

Code Compliance and Permitting and Inspections

Tom Ryan, City of Chicago

New Developments in Chicago Permitting Overview and Standards for Permitting, Code Compliance and Inspections

DER Road Show

PV Systems and the National Electrical Code[©]

• Article 690 addresses safety standards for the installation of PV systems.

Many other articles may also apply to PV installations:

- Article 110: Requirements for Electrical Installations
- Article 230: Disconnect Means
- Article 240: Overcurrent Protection
- Article 250: Grounding
- Article 300: Wiring Methods
- Article 480: Storage Batteries
- Article 685: Integrated Electrical Systems
- Article 705: Interconnected Electric Power Production Sources
- Article 720: Circuits and Equipment Operating at Less than 50 Volts

PV System Code Compliance: Common Problem Areas

- Insecure structural attachment of PV arrays to rooftops and other structures (e.g., attachment of roof mounts directly to roof decking)
- Inadequate weather sealing for roof penetrations
- Unsafe wiring methods, insufficient conductor ampacity and insulation type
- Lack of or improper placement or ratings of overcurrent protection and disconnect devices
- Unsafe installation, improper use and maintenance for batteries
- Use of unlisted equipment or improper application of listed equipment
- Lack of or improper system grounding
- Lack of or inadequate labeling on major system components and disconnect devices
- Lack of or inadequate documentation on system design, and operating and maintenance requirements

Photovoltaic System Installation: Inspection Checklist

- Photovoltaic source and output circuit conductors shall not be run with other conductors [690.4(B)]
- Equipment shall be identified for use in solar photovoltaic systems
 [690.4(D)]
- DC ground fault protection shall be provided for PV arrays on dwellings [690.5]
- Alternating-current modules shall have appropriate markings, overcurrent protection, disconnect means and GF protection [690.6, 690.52]

Circuit Requirements for PV Systems: Inspection Checklist

- Maximum system voltage at lowest temperature shall be less than module maximum voltage rating (most modules listed for 600 volts) [690.7]
- Maximum system voltage shall be less than 600 volts for dwellings, over 150 volts accessible only to qualified persons [690.7(C)(D)]
- Module conductors should be rated for at least 90° C [690.8(A)]
- Photovoltaic source and output circuit conductors and overcurrent protection devices shall be sized for no less than lsc x 1.25 x 1.25
 [690.8(B)]
- Inverter output circuit conductors and overcurrent devices shall be sized for the inverter continuous output current rating [690.8(A)(3)
- Stand-alone inverter input circuit conductors and overcurrent devices shall be sized for input current at rated output at lowest operating voltage x 1.25
 [690.8(A)(4)]
- Equipment and devices rated for 125% of maximum voltage

Overcurrent Protection for PV Systems: Inspection Checklist

- Photovoltaic source circuit, photovoltaic output circuit, inverter output circuit and storage battery circuit conductors and equipment shall be protected in accordance with Art. 240 [690.9(A)]
- Overcurrent protection shall be provided for power transformers in accordance with Art. 450.3 [690.9(B)]
- Branch-circuit or supplementary-type overcurrent devices shall be provided for photovoltaic source circuits, no greater than series fuse on module listing [690.9(C)]
- Overcurrent devices are listed for use in dc circuits and shall have the appropriate voltage, current and interrupt ratings [690.9(D)]
- No issues with multiwire branch circuits [690.10(C)]

Disconnect Means for PV Systems: Inspection Checklist

- Disconnect means shall be provided between photovoltaic power system output and other building conductors, no disconnect in grounded conductor. [690.13(A)]
- Photovoltaic disconnecting means shall be installed at a readily accessible location either outside of a building or structure or inside nearest the point of entrance of the system conductors (not in bathrooms) [690.14(C)]
- Each photovoltaic system disconnect means shall be marked, suitable for use, no more than six grouped disconnects for PV system [690.14(C)]
- Disconnect means shall be provided for inverters, batteries, charge controllers, and the like, from all ungrounded conductors of all sources [690.15]

Disconnect Means for PV Systems: Inspection Checklist (cont.)

- Disconnecting means shall be provided to independently disconnect a fuse from all sources of supply if the fuse is energized from both directions [690.16]
- Switches or circuit breakers shall be provided to disconnect ungrounded conductors, are readily accessible, have on/off indication, and have appropriate interrupt rating [690.17]
- Energized disconnects in open position shall be labeled as such [690.17]

PV System Wiring Methods: Inspection Checklist

- Appropriate wiring methods shall be used [690.31(A)]
- Single conductor cables type SE, UF, USE, and USE-2 single-conductor are permitted in photovoltaic source circuits, sunlight resistant cable shall be used [690.31(B)]
- Flexible cords and cables, identified for hard service, outdoor and sunlight resistant are permitted for tracking or movable array mounts [690.31(C)]
- Single-conductor cables in sizes 16 AWG and 18 AWG shall be permitted for module interconnections where such cables meet the ampacity requirements of 690.8 [690.31(D)]
- Connectors permitted in Art. 690 shall be polarized, noninterchangeable, guarded, locking, and have first to make and the last to break contact for grounded conductor [690.33]
- Junction boxes [690.34, 300-15, 370]
- Conductors in systems operation 50 volts or less shall not be smaller than 12 AWG copper or equivalent [720.4]

Grounding in PV Systems: Inspection Checklist

- DC conductor shall be grounded at a single point for *two-wire* PV systems operating above 50 volts, center tap shall be grounded for bi-polar arrays. Disconnect switches shall not open-circuit the grounded conductor any time [690.41]
- DC grounding shall be made at any point on photovoltaic output circuit [690.42]
- Non-current-carrying metal components shall be grounded for all PV systems, including module frames, conduit and boxes as applicable [690.43]
- Equipment grounding conductor shall be sized for 125% of photovoltaic source and output circuit Isc. [690.45]
- Where GFID is used per 690.5, equipment grounding conductor shall be sized according to [250.122]
- Grounding electrode system shall be installed [690.47, Art. 250]

Solar Photovoltaic System Markings: Inspection Checklist

- Photovoltaic modules shall be labeled with UL, series fuse requirement, Voc, Vop, Vmax, Isc, Iop, Pmax [690.51]
- Photovoltaic power source shall be labeled with lop, Vop, Vmax, Isc at disconnect [690.53]
- Point of interconnection shall be labeled with Volts AC, max amps AC at disconnect [690.54]
- Energy storage (batteries) shall be labeled with Vop max, Veq, polarity [690.55]
- Accessible notice and location of disconnect means shall be provided for stand-alone systems [690.56]
- Utility systems shall have location label if PV and service disconnect are not together [690.56]

Connection to Other Sources: Inspection Checklist

- Inverters shall be listed and identified for interactive operation [690.60]
- Interactive inverters shall de-energize when interactive source of power is lost [690.61]
- No unbalanced interconnections [690.63]
- Disconnect and overcurrent device for supply side interconnections [690.64(A)]
- Load side interconnections [690.64(B)]
 - Shall be made at dedicated branch circuit or fusible disconnect
 - Ampere rating of breakers feeding panel shall not exceed busbar rating (120% of busbar rating for dwellings)
 - Interconnection shall be on line side of any ground-fault protection equipment
 - Overcurrent devices supplying power to busbar shall be marked to indicate the presence of all sources of supply
 - Backfed breakers shall be identified

Batteries in PV Systems: Inspection Checklist

- Installation shall use appropriate racks, trays and ventilation [480.8, 480.9, 480.10]
- Operating voltage for dwelling less than 50 volts nominal no more that 24 – 2-volt lead-acid cells in series [690.71(B)]
- Battery terminals and other live parts shall be guarded, adequate working space [480.99(B),(C)]
- Current-limiting fuses (types RK-5, RK-1, T) shall be installed on battery output circuits [690.71(C)]
- No conductive cases for batteries greater that 48 volts, nominal. Conductive racks permissible, must be at least 6" from top of battery case.
 [690.71(D)]
- Series disconnects shall be provided for battery strings over 48 volts, nominal [690.71(E)]
- Disconnect shall be provided for grounded conductor for battery systems over 48 volts, accessible only to qualified persons [690.71(F)]

Battery Charge Controllers: Inspection Checklist

- Battery charge control shall be used in any system where the charge rates are greater than 3% of battery capacity. Adjustment only accessible to qualified persons [690.72(A)]
- Systems using diversion charge controllers shall have secondary independent means for charge control. DC diversion loads, conductors and overcurrent devices must be rated for at least 150% of the controller current rating [690.72(B)]
- Temperature compensation probes attached to batteries

