCNG a near-term possibility
- Industrial User/Supplier
 - Semiconductor industry
- Syngas
 - add reformer to system
- Utility plants
 - power and hydrogen
- Carbon black plant
- Stranded gas/capped wells

Technical Challenges

- Compatibility with on/off nature of sunlight
 - short start-up & shut-down times
 - semi-continuous operation
- High efficiency reactor design for high temperature
- Materials of construction
- Thermophoretic deposition of carbon black

Non-technical Challenges

- Co-product marketing (outlet for carbon black)
- Poor fit to a single business

Reactor System

Conversion as a Function of Reactor Wall Temperature for Various Initial Methane Flow Rates

Energy use and GHG Emissions (H₂ Supplied as High-pressure Gas)

Steam-reforming Plant + Liquid H₂ + Transport

 $CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$

+310 MJ/kg of H_2 +20.42 kg CO₂-eq/kg H_2

(Spath and Amos, 2002)

Solar-thermal NG Dissociation Distributed Plant

 $CH_4 \rightarrow C + 2H_2$

(carbon is sold)

+38 MJ/kg of H_2 +3.46 kg CO₂-eq/kg H_2

Fossil fuel avoided = 272 MJ/kg H_2 CO₂ avoided = 17 kg CO₂/kg H_2 (carbon is converted to H₂) +218 MJ/kg of H₂ +14.2 kg CO₂-eq/kg H₂

Fossil fuel avoided = 82 MJ/kg H_2 CO₂ avoided = 6.22 kg CO₂/kg H_2

	Econo (Spath	omic Studie and Amos 2002)	es S	
	Fuelii (H ₂ @ 300	ng Stations Opsig; \$0.66/kg C)	
Collector Area	Capital Cost	H ₂ Selling Price (\$/kg)		
(m²)	(\$M)	"Out the Gate"	Compressed/Stored	
2,188 (1.8 acres)	4.42		12.30 (250 kg/day)	
	2.15	3.35 (462 kg/day)		
8,750 (7 acres)	8.93		8.04 (750 kg/day)	
	4.34	2.61 (1141 kg/day)		

Basis: \$3.92/1000 scf NG; 15% IRR, 20 yr life, Equity funded

	Econo (C	mic Studies U analysis)					
(Semi-c 300 psig, \$4.35	onductor Plant 5/kg current contract price)					
Collector Area (m ²)	Capital Cost (\$M)	H ₂ Selling Price (\$/kg)					
985 (0.8 acre)	\$ 1.46	3.92 (240 kg/day total; 75 kg/day stored)					
Small Utility							
(C	o-gen 1.6 iviv	electricity & H ₂ out the gate)					
Collector Area (m ²)	Capital Cost (\$M)	H ₂ Selling Price (\$/kg)					
7,800 (6.2 acres)	\$ 4.96	3.22 (1743 kg/day; electricity @ 5 ¢/kWh)					

Basis: \$3.92/1000 scf NG; 15% IRR, 20 yr life, Equity funded

Collaborations

- In the US
 - 10 industrial partners (in-kind cost share)
 - BP, ChevronPhillips, GM, EPRI, Harper International, Siemens, Pinnacle West, ChevronTexaco, Plug Power
- Outside of the US
 - IEA SolarPACES, Task II, Solar Chemistry (AL is US Coordinator)
 - Paul Scherrer Institute, Switzerland
 - Swiss Federal Institute of Technology (ETH), Zurich

2002 Review Panel Comments

- Team took exception to the use of a carbon fuel cell to extend hydrogen production into dark hours
 - Response: the carbon fuel cell is a long-term technology that was considered as an option for use of the carbon byproduct and is not essential to the overall concept technically or economically.
- "...inclusion...in the hydrogen program portfolio is important in that it keeps the technology area broad, maximizes options for commercial use, and complements other dissociation technologies."

HCNG Fleet Opportunity in Desert SW United States

- First Fueling Station: Phoenix Area
 - Pinnacle West is already in business
 HCNG, NG, H₂; H₂ by electrolysis w/off-line e⁻
 - Arizona Public Service, Municipal Vehicles, Taxis, Bus Lines, ...

Combined Fleet Facility with Industrial H₂ users

- Intel & Motorola are heavy users
- Tucson, Albuquerque, Las Vegas, Denver, Colorado Springs, Salt Lake City, ...

Potential scale-up scenario

- H₂ Enriched NG (HCNG) (20 35% H₂) for Fleets
- Increased H_2 Content HCNG (50% or more)
- Fuel Cell Vehicles (100% H_2) or IC engines running on H_2
 - Carbon Conversion Fuel Cell Marketed

Economic Impact of Fleet Station Development

Number of 327 fill-up	Total Annual	% North American	
HCNG Fleet Stations	Revenue (\$M)*	Carbon Black Market	
40	141	1%	
200	706	5%	
400	1,413	10%	
1600	5,648	40%	

*based on capital cost of \$3.2M per station and operating costs of \$2.3M/year

Carbon Black Market

- World Market: ~ 8 billion kg/year
- Tire & industrial rubber: 92%of World Market
 - 7.3 billion kg/yr
- North American Market: 25% of World Market
 - 1.8 billion kg/year

Solar Examples

Preliminary HCNG Field Design for Fleet Fueling Station Application

- Phoenix Area
- ~ 6,546 kg/day HCNG
- ~ 327 fill-ups/day (@ 20 kg/fill-up)
- ~ 1250 kg C/day
- ~ 0.57 hectares (1.4 acres)

- •~ 1.1 MW_{th}
- ~ 5 cm ID x 48 cm reactor
- ~ 122 heliostats (~1770 m²)
- Overall optical η~70%
 - -peak flux >3000 suns

Next Step Applications/Options

- Industrial H₂ to Semi-conductor Plants in SW, etc.
- Co-generating Utilities
 - H_2 and electricity
- Coal Bed Methane Conversion
 - largest reserves in the world are in the Four Corners Region of the desert SW United States)
- Biogas Conversion
 - waste landfill biogas, etc.
- Dry Reforming of CO₂ Contaminated Gas Wells
- Water-splitting cycles

Water-splitting Cycles

- 2 Step metal oxide reduction
 - high temperature endothermic reduction
 - lower temperature exothermic reaction with water
 - Ongoing European solar projects
- Thermochemical cycles
 - originally studied with nuclear reactors in mind
 - recent General Atomics study identified 2 candidates
 - adiabatic UT-3
 - Sulfur iodine
 - GA proposing to identify others with higher temperature operation using solar thermal power
- Direct water splitting
 - requires T>2500°C, high temperature separation
 - $\Delta H_{2500^{\circ}C} = 238 \text{ kJ/mole}$

Dry Reforming Experiments

 Application to high CO₂ containing gas wells and landfill gas processing

$CO_2 + 2CH_4 \xrightarrow{\sim} C + 2CO + 4H_2$ Feed Gas: 0.90% CH_4 ; 0.45% CO_2

Flux (kW/m ²)	% CO ₂	% CH ₄	% CO	% H ₂
none	0.45	0.84	0	0
1500	0.23	0.20	0.35	1.55
2000	0.11	0.07	0.62	1.60

- Splitting methane using concentrated sunlight is technically feasible
- Various system configurations and applications have economic potential
- Technical concept can be extrapolated to other chemical reactions and to water splitting
- A near-term application, business opportunity and path forward have been identified
- Continued funding is warranted

Project Team

AI, Karen

Sarah

Judy, Al, Jaimee, Carl, Fabian