[Code of Federal Regulations]
[Title 40, Volume 7]
[Revised as of July 1, 2004]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR60.A7]

[Page 455-542]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 60_STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (CONTINUED)
--Table of Contents
 
          Appendix A-7 to Part 60--Test Methods 19 through 25E

Method 19--Determination of sulfur dioxide removal efficiency and 
particulate, sulfur dioxide and nitrogen oxides emission rates
Method 20--Determination of nitrogen oxides, sulfur dioxide, and diluent 
emissions from stationary gas turbines
Method 21--Determination of volatile organic compound leaks
Method 22--Visual determination of fugitive emissions from material 
sources and smoke emissions from flares
Method 23--Determination of Polychlorinated Dibenzo-p-Dioxins and 
Polychlorinated Dibenzofurans From Stationary Sources
Method 24--Determination of volatile matter content, water content, 
density, volume solids, and weight solids of surface coatings
Method 24A--Determination of volatile matter content and density of 
printing inks and related coatings
Method 25--Determination of total gaseous nonmethane organic emissions 
as carbon
Method 25A--Determination of total gaseous organic concentration using a 
flame ionization analyzer
Method 25B--Determination of total gaseous organic concentration using a 
nondispersive infrared analyzer
Method 25C--Determination of nonmethane organic compounds (NMOC) in MSW 
landfill gases
Method 25D--Determination of the Volatile Organic Concentration of Waste 
Samples
Method 25E--Determination of Vapor Phase Organic Concentration in Waste 
Samples
    The test methods in this appendix are referred to in Sec. 60.8 
(Performance Tests) and Sec. 60.11 (Compliance With Standards and 
Maintenance Requirements) of 40 CFR part 60, subpart A (General 
Provisions). Specific uses of these test methods are described in the 
standards of performance contained in the subparts, beginning with 
Subpart D.
    Within each standard of performance, a section title ``Test Methods 
and Procedures'' is provided to: (1) Identify the test methods to be 
used as reference methods to the facility subject to the respective 
standard and (2) identify any special instructions or conditions to be 
followed when applying a method to the respective facility. Such 
instructions (for example, establish sampling rates, volumes, or 
temperatures) are to be used either in addition to, or as a substitute 
for procedures in a test method. Similarly, for sources subject to 
emission monitoring requirements, specific instructions pertaining

[[Page 456]]

to any use of a test method as a reference method are provided in the 
subpart or in Appendix B.
    Inclusion of methods in this appendix is not intended as an 
endorsement or denial of their applicability to sources that are not 
subject to standards of performance. The methods are potentially 
applicable to other sources; however, applicability should be confirmed 
by careful and appropriate evaluation of the conditions prevalent at 
such sources.
    The approach followed in the formulation of the test methods 
involves specifications for equipment, procedures, and performance. In 
concept, a performance specification approach would be preferable in all 
methods because this allows the greatest flexibility to the user. In 
practice, however, this approach is impractical in most cases because 
performance specifications cannot be established. Most of the methods 
described herein, therefore, involve specific equipment specifications 
and procedures, and only a few methods in this appendix rely on 
performance criteria.
    Minor changes in the test methods should not necessarily affect the 
validity of the results and it is recognized that alternative and 
equivalent methods exist. Section 60.8 provides authority for the 
Administrator to specify or approve (1) equivalent methods, (2) 
alternative methods, and (3) minor changes in the methodology of the 
test methods. It should be clearly understood that unless otherwise 
identified all such methods and changes must have prior approval of the 
Administrator. An owner employing such methods or deviations from the 
test methods without obtaining prior approval does so at the risk of 
subsequent disapproval and retesting with approved methods.
    Within the test methods, certain specific equipment or procedures 
are recognized as being acceptable or potentially acceptable and are 
specifically identified in the methods. The items identified as 
acceptable options may be used without approval but must be identified 
in the test report. The potentially approvable options are cited as 
``subject to the approval of the Administrator'' or as ``or 
equivalent.'' Such potentially approvable techniques or alternatives may 
be used at the discretion of the owner without prior approval. However, 
detailed descriptions for applying these potentially approvable 
techniques or alternatives are not provided in the test methods. Also, 
the potentially approvable options are not necessarily acceptable in all 
applications. Therefore, an owner electing to use such potentially 
approvable techniques or alternatives is responsible for: (1) assuring 
that the techniques or alternatives are in fact applicable and are 
properly executed; (2) including a written description of the 
alternative method in the test report (the written method must be clear 
and must be capable of being performed without additional instruction, 
and the the degree of detail should be similar to the detail contained 
in the test methods); and (3) providing any rationale or supporting data 
necessary to show the validity of the alternative in the particular 
application. Failure to meet these requirements can result in the 
Administrator's disapproval of the alternative.

   Method 19--Determination of Sulfur Dioxide Removal Efficiency and 
  Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

                        1.0 Scope and Application

    1.1 Analytes. This method provides data reduction procedures 
relating to the following pollutants, but does not include any sample 
collection or analysis procedures.

------------------------------------------------------------------------
            Analyte                  CAS No.            Sensitivity
------------------------------------------------------------------------
Nitrogen oxides (NOX),
 including:
    Nitric oxide (NO).........  10102-43-9.......  N/A
    Nitrogen dioxide (NO2)....  10102-44-0.......
Particulate matter (PM).......  None assigned....  N/A
Sulfur dioxide (SO2)..........  7499-09-05.......  N/A
------------------------------------------------------------------------

    1.2 Applicability. Where specified by an applicable subpart of the 
regulations, this method is applicable for the determination of (a) PM, 
SO2, and NOX emission rates; (b) sulfur removal 
efficiencies of fuel pretreatment and SO2 control devices; 
and (c) overall reduction of potential SO2 emissions.

                          2.0 Summary of Method

    2.1 Emission Rates. Oxygen (O2) or carbon dioxide 
(CO2) concentrations and appropriate F factors (ratios of 
combustion gas volumes to heat inputs) are used to calculate pollutant 
emission rates from pollutant concentrations.
    2.2 Sulfur Reduction Efficiency and SO2 Removal 
Efficiency. An overall SO2 emission reduction efficiency is 
computed from the efficiency of fuel pretreatment systems, where

[[Page 457]]

applicable, and the efficiency of SO2 control devices.
    2.2.1 The sulfur removal efficiency of a fuel pretreatment system is 
determined by fuel sampling and analysis of the sulfur and heat contents 
of the fuel before and after the pretreatment system.
    2.2.2 The SO2 removal efficiency of a control device is 
determined by measuring the SO2 rates before and after the 
control device.
    2.2.2.1 The inlet rates to SO2 control systems (or, when 
SO2 control systems are not used, SO2 emission 
rates to the atmosphere) are determined by fuel sampling and analysis.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                          5.0 Safety [Reserved]

                  6.0 Equipment and Supplies [Reserved]

                  7.0 Reagents and Standards [Reserved]

 8.0 Sample Collection, Preservation, Storage, and Transport [Reserved]

                     9.0 Quality Control [Reserved]

             10.0 Calibration and Standardization [Reserved]

                  11.0 Analytical Procedures [Reserved]

                   12.0 Data Analysis and Calculations

    12.1 Nomenclature

Bwa=Moisture fraction of ambient air, percent.
Bws=Moisture fraction of effluent gas, percent.
%C=Concentration of carbon from an ultimate analysis of fuel, weight 
percent.
Cd=Pollutant concentration, dry basis, ng/scm (lb/scf)
%CO2d,%CO2w=Concentration of carbon dioxide on a 
dry and wet basis, respectively, percent.
Cw=Pollutant concentration, wet basis, ng/scm (lb/scf).
D=Number of sampling periods during the performance test period.
E=Pollutant emission rate, ng/J (lb/million Btu).
Ea=Average pollutant rate for the specified performance test 
period, ng/J (lb/million Btu).
Eao, Eai=Average pollutant rate of the control 
device, outlet and inlet, respectively, for the performance test period, 
ng/J (lb/million Btu).
Ebi=Pollutant rate from the steam generating unit, ng/J (lb/
million Btu)
Ebo=Pollutant emission rate from the steam generating unit, 
ng/J (lb/million Btu).
Eci=Pollutant rate in combined effluent, ng/J (lb/million 
Btu).
Eco=Pollutant emission rate in combined effluent, ng/J (lb/
million Btu).
Ed=Average pollutant rate for each sampling period (e.g., 24-
hr Method 6B sample or 24-hr fuel sample) or for each fuel lot (e.g., 
amount of fuel bunkered), ng/J (lb/million Btu).
Edi=Average inlet SO2 rate for each sampling 
period d, ng/J (lb/million Btu)
Eg=Pollutant rate from gas turbine, ng/J (lb/million Btu).
Ega=Daily geometric average pollutant rate, ng/J (lbs/million 
Btu) or ppm corrected to 7 percent O2.
Ejo,Eji=Matched pair hourly arithmetic average 
pollutant rate, outlet and inlet, respectively, ng/J (lb/million Btu) or 
ppm corrected to 7 percent O2.
Eh=Hourly average pollutant, ng/J (lb/million Btu).
Ehj=Hourly arithmetic average pollutant rate for hour ``j,'' 
ng/J (lb/million Btu) or ppm corrected to 7 percent O2.
EXP=Natural logarithmic base (2.718) raised to the value enclosed by 
brackets.
Fd, Fw, Fc=Volumes of combustion 
components per unit of heat content, scm/J (scf/million Btu).
GCV=Gross calorific value of the fuel consistent with the ultimate 
analysis, kJ/kg (Btu/lb).
GCVp, GCVr=Gross calorific value for the product 
and raw fuel lots, respectively, dry basis, kJ/kg (Btu/lb).
%H=Concentration of hydrogen from an ultimate analysis of fuel, weight 
percent.
H=Total number of operating hours for which pollutant rates are 
determined in the performance test period.
Hb=Heat input rate to the steam generating unit from fuels 
fired in the steam generating unit, J/hr (million Btu/hr).
Hg=Heat input rate to gas turbine from all fuels fired in the 
gas turbine, J/hr (million Btu/hr).
%H2O=Concentration of water from an ultimate analysis of 
fuel, weight percent.
Hr=Total numbers of hours in the performance test period 
(e.g., 720 hours for 30-day performance test period).
K=Conversion factor, 10-5 (kJ/J)/(%) [106 Btu/million Btu].
Kc=(9.57 scm/kg)/% [(1.53 scf/lb)/%].
Kcc=(2.0 scm/kg)/% [(0.321 scf/lb)/%].
Khd=(22.7 scm/kg)/% [(3.64 scf/lb)/%].
Khw=(34.74 scm/kg)/% [(5.57 scf/lb)/%].
Kn=(0.86 scm/kg)/% [(0.14 scf/lb)/%].
Ko=(2.85 scm/kg)/% [(0.46 scf/lb)/%].
Ks=(3.54 scm/kg)/% [(0.57 scf/lb)/%].
Kw=(1.30 scm/kg)/% [(0.21 scf/lb)/%].
ln=Natural log of indicated value.
Lp,Lr=Weight of the product and raw fuel lots, 
respectively, metric ton (ton).
%N=Concentration of nitrogen from an ultimate analysis of fuel, weight 
percent.
N=Number of fuel lots during the averaging period.

[[Page 458]]

n=Number of fuels being burned in combination.
nd=Number of operating hours of the affected facility within 
the performance test period for each Ed determined.
nt=Total number of hourly averages for which paired inlet and 
outlet pollutant rates are available within the 24-hr midnight to 
midnight daily period.
%O=Concentration of oxygen from an ultimate analysis of fuel, weight 
percent.
%O2d, %O2w=Concentration of oxygen on a dry and 
wet basis, respectively, percent.
Ps=Potential SO2 emissions, percent.
%Rf=SO2 removal efficiency from fuel pretreatment, 
percent.
%Rg=SO2 removal efficiency of the control device, 
percent.
%Rga=Daily geometric average percent reduction.
%Ro=Overall SO2 reduction, percent.
%S=Sulfur content of as-fired fuel lot, dry basis, weight percent.
Se=Standard deviation of the hourly average pollutant rates 
for each performance test period, ng/J (lb/million Btu).
%Sf=Concentration of sulfur from an ultimate analysis of 
fuel, weight percent.
Si=Standard deviation of the hourly average inlet pollutant 
rates for each performance test period, ng/J (lb/million Btu).
So=Standard deviation of the hourly average emission rates 
for each performance test period, ng/J (lb/million Btu).
%Sp, %Sr=Sulfur content of the product and raw 
fuel lots respectively, dry basis, weight percent.
t0.95=Values shown in Table 19-3 for the indicated number of 
data points n.
Xk=Fraction of total heat input from each type of fuel k.

    12.2 Emission Rates of PM, SO2, and NOX. 
Select from the following sections the applicable procedure to compute 
the PM, SO2, or NOX emission rate (E) in ng/J (lb/
million Btu). The pollutant concentration must be in ng/scm (lb/scf) and 
the F factor must be in scm/J (scf/million Btu). If the pollutant 
concentration (C) is not in the appropriate units, use Table 19-1 in 
Section 17.0 to make the proper conversion. An F factor is the ratio of 
the gas volume of the products of combustion to the heat content of the 
fuel. The dry F factor (Fd) includes all components of 
combustion less water, the wet F factor (Fw) includes all 
components of combustion, and the carbon F factor (Fc) 
includes only carbon dioxide.

    Note: Since Fw factors include water resulting only from 
the combustion of hydrogen in the fuel, the procedures using 
Fw factors are not applicable for computing E from steam 
generating units with wet scrubbers or with other processes that add 
water (e.g., steam injection).

    12.2.1 Oxygen-Based F Factor, Dry Basis. When measurements are on a 
dry basis for both O (%O2d) and pollutant (Cd) 
concentrations, use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.321

    12.2.2 Oxygen-Based F Factor, Wet Basis. When measurements are on a 
wet basis for both O2 (%O2w) and pollutant 
(Cw) concentrations, use either of the following:
    12.2.2.1 If the moisture fraction of ambient air (Bwa) is 
measured:
[GRAPHIC] [TIFF OMITTED] TR17OC00.322

    Instead of actual measurement, Bwa may be estimated 
according to the procedure below.

    Note: The estimates are selected to ensure that negative errors will 
not be larger than -1.5 percent. However, positive errors, or over-
estimation of emissions by as much as 5 percent may be introduced 
depending upon the geographic location of the facility and the 
associated range of ambient moisture.

    12.2.2.1.1 Bwa=0.027. This value may be used at any 
location at all times.
    12.2.2.1.2 Bwa=Highest monthly average of Bwa 
that occurred within the previous calendar year at the nearest Weather 
Service Station. This value shall be determined annually and may be used 
as an estimate for the entire current calendar year.
    12.2.2.1.3 Bwa=Highest daily average of Bwa that occurred 
within a calendar month at the nearest Weather Service Station, 
calculated from the data from the past 3 years. This value shall be 
computed for each month and may be used as an estimate for the current 
respective calendar month.
    12.2.2.2 If the moisture fraction (Bws) of the effluent 
gas is measured:

[[Page 459]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.323

    12.2.3 Oxygen-Based F Factor, Dry/Wet Basis.
    12.2.3.1 When the pollutant concentration is measured on a wet basis 
(Cw) and O2 concentration is measured on a dry 
basis (%O2d), use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.324

    12.2.3.2 When the pollutant concentration is measured on a dry basis 
(Cd) and the O2 concentration is measured on a wet 
basis (%O2w), use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.325

    12.2.4 Carbon Dioxide-Based F Factor, Dry Basis. When measurements 
are on a dry basis for both CO2 (%CO2d) and 
pollutant (Cd) concentrations, use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.326

    12.2.5 Carbon Dioxide-Based F Factor, Wet Basis. When measurements 
are on a wet basis for both CO2 (%CO2w) and 
pollutant (Cw) concentrations, use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.327

    12.2.6 Carbon Dioxide-Based F Factor, Dry/Wet Basis.
    12.2.6.1 When the pollutant concentration is measured on a wet basis 
(Cw) and CO2 concentration is measured on a dry 
basis (%CO2d), use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.328

    12.2.6.2 When the pollutant concentration is measured on a dry basis 
(Cd) and CO2 concentration is measured on a wet 
basis (%CO2w), use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.329

    12.2.7 Direct-Fired Reheat Fuel Burning. The effect of direct-fired 
reheat fuel burning (for the purpose of raising the temperature of the 
exhaust effluent from wet scrubbers to above the moisture dew-point) on 
emission rates will be less than 1.0 percent and, therefore, may be 
ignored.
    12.2.8 Combined Cycle-Gas Turbine Systems. For gas turbine-steam 
generator combined cycle systems, determine the emissions from the steam 
generating unit or the percent reduction in potential SO2 
emissions as follows:
    12.2.8.1 Compute the emission rate from the steam generating unit 
using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.330

    12.2.8.1.1 Use the test methods and procedures section of 40 CFR 
Part 60, Subpart GG to obtain Eco and Eg. Do not 
use Fw factors for determining Eg or 
Eco. If an SO2 control device is used, measure 
Eco after the control device.
    12.2.8.1.2 Suitable methods shall be used to determine the heat 
input rates to the steam generating units (Hb) and the gas 
turbine (Hg).
    12.2.8.2 If a control device is used, compute the percent of 
potential SO2 emissions (Ps) using the following 
equations:
[GRAPHIC] [TIFF OMITTED] TR17OC00.331

[GRAPHIC] [TIFF OMITTED] TR17OC00.332

    Note: Use the test methods and procedures section of Subpart GG to 
obtain Eci and Eg. Do not use Fw 
factors for determining Eg or Eci.

    12.3 F Factors. Use an average F factor according to Section 12.3.1 
or determine an applicable F factor according to Section 12.3.2. If 
combined fuels are fired, prorate the applicable F factors using the 
procedure in Section 12.3.3.
    12.3.1 Average F Factors. Average F factors (Fd, 
Fw, or Fc) from Table 19-2 in Section 17.0 may be 
used.
    12.3.2 Determined F Factors. If the fuel burned is not listed in 
Table 19-2 or if the owner or operator chooses to determine an F factor 
rather than use the values in Table 19-2, use the procedure below:

[[Page 460]]

    12.3.2.1 Equations. Use the equations below, as appropriate, to 
compute the F factors:
[GRAPHIC] [TIFF OMITTED] TR17OC00.333

[GRAPHIC] [TIFF OMITTED] TR17OC00.334

[GRAPHIC] [TIFF OMITTED] TR17OC00.335

    Note: Omit the %H2O term in the equations for 
Fw if %H and %O include the unavailable hydrogen and oxygen 
in the form of H2O.)

    12.3.2.2 Use applicable sampling procedures in Section 12.5.2.1 or 
12.5.2.2 to obtain samples for analyses.
    12.3.2.3 Use ASTM D 3176-74 or 89 (all cited ASTM standards are 
incorporated by reference--see Sec. 60.17) for ultimate analysis of the 
fuel.
    12.3.2.4 Use applicable methods in Section 12.5.2.1 or 12.5.2.2 to 
determine the heat content of solid or liquid fuels. For gaseous fuels, 
use ASTM D 1826-77 or 94 (incorporated by reference--see Sec. 60.17) to 
determine the heat content.
    12.3.3 F Factors for Combination of Fuels. If combinations of fuels 
are burned, use the following equations, as applicable unless otherwise 
specified in an applicable subpart:
[GRAPHIC] [TIFF OMITTED] TR17OC00.336

[GRAPHIC] [TIFF OMITTED] TR17OC00.337

[GRAPHIC] [TIFF OMITTED] TR17OC00.338

    12.4 Determination of Average Pollutant Rates.
    12.4.1 Average Pollutant Rates from Hourly Values. When hourly 
average pollutant rates (Eh), inlet or outlet, are obtained 
(e.g., CEMS values), compute the average pollutant rate (Ea) 
for the performance test period (e.g., 30 days) specified in the 
applicable regulation using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.339

    12.4.2 Average Pollutant Rates from Other than Hourly Averages. When 
pollutant rates are determined from measured values representing longer 
than 1-hour periods (e.g., daily fuel sampling and analyses or Method 6B 
values), or when pollutant rates are determined from combinations of 1-
hour and longer than 1-hour periods (e.g., CEMS and Method 6B values), 
compute the average pollutant rate (Ea) for the performance 
test period (e.g., 30 days) specified in the applicable regulation using 
the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.340

    12.4.3 Daily Geometric Average Pollutant Rates from Hourly Values. 
The geometric average pollutant rate (Ega) is computed using 
the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.341

    12.5 Determination of Overall Reduction in Potential Sulfur Dioxide 
Emission.
    12.5.1 Overall Percent Reduction. Compute the overall percent 
SO2 reduction (%Ro) using the following equation:

[[Page 461]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.342

    12.5.2 Pretreatment Removal Efficiency (Optional). Compute the 
SO2 removal efficiency from fuel pretreatment 
(%Rf) for the averaging period (e.g., 90 days) as specified 
in the applicable regulation using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.343

    Note: In calculating %Rf, include %S and GCV values for 
all fuel lots that are not pretreated and are used during the averaging 
period.

    12.5.2.1 Solid Fossil (Including Waste) Fuel/Sampling and Analysis.

    Note: For the purposes of this method, raw fuel (coal or oil) is the 
fuel delivered to the desulfurization (pretreatment) facility. For oil, 
the input oil to the oil desulfurization process (e.g., hydrotreatment) 
is considered to be the raw fuel.

    12.5.2.1.1 Sample Increment Collection. Use ASTM D 2234-76, 96, 97a, 
or 98 (incorporated by reference--see Sec. 60.17), Type I, Conditions 
A, B, or C, and systematic spacing. As used in this method, systematic 
spacing is intended to include evenly spaced increments in time or 
increments based on equal weights of coal passing the collection area. 
As a minimum, determine the number and weight of increments required per 
gross sample representing each coal lot according to Table 2 or 
Paragraph 7.1.5.2 of ASTM D 2234. Collect one gross sample for each lot 
of raw coal and one gross sample for each lot of product coal.
    12.5.2.1.2 ASTM Lot Size. For the purpose of Section 12.5.2 (fuel 
pretreatment), the lot size of product coal is the weight of product 
coal from one type of raw coal. The lot size of raw coal is the weight 
of raw coal used to produce one lot of product coal. Typically, the lot 
size is the weight of coal processed in a 1-day (24-hour) period. If 
more than one type of coal is treated and produced in 1 day, then gross 
samples must be collected and analyzed for each type of coal. A coal lot 
size equaling the 90-day quarterly fuel quantity for a steam generating 
unit may be used if representative sampling can be conducted for each 
raw coal and product coal.

    Note: Alternative definitions of lot sizes may be used, subject to 
prior approval of the Administrator.

    12.5.2.1.3 Gross Sample Analysis. Use ASTM D 2013-72 or 86 to 
prepare the sample, ASTM D 3177-75 or 89 or ASTM D 4239-85, 94, or 97 to 
determine sulfur content (%S), ASTM D 3173-73 or 87 to determine 
moisture content, and ASTM D 2015-77 (Reapproved 1978) or 96, D 3286-85 
or 96, or D 5865-98 to determine gross calorific value (GCV) (all 
standards cited are incorporated by reference--see Sec. 60.17 for 
acceptable versions of the standards) on a dry basis for each gross 
sample.
    12.5.2.2 Liquid Fossil Fuel-Sampling and Analysis. See Note under 
Section 12.5.2.1.
    12.5.2.2.1 Sample Collection. Follow the procedures for continuous 
sampling in ASTM D 270 or D 4177-95 (incorporated by reference--see 
Sec. 60.17) for each gross sample from each fuel lot.
    12.5.2.2.2 Lot Size. For the purpose of Section 12.5.2 (fuel 
pretreatment), the lot size of a product oil is the weight of product 
oil from one pretreatment facility and intended as one shipment (ship 
load, barge load, etc.). The lot size of raw oil is the weight of each 
crude liquid fuel type used to produce a lot of product oil.

    Note: Alternative definitions of lot sizes may be used, subject to 
prior approval of the Administrator.

    12.5.2.2.3 Sample Analysis. Use ASTM D 129-64, 78, or 95, ASTM D 
1552-83 or 95, or ASTM D 4057-81 or 95 to determine the sulfur content 
(%S) and ASTM D 240-76 or 92 (all standards cited are incorporated by 
reference--see Sec. 60.17) to determine the GCV of

[[Page 462]]

each gross sample. These values may be assumed to be on a dry basis. The 
owner or operator of an affected facility may elect to determine the GCV 
by sampling the oil combusted on the first steam generating unit 
operating day of each calendar month and then using the lowest GCV value 
of the three GCV values per quarter for the GCV of all oil combusted in 
that calendar quarter.
    12.5.2.3 Use appropriate procedures, subject to the approval of the 
Administrator, to determine the fraction of total mass input derived 
from each type of fuel.
    12.5.3 Control Device Removal Efficiency. Compute the percent 
removal efficiency (%Rg) of the control device using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.344

    12.5.3.1 Use continuous emission monitoring systems or test methods, 
as appropriate, to determine the outlet SO2 rates and, if 
appropriate, the inlet SO2 rates. The rates may be determined 
as hourly (Eh) or other sampling period averages 
(Ed). Then, compute the average pollutant rates for the 
performance test period (Eao and Eai) using the 
procedures in Section 12.4.
    12.5.3.2 As an alternative, as-fired fuel sampling and analysis may 
be used to determine inlet SO2 rates as follows:
    12.5.3.2.1 Compute the average inlet SO2 rate 
(Edi) for each sampling period using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.345

Where:
[GRAPHIC] [TIFF OMITTED] TR17OC00.346

After calculating Edi, use the procedures in Section 12.4 to 
determine the average inlet SO2 rate for the performance test 
period (Eai).
    12.5.3.2.2 Collect the fuel samples from a location in the fuel 
handling system that provides a sample representative of the fuel 
bunkered or consumed during a steam generating unit operating day. For 
the purpose of as-fired fuel sampling under Section 12.5.3.2 or Section 
12.6, the lot size for coal is the weight of coal bunkered or consumed 
during each steam generating unit operating day. The lot size for oil is 
the weight of oil supplied to the ``day'' tank or consumed during each 
steam generating unit operating day. For reporting and calculation 
purposes, the gross sample shall be identified with the calendar day on 
which sampling began. For steam generating unit operating days when a 
coal-fired steam generating unit is operated without coal being added to 
the bunkers, the coal analysis from the previous ``as bunkered'' coal 
sample shall be used until coal is bunkered again. For steam generating 
unit operating days when an oil-fired steam generating unit is operated 
without oil being added to the oil ``day'' tank, the oil analysis from 
the previous day shall be used until the ``day'' tank is filled again. 
Alternative definitions of fuel lot size may be used, subject to prior 
approval of the Administrator.
    12.5.3.2.3 Use ASTM procedures specified in Section 12.5.2.1 or 
12.5.2.2 to determine %S and GCV.
    12.5.4 Daily Geometric Average Percent Reduction from Hourly Values. 
The geometric average percent reduction (%Rga) is computed 
using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.347

    Note: The calculation includes only paired data sets (hourly 
average) for the inlet and outlet pollutant measurements.
    12.6 Sulfur Retention Credit for Compliance Fuel. If fuel sampling 
and analysis procedures in Section 12.5.2.1 are being used to determine 
average SO2 emission rates (Eas) to the atmosphere 
from a coal-fired steam generating unit when there is no SO2 
control device, the following equation may be used to adjust the 
emission rate for sulfur retention credits (no credits are allowed for 
oil-fired

[[Page 463]]

systems) (Edi) for each sampling period using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.348

Where:
[GRAPHIC] [TIFF OMITTED] TR17OC00.349

    After calculating Edi, use the procedures in Section 
12.4.2 to determine the average SO2 emission rate to the 
atmosphere for the performance test period (Eao).
    12.7 Determination of Compliance When Minimum Data Requirement Is 
Not Met.
    12.7.1 Adjusted Emission Rates and Control Device Removal 
Efficiency. When the minimum data requirement is not met, the 
Administrator may use the following adjusted emission rates or control 
device removal efficiencies to determine compliance with the applicable 
standards.
    12.7.1.1 Emission Rate. Compliance with the emission rate standard 
may be determined by using the lower confidence limit of the emission 
rate (Eao*) as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.350

    12.7.1.2 Control Device Removal Efficiency. Compliance with the 
overall emission reduction (%Ro) may be determined by using 
the lower confidence limit of the emission rate (Eao*) and 
the upper confidence limit of the inlet pollutant rate (Eai*) 
in calculating the control device removal efficiency (%Rg) as 
follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.351

[GRAPHIC] [TIFF OMITTED] TR17OC00.352

    12.7.2 Standard Deviation of Hourly Average Pollutant Rates. Compute 
the standard deviation (Se) of the hourly average pollutant 
rates using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.353

    Equation 19-19 through 19-31 may be used to compute the standard 
deviation for both the outlet (So) and, if applicable, inlet 
(Si) pollutant rates.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 References [Reserved]

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

                                Table 19-1--Conversion Factors for Concentration
----------------------------------------------------------------------------------------------------------------
                  From                                   To                             Multiply by
----------------------------------------------------------------------------------------------------------------
g/scm...................................  ng/scm.........................  10\9\
mg/scm..................................  ng/scm.........................  10\6\
lb/scf..................................  ng/scm.........................  1.602 x 10\13\
ppm SO2.................................  ng/scm.........................  2.66 x 10\6\
ppm NOX.................................  ng/scm.........................  1.912 x 10\6\
ppm SO2.................................  lb/scf.........................  1.660 x 10-7
ppm NOX.................................  lb/scf.........................  1.194 x 10-7
----------------------------------------------------------------------------------------------------------------


[[Page 464]]


                                                       Table 19-2--F Factors for Various Fuels\1\
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                        Fd                              Fw                              Fc
                        Fuel Type                        -----------------------------------------------------------------------------------------------
                                                              dscm/J      dscf/10\6\ Btu      wscm/J      wscf/10\6\ Btu       scm/J       scf/10\6\ Btu
--------------------------------------------------------------------------------------------------------------------------------------------------------
Coal:
    Anthracite 2........................................       2.71x10-7          10,100       2.83x10-7          10,540      0.530x10-7           1,970
    Bituminus 2.........................................       2.63x10-7           9,780       2.86x10-7          10,640      0.484x10-7           1,800
    Lignite.............................................       2.65x10-7           9,860       3.21x10-7          11,950      0.513x10-7           1,910
    Oil \3\.............................................       2.47x10-7           9,190       2.77x10-7          10,320      0.383x10-7           1,420
Gas:....................................................
    Natural.............................................       2.34x10-7           8,710       2.85x10-7          10,610      0.287x10-7           1,040
    Propane.............................................       2.34x10-7           8,710       2.74x10-7          10,200      0.321x10-7           1,190
    Butane..............................................       2.34x10-7           8,710       2.79x10-7          10,390      0.337x10-7           1,250
Wood....................................................       2.48x10-7           9,240  ..............  ..............      0.492x10-7           1,830
Wood Bark...............................................       2.58x10-7           9,600  ..............  ..............      0.516x10-7           1,920
Municipal...............................................       2.57x10-7           9,570  ..............  ..............      0.488x10-7           1,820
Solid Waste.............................................  ..............  ..............  ..............  ..............  ..............  ..............
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Determined at standard conditions: 20 [deg]C (68 [deg]F) and 760 mm Hg (29.92 in Hg)
\2\ As classified according to ASTM D 388.
\3\ Crude, residual, or distillate.


                                          Table 19-3--Values for T0.95*
----------------------------------------------------------------------------------------------------------------
                       n\1\                            t0.95       n\1\        t0.95        n\1\         t0.95
----------------------------------------------------------------------------------------------------------------
2.................................................        6.31           8        1.89         22-26        1.71
3.................................................        2.42           9        1.86         27-31        1.70
4.................................................        2.35          10        1.83         32-51        1.68
5.................................................        2.13          11        1.81         52-91        1.67
6.................................................        2.02       12-16        1.77        92-151        1.66
7.................................................        1.94       17-21        1.73   152 or more       1.65
----------------------------------------------------------------------------------------------------------------
\1\The values of this table are corrected for n-1 degrees of freedom. Use n equal to the number (H) of hourly
  average data points.

Method 20--Determination of Nitrogen Oxides, Sulfur Dioxide, and Diluent 
                 Emissions from Stationary Gas Turbines

1. Principle and Applicability

    1.1 Applicability. This method is applicable for the determination 
of nitrogen oxides (NOX), sulfur dioxide (SO2), 
and a diluent gas, either oxygen (O2) or carbon dioxide 
(CO2), emissions from stationary gas turbines. For the 
NOX and diluent concentration determinations, this method 
includes: (1) Measurement system design criteria; (2) Analyzer 
performance specifications and performance test procedures; and (3) 
Procedures for emission testing.

    1.2 Principle. A gas sample is continuously extracted from the 
exhaust stream of a stationary gas turbine; a portion of the sample 
stream is conveyed to instrumental analyzers for determination of 
NOX and diluent content. During each NOX and 
diluent determination, a separate measurement of SO2 
emissions is made, using Method 6, or its equivalent. The diluent 
determination is used to adjust the NOX and SO2 
concentrations to a reference condition.

2. Definitions

    2.1 Measurement System. The total equipment required for the 
determination of a gas concentration or a gas emission rate. The system 
consists of the following major subsystems:
    2.1.1 Sample Interface. That portion of a system that is used for 
one or more of the following: sample acquisition, sample transportation, 
sample conditioning, or protection of the analyzers from the effects of 
the stack effluent.
    2.1.2 NOX Analyzer. That portion of the system that 
senses NOX and generates an output proportional to the gas 
concentration.
    2.1.3 O2 Analyzer. That portion of the system that senses 
O2 and generates an output proportional to the gas 
concentration.
    2.1.4 CO2 Analyzer. That portion of the system that 
senses CO2 and generates an output proportional to the gas 
concentration.
    2.1.5 Data Recorder. That portion of the measurement system that 
provides a permanent record of the analyzer(s) output. The data recorder 
may include automatic data reduction capabilities.
    2.2 Span Value. The upper limit of a gas concentration measurement 
range that is specified for affected source categories in the applicable 
part of the regulations.
    2.3 Calibration Gas. A known concentration of a gas in an 
appropriate diluent gas.
    2.4 Calibration Error. The difference between the gas concentration 
indicated by the measurement system and the known concentration of the 
calibration gas.

[[Page 465]]

    2.5 Zero Drift. The difference in the measurement system output 
readings from zero after a stated period of operation during which no 
unscheduled maintenance, repair, or adjustment took place and the input 
concentration at the time of the measurements was zero.
    2.6 Calibration Drift. The difference in the measurement system 
output readings from the known concentration of the calibration gas 
after a stated period of operation during which no unscheduled 
maintenance, repair, or adjustment took place and the input at the time 
of the measurements was a high-level value.
    2.7 Response Time. The amount of time required for the measurement 
system to display on the data output 95 percent of a step change in 
pollutant concentration.
    2.8 Interference Response. The output response of the measurement 
system to a component in the sample gas, other than the gas component 
being measured.

3. Measurement System Performance Specifications

    3.1 NO2 to NO Converter. Greater than 90 percent 
conversion efficiency of NO2 to NO.
    3.2 Interference Response. Less than 2 percent 
of the span value.
    3.3 Response Time. No greater than 30 seconds.
    3.4 Zero Drift. Less than 2 percent of the 
span value over the period of each test run.
    3.5 Calibration Drift. Less than 2 percent of 
the span value over the period of each test run.

4. Apparatus and Reagents

    4.1 Measurement System. Use any measurement system for 
NOX and diluent that is expected to meet the specifications 
in this method. A schematic of an acceptable measurement system is shown 
in Figure 20-1. The essential components of the measurement system are 
described below:
[GRAPHIC] [TIFF OMITTED] TC01JN92.246


[[Page 466]]


    4.1.1 Sample Probe. Heated stainless steel, or equivalent, open-
ended, straight tube of sufficient length to traverse the sample points.
    4.1.2 Sample Line. Heated (95 [deg]C) stainless steel or 
Teflon tubing to transport the sample gas to the sample conditioners and 
analyzers.
    4.1.3 Calibration Valve Assembly. A three-way valve assembly to 
direct the zero and calibration gases to the sample conditioners and to 
the analyzers. The calibration valve assembly shall be capable of 
blocking the sample gas flow and of introducing calibration gases to the 
measurement system when in the calibration mode.
    4.1.4 NO2 to NO Converter. That portion of the system 
that converts the nitrogen dioxide (NO2) in the sample gas to 
nitrogen oxide (NO). Some analyzers are designed to measure 
NOX as NO2 on a wet basis and can be used without 
an NO2 to NO converter or a moisture removal trap provided 
the sample line to the analyzer is heated (95 [deg]C) to the 
inlet of the analyzer. In addition, an NO2 to NO converter is 
not necessary if the NO2 portion of the exhaust gas is less 
than 5 percent of the total NOX concentration. As a 
guideline, an NO2 to NO converter is not necessary if the gas 
turbine is operated at 90 percent or more of peak load capacity. A 
converter is necessary under lower load conditions.
    4.1.5 Moisture Removal Trap. A refrigerator-type condenser or other 
type device designed to continuously remove condensate from the sample 
gas while maintaining minimal contact between any condensate and the 
sample gas. The moisture removal trap is not necessary for analyzers 
that can measure NOX concentrations on a wet basis; for these 
analyzers, (a) heat the sample line up to the inlet of the analyzers, 
(b) determine the moisture content using methods subject to the approval 
of the Administrator, and (c) correct the NOX and diluent 
concentrations to a dry basis.
    4.1.6 Particulate Filter. An in-stack or an out-of-stack glass fiber 
filter, of the type specified in EPA Method 5; however, an out-of-stack 
filter is recommended when the stack gas temperature exceeds 250 to 300 
[deg]C.
    4.1.7 Sample Pump. A nonreactive leak-free sample pump to pull the 
sample gas through the system at a flow rate sufficient to minimize 
transport delay. The pump shall be made from stainless steel or coated 
with Teflon or equivalent.
    4.1.8 Sample Gas Manifold. A sample gas manifold to divert portions 
of the sample gas stream to the analyzers. The manifold may be 
constructed of glass, Teflon, stainless steel, or equivalent.
    4.1.9 Diluent Gas Analyzer. An analyzer to determine the percent 
O2 or CO2 concentration of the sample gas.
    4.1.10 Nitrogen Oxides Analyzer. An analyzer to determine the ppm 
NOX concentration in the sample gas stream.
    4.1.11 Data Recorder. A strip-chart recorder, analog computer, or 
digital recorder for recording measurement data.
    4.2 Sulfur Dioxide Analysis. EPA Method 6 apparatus and reagents.
    4.3 NOX Calibration Gases. The calibration gases for the 
NOX analyzer shall be NO in N2. Use four 
calibration gas mixtures as specified below:
    4.3.1 High-level Gas. A gas concentration that is equivalent to 80 
to 90 percent of the span value.
    4.3.2 Mid-level Gas. A gas concentration that is equivalent to 45 to 
55 percent of the span value.
    4.3.3 Low-level Gas. A gas concentration that is equivalent to 20 to 
30 percent of the span value.
    4.3.4 Zero Gas. A gas concentration of less than 0.25 percent of the 
span value. Ambient air may be used for the NOX zero gas.
    4.4 Diluent Calibration Gases.
    4.4.1 For O2 calibration gases, use purified air at 20.9 
percent O2 as the high-level O2 gas. Use a gas 
concentration between 11 and 15 percent O2 in nitrogen for 
the mid-level gas, and use purified nitrogen for the zero gas.
    4.4.2 For CO2 calibration gases, use a gas concentration 
between 8 and 12 percent CO2 in air for the high-level 
calibration gas. Use a gas concentration between 2 and 5 percent 
CO2 in air for the mid-level calibration gas, and use 
purified air (<100 ppm CO2) as the zero level calibration 
gas.

5. Measurement System Performance Test Procedures

    Perform the following procedures prior to measurement of emissions 
(Section 6) and only once for each test program, i.e., the series of all 
test runs for a given gas turbine engine.
    5.1 Calibration Gas Checks. There are two alternatives for checking 
the concentrations of the calibration gases. (a) The first is to use 
calibration gases that are documented traceable to National Bureau of 
Standards Reference Materials. Use Traceability Protocol for 
Establishing True Concentrations of Gases Used for Calibrations and 
Audits of Continuous Source Emission Monitors (Protocol Number 1) that 
is available from the Environmental Monitoring Systems Laboratory, 
Quality Assurance Branch, Mail Drop 77, Environmental Protection Agency, 
Research Triangle Park, NC 27711. Obtain a certification from the gas 
manufacturer that the protocol was followed. These calibration gases are 
not to be analyzed with the Reference Methods. (b) The second 
alternative is to use calibration gases not prepared according to the 
protocol. If this alternative is chosen, within 1 month prior to the 
emission test, analyze

[[Page 467]]

each of the calibration gas mixtures in triplicate using Method 7 or the 
procedure outlined in Citation 1 for NOX and use Method 3 for 
O2 or CO2. Record the results on a data sheet 
(example is shown in Figure 20-2). For the low-level, mid-level, or 
high-level gas mixtures, each of the individual NOX 
analytical results must be within 10 percent (or 10 ppm, whichever is 
greater) of the triplicate set average (O2 or CO2 
test results must be within 0.5 percent O2 or 
CO2); otherwise, discard the entire set and repeat the 
triplicate analyses. If the average of the triplicate reference method 
test results is within 5 percent for NOX gas or 0.5 percent 
O2 or CO2 for the O2 or CO2 
gas of the calibration gas manufacturer's tag value, use the tag value; 
otherwise, conduct at least three additional reference method test 
analyses until the results of six individual NOX runs (the 
three original plus three additional) agree within 10 percent (or 10 
ppm, whichever is greater) of the average (O2 or 
CO2 test results must be within 0.5 percent O2 or 
CO2). Then use this average for the cylinder value.
    5.2 Measurement System Preparation. Prior to the emission test, 
assemble the measurement system following the manufacturer's written 
instructions in preparing and operating the NO2 to NO 
converter, the NOX analyzer, the diluent analyzer, and other 
components.

               Figure 20-2--Analysis of Calibration Gases

Date ---------- (Must be within 1 month prior to the test period)
Reference method used___________________________________________________

----------------------------------------------------------------------------------------------------------------
                                                                 Gas concentration, ppm
              Sample run              --------------------------------------------------------------------------
                                            Low level \a\            Mid level \b\            High level \c\
----------------------------------------------------------------------------------------------------------------
1
--------------------------------------
2
--------------------------------------
3
--------------------------------------
Average
--------------------------------------
Maximum % deviation \d\..............
----------------------------------------------------------------------------------------------------------------
\a\ Average must be 20 to 30% of span value.
\b\ Average must be 45 to 55% of span value.
\c\ Average must be 80 to 90% of span value.
\d\ Must be <=10% of applicable average or 10 ppm, whichever is greater.

    5.3 Calibration Check. Conduct the calibration checks for both the 
NOX and the diluent analyzers as follows:
    5.3.1 After the measurement system has been prepared for use 
(Section 5.2), introduce zero gases and the mid-level calibration gases; 
set the analyzer output responses to the appropriate levels. Then 
introduce each of the remainder of the calibration gases described in 
Sections 4.3 or 4.4, one at a time, to the measurement system. Record 
the responses on a form similar to Figure 20-3.
    5.3.2 If the linear curve determined from the zero and mid-level 
calibration gas responses does not predict the actual response of the 
low-level (not applicable for the diluent analyzer) and high-level gases 
within 2 percent of the span value, the calibration shall be considered 
invalid. Take corrective measures on the measurement system before 
proceeding with the test.
    5.4 Interference Response. Introduce the gaseous components listed 
in Table 20-1 into the measurement system separately, or as gas 
mixtures. Determine the total interference output response of the system 
to these components in concentration units; record the values on a form 
similar to Figure 20-4. If the sum of the interference responses of the 
test gases for either the NOX or diluent analyzers is greater 
than 2 percent of the applicable span value, take corrective measure on 
the measurement system.

                 Figure 20-3--Zero and Calibration Data
Turbine type.........................   Identification number.......
Date.................................   Test number.................
Analyzer type........................   Identification number.......



----------------------------------------------------------------------------------------------------------------
                            Cylinder value, ppm    Initial analyzer       Final analyzer     Difference: initial-
                                   or %           response, ppm or %    responses, ppm or %    final, ppm or %
----------------------------------------------------------------------------------------------------------------
Zero gas.................
--------------------------

Low-level gas............
--------------------------

Mid-level gas............
--------------------------

High-level gas...........
----------------------------------------------------------------------------------------------------------------


[[Page 468]]

[GRAPHIC] [TIFF OMITTED] TC16NO91.209



                                 Table 20-1--Interference Test Gas Concentration


----------------------------------------------------------------------------------------------------------------
CO...................................  50050 ppm.                                        eq>1 percent.
SO2..................................  20020 ppm.                                        eq>1 percent.
----------------------------------------------------------------------------------------------------------------

                   Figure 20-4--Interference Response

Date of test ----------
Analyzer type___________________________________________________________
Serial No.______________________________________________________________

----------------------------------------------------------------------------------------------------------------
                                                                    Analyzer output
            Test gas type                 Concentration, ppm            response                % of span
----------------------------------------------------------------------------------------------------------------


--------------------------------------


--------------------------------------


--------------------------------------


--------------------------------------


----------------------------------------------------------------------------------------------------------------

[GRAPHIC] [TIFF OMITTED] TC16NO91.210

    Conduct an interference response test of each analyzer prior to its 
initial use in the field. Thereafter, recheck the measurement system if 
changes are made in the instrumentation that could alter the 
interference response, e.g., changes in the type of gas detector.
    In lieu of conducting the interference response test, instrument 
vendor data, which demonstrate that for the test gases of Table 20-1 the 
interference performance specification is not exceeded, are acceptable.
    5.5 Response Time. To determine response time, first introduce zero 
gas into the system at the calibration valve until all readings are 
stable; then, switch to monitor the stack effluent until a stable 
reading can be obtained. Record the upscale response time. Next, 
introduce high-level calibration gas into the system. Once the system 
has stabilized at the high-level concentration, switch to monitor the 
stack effluent and wait until a stable value is reached. Record the 
downscale response time. Repeat the procedure three times. A stable 
value is equivalent to a change of less than 1 percent of span value for 
30 seconds or less than 5 percent of the measured average concentration 
for 2 minutes. Record the response time data on a form similar to Figure 
20-5, the readings of the upscale or downscale reponse time, and report 
the greater time as the ``response time'' for the analyzer. Conduct a 
response time test prior to the initial field use of the measurement 
system, and repeat if changes are made in the measurement system.

                       Figure 20-5--Response Time

Date of test ----------

Analyzer type___________________________________________________________

S/N_____________________________________________________________________

Span gas concentration: -------- ppm.
Analyzer span setting: -------- ppm.
Upscale:
    1 -------- seconds.
    2 -------- seconds.
    3 -------- seconds.
     Average upscale response ---- seconds.

Downscale:
    1 -------- seconds.
    2 -------- seconds.
    3 -------- seconds.
     Average downscale response ---- seconds.

System response time=
slower average time=
-------- seconds.

    5.6 NO2 to NO Conversion Efficiency.
    5.6.1 Add gas from the mid-level NO in N2 calibration gas 
cylinder to a clean, evacuated, leak-tight Tedlar bag. Dilute this gas 
approximately 1:1 with 20.9 percent O2, purified air. 
Immediately attach the bag outlet to the calibration valve assembly and 
begin operation of the sampling system. Operate the sampling system, 
recording the NOX response, for at least 30 minutes. If the 
NO2 to NO conversion is 100 percent, the instrument response 
will be stable at the highest peak value observed. If the response at 
the end of 30 minutes decreases more than 2.0 percent of the highest 
peak value, the system is not acceptable and corrections must be made 
before repeating the check.
    5.6.2 Alternatively, the NO2 to NO converter check 
described in Title 40, Part 86: Certification and Test Procedures for 
Heavy-duty Engines for 1979 and Later Model Years may be used. Other 
alternative procedures may be used with approval of the Administrator.

6. Emission Measurement Test Procedure

    6.1 Preliminaries.
    6.1.1 Selection of a Sampling Site. Select a sampling site as close 
as practical to the exhaust of the turbine. Turbine geometry, stack 
configuration, internal baffling, and point of introduction of dilution 
air will vary for different turbine designs. Thus, each of these factors 
must be given special consideration in order to obtain a representative 
sample. Whenever possible, the sampling site

[[Page 469]]

shall be located upstream of the point of introduction of dilution air 
into the duct. Sample ports may be located before or after the upturn 
elbow, in order to accommodate the configuration of the turning vanes 
and baffles and to permit a complete, unobstructed traverse of the 
stack. The sample ports shall not be located within 5 feet or 2 
diameters (whichever is less) of the gas discharge to atmosphere. For 
supplementary-fired, combined-cycle plants, the sampling site shall be 
located between the gas turbine and the boiler. The diameter of the 
sample ports shall be sufficient to allow entry of the sample probe.
    6.1.2 A preliminary O2 or CO2 traverse is made 
for the purpose of selecting sampling points of low O2 or 
high CO2 concentrations, as appropriate for the measurement 
system. Conduct this test at the turbine operating condition that is the 
lowest percentage of peak load operation included in the test program. 
Follow the procedure below, or use an alternative procedure subject to 
the approval of the Administrator.
    6.1.2.1 Minimum Number of Points. Select a minimum number of points 
as follows: (1) Eight, for stacks having cross-sectional areas less than 
1.5 m\2\ (16.1 ft\2\); (2) eight plus one additional sample point for 
each 0.2 m\2\ (2.2 ft\2\ of areas, for stacks of 1.5 m\2\ to 10.0 m\2\ 
(16.1-107.6 ft\2\) in cross-sectional area; and (3) 49 sample points (48 
for circular stacks) for stacks greater than 10.0 m \2\ (107.6 ft \2\) 
in cross-sectional area. Note that for circular ducts, the number of 
sample points must be a multiple of 4, and for rectangular ducts, the 
number of points must be one of those listed in Table 20-2; therefore, 
round off the number of points (upward), when appropriate.
    6.1.2.2 Cross-sectional Layout and Location of Traverse Points. 
After the number of traverse points for the preliminary diluent sampling 
has been determined, use Method 1 to located the traverse points.
    6.1.2.3 Preliminary Diluent Measurement. While the gas turbine is 
operating at the lowest percent of peak load, conduct a preliminary 
diluent measurement as follows: Position the probe at the first traverse 
point and begin sampling. The minimum sampling time at each point shall 
be 1 minute plus the average system response time. Determine the average 
steady-state concentration of diluent at each point and record the data 
on Figure 20-6.
    6.1.2.4 Selection of Emission Test Sampling Points. Select the eight 
sampling points at which the lowest O2 concentrations or 
highest CO2 concentrations were obtained. Sample at each of 
these selected points during each run at the different turbine load 
conditions. More than eight points may be used, if desired, providing 
that the points selected as described above are included.

        Table 20-2--Cross-sectional Layout for Rectangular Stacks
------------------------------------------------------------------------
                                                                Matrix
                                                                layout
------------------------------------------------------------------------
No. of traverse points:
  9.........................................................         3x3
  12........................................................         4x3
  16........................................................         4x4
  20........................................................         5x4
  25........................................................         5x5
  30........................................................         6x5
  36........................................................         6x6
  42........................................................         7x6
  49........................................................         7x7
------------------------------------------------------------------------

                Figure 20-6--Preliminary Diluent Traverse

Date ----------

Location:
Plant___________________________________________________________________
City, State_____________________________________________________________

Turbine identification:
Manufacturer____________________________________________________________
Model, serial number____________________________________________________

------------------------------------------------------------------------
               Sample point                  Diluent concentration, ppm
------------------------------------------------------------------------


------------------------------------------------------------------------

    6.2 NOX and Diluent Measurement. This test is to be 
conducted at each of the specified load conditions. Three test runs at 
each load condition constitute a complete test.
    6.2.1 At the beginning of each NOX test run and, as 
applicable, during the run, record turbine data as indicated in Figure 
20-7. Also, record the location and number of the traverse points on a 
diagram.
    6.2.2 Position the probe at the first point determined in the 
preceding section and begin sampling. The minimum sampling time at each 
point shall be at least 1 minute plus the average system response time. 
Determine the average steady-state concentration of diluent and 
NOX at each point and record the data on Figure 20-8.

                Figure 20-7--Stationary Gas Turbine Data

                        turbine operation record

Test operator -------------------- Date_________________________________

Turbine identification:
Type____________________________________________________________________
Serial No.______________________________________________________________

Location:
Plant___________________________________________________________________
City____________________________________________________________________

Ambient temperature_____________________________________________________
Ambient humidity________________________________________________________
Test time start_________________________________________________________
Test time finish________________________________________________________
Fuel flow rate \a\______________________________________________________
Water or steam flow rate \a\____________________________________________
Ambient pressure________________________________________________________

[[Page 470]]

Ultimate fuel analysis:
C_______________________________________________________________________
H_______________________________________________________________________
O_______________________________________________________________________
N_______________________________________________________________________
S_______________________________________________________________________
Ash_____________________________________________________________________
H20__________________________________________________________

Trace metals:
Na______________________________________________________________________
Va______________________________________________________________________
K_______________________________________________________________________
etc \b\_________________________________________________________________

Operating load__________________________________________________________
    \a\Describe measurement method, i.e., continuous flow meter, start 
finish volumes, etc.
    \b\i.e., additional elements added for smoke suppression.

         Figure 20-8--Stationary Gas Turbine Sample Point Record

Turbine identification:
Manufacturer____________________________________________________________
Model, serial No._______________________________________________________

Location:
Plant___________________________________________________________________
City, State_____________________________________________________________

Ambient temperature_____________________________________________________
Ambient pressure________________________________________________________
Date ----------
Test time: start________________________________________________________
Test time: finish_______________________________________________________
Test operator name______________________________________________________

Diluent instrument type_________________________________________________
Serial No_______________________________________________________________

NOX instrument type__________________________________________
Serial No.______________________________________________________________

----------------------------------------------------------------------------------------------------------------
             Sample point                     Time, min              Diluent\a\, %              NOX a, ppm
----------------------------------------------------------------------------------------------------------------


--------------------------------------


--------------------------------------


--------------------------------------


--------------------------------------


----------------------------------------------------------------------------------------------------------------
 \a\Average steady-state value from recorder or instrument readout.

    6.2.3 After sampling the last point, conclude the test run by 
recording the final turbine operating parameters and by determining the 
zero and calibration drift, as follows:
    Immediately following the test run at each load condition, or if 
adjustments are necessary for the measurement system during the tests, 
reintroduce the zero and mid-level calibration gases as described in 
Sections 4.3 and 4.4, one at a time, to the measurement system at the 
calibration valve assembly. (Make no adjustments to the measurement 
system until after the drift checks are made). Record the analyzers' 
responses on a form similar to Figure 20-3. If the drift values exceed 
the specified limits, the test run preceding the check is considered 
invalid and will be repeated following corrections to the measurement 
system. Alternatively, recalibrate the measurement system and 
recalculate the measurement data. Report the test results based on both 
the initial calibration and the recalibration data.
    6.3 SO2 Measurement. This test is conducted only at the 
100 percent peak load condition. Determine SO2 using Method 
6, or equivalent, during the test. Select a minimum of six total points 
from those required for the NOX measurements; use two points 
for each sample run. The sample time at each point shall be at least 10 
minutes. Average the diluent readings taken during the NOX 
test runs at sample points corresponding to the SO2 traverse 
points (see Section 6.2.2) and use this average diluent concentration to 
correct the integrated SO2 concentration obtained by Method 6 
to 15 percent diluent (see Equation 20-1).
    If the applicable regulation allows fuel sampling and analysis for 
fuel sulfur content to demonstrate compliance with sulfur emission unit, 
emission sampling with Method 6 is not required, provided the fuel 
sulfur content meets the limits of the regulation.

7. Emission Calculations
    7.1 Moisture Correction. Measurement data used in most of these 
calculations must be on a dry basis. If measurements must be corrected 
to dry conditions, use the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.211

where:

Cd=Pollutant or diluent concentration
    adjusted to dry conditions, ppm or percent.
Cw=Pollutant or diluent concentration measured under moist 
sample conditions, ppm or percent.
Bws=Moisture content of sample gas as measured with Method 4, 
reference method, or other approved method, percent/100.

    7.2 CO2 Correction Factor. If pollutant concentrations 
are to be corrected to 15 percent O2 and CO2 
concentration is measured in lieu of O2 concentration 
measurement, a CO2 correction factor is needed. Calculate the 
CO2 correction factor as follows:
    7.2.1 Calculate the fuel-specific F0 value for the fuel 
burned during the test using values obtained from Method 19, Section 
5.2, and the following equation.

[[Page 471]]

[GRAPHIC] [TIFF OMITTED] TC16NO91.212

where:

FO=Fuel factor based on the ratio of oxygen volume to the 
ultimate CO2 volume produced by the fuel at zero percent 
excess air, dimensionless.
0.209=Fraction of air that is oxygen, percent/100.
Fd=Ratio of the volume of dry effluent gas to the gross 
calorific value of the fuel from Method 19, dsm\3\/J (dscf/10\6\ Btu).
Fc=Ratio of the volume of carbon dioxide produced to the 
gross calorific value of the fuel from Method 19, dsm\3\/J (dscf\6\ 
Btu).

    7.2.2. Calculate the CO2 correction factor for correcting 
measurement data to 15 percent oxygen, as follows:
[GRAPHIC] [TIFF OMITTED] TC16NO91.213

where:

XCO2=CO2 Correction factor, percent.
5.9=20.9 percent O2-15 percent O2, the defined 
O2 correction value, percent.

    7.3 Correction of Pollutant Concentrations to 15 percent 
O2. Calculate the NOX and SO2 gas 
concentrations adjusted to 15 percent O2 using Equation 20-4 
or 20-5, as appropriate. The correction to 15 percent O2 is 
very sensitive to the accuracy of the O2 or CO2 
concentration measurement. At the level of the analyzer drift specified 
in Section 3, the O2 or CO2 correction can exceed 
5 percent at the concentration levels expected in gas turbine exhaust 
gases. Therefore, O2 or CO2 analyzer stability and 
careful calibration are necessary.
    7.3.1 Correction of Pollutant Concentration Using O2 
Concentration. Calculate the O2 corrected pollutant 
concentration, as follows:
[GRAPHIC] [TIFF OMITTED] TC16NO91.214

where:

Cadj=Pollutant concentration corrected to 15 percent 
O2 ppm.
Cd=Pollutant concentration measured, dry basis, ppm.
%O2=Measured O2 concentration dry basis, percent.

    7.3.2 Correction of Pollutant Concentration Using CO2 
Concentration. Calculate the CO2 corrected pollutant 
concentration, as follows:
[GRAPHIC] [TIFF OMITTED] TC16NO91.215

where:

%CO2=Measured CO2 concentration measured, dry 
basis, percent.

    7.4 Average Adjusted NOX Concentration. Calculate the 
average adjusted NOX concentration by summing the adjusted 
values for each sample point and dividing by the number of points for 
each run.
    7.5 NOX and SO2 Emission Rate Calculations. 
The emission rates for NOX and SO2 in units of 
pollutant mass per quantity of heat input can be calculated using the 
pollutant and diluent concentrations and fuel-specific F-factors based 
on the fuel combustion characteristics. The measured concentrations of 
pollutant in units of parts per million by volume (ppm) must be 
converted to mass per unit volume concentration units for these 
calculations. Use the following table for such conversions:

                  Conversion Factors for Concentration
------------------------------------------------------------------------
              From                        To              Multiply by
------------------------------------------------------------------------
g/sm\3\.........................  ng/sm\3\..........  10\9\
mg/sm\3\........................  ng/sm\3\..........  10\6\
lb/scf..........................  ng/sm\3\..........  1.602x10\1\\3\
ppm (SO2).......................  ng/sm\3\..........  2.660x10\6\
ppm (NOX).......................  ng/sm\3\..........  1.912x10\6\
ppm (SO2).......................  lb/scf............  1.660x10-\7\
ppm (NOX).......................  lb/scf............  1.194x10-\7\
------------------------------------------------------------------------

    7.5.1 Calculation of Emission Rate Using Oxygen Correction. Both the 
O2 concentration and the pollutant concentration must be on a 
dry basis. Calculate the pollutant emission rate, as follows:
[GRAPHIC] [TIFF OMITTED] TC16NO91.216

where:

E=Mass emission rate of pollutant, ng/J (lb/10\6\ Btu).

    7.5.2 Calculation of Emission Rate Using Carbon Dioxide Correction. 
The CO2 concentration and the pollutant concentration may be 
on either a dry basis or a wet basis, but both concentrations must be on 
the same basis for the calculations. Calculate the pollutant emission 
rate using Equation 20-7 or 20-8:
[GRAPHIC] [TIFF OMITTED] TC16NO91.217

[GRAPHIC] [TIFF OMITTED] TC16NO91.218

where:

Cw=Pollutant concentration measured on a moist sample basis, 
ng/sm\3\ (lb/scf).
%CO2w=Measured CO2 concentration measured on a 
moist sample basis, percent.


[[Page 472]]


8. Bibliography

    1. Curtis, F. A Method for Analyzing NOX Cylinder Gases-
Specific Ion Electrode Procedure, Monograph available from Emission 
Measurement Laboratory, ESED, Research Triangle Park, NC 27711, October 
1978.
    2. Sigsby, John E., F. M. Black, T. A. Bellar, and D. L. Klosterman. 
Chem iluminescent Method for Analysis of Nitrogen Compounds in Mobile 
Source Emissions (NO, NO2, and NH3 ). 
``Environmental Science and Technology,'' 7:51-54. January 1973.
    3. Shigehara, R.T., R.M. Neulicht, and W.S. Smith. Validating Orsat 
Analysis Data from Fossil Fuel-Fired Units. Emission Measurement Branch, 
Emission Standards and Engineering Division, Office of Air Quality 
Planning and Standards, U.S. Environmental Protection Agency, Research 
Triangle Park, NC 27711. June 1975.

       Method 21--Determination of Volatile Organic Compound Leaks

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
                  Analyte                              CAS No.
------------------------------------------------------------------------
Volatile Organic Compounds (VOC)..........  No CAS number assigned.
------------------------------------------------------------------------

    1.2 Scope. This method is applicable for the determination of VOC 
leaks from process equipment. These sources include, but are not limited 
to, valves, flanges and other connections, pumps and compressors, 
pressure relief devices, process drains, open-ended valves, pump and 
compressor seal system degassing vents, accumulator vessel vents, 
agitator seals, and access door seals.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A portable instrument is used to detect VOC leaks from 
individual sources. The instrument detector type is not specified, but 
it must meet the specifications and performance criteria contained in 
Section 6.0. A leak definition concentration based on a reference 
compound is specified in each applicable regulation. This method is 
intended to locate and classify leaks only, and is not to be used as a 
direct measure of mass emission rate from individual sources.

                             3.0 Definitions

    3.1 Calibration gas means the VOC compound used to adjust the 
instrument meter reading to a known value. The calibration gas is 
usually the reference compound at a known concentration approximately 
equal to the leak definition concentration.
    3.2 Calibration precision means the degree of agreement between 
measurements of the same known value, expressed as the relative 
percentage of the average difference between the meter readings and the 
known concentration to the known concentration.
    3.3 Leak definition concentration means the local VOC concentration 
at the surface of a leak source that indicates that a VOC emission 
(leak) is present. The leak definition is an instrument meter reading 
based on a reference compound.
    3.4 No detectable emission means a local VOC concentration at the 
surface of a leak source, adjusted for local VOC ambient concentration, 
that is less than 2.5 percent of the specified leak definition 
concentration. that indicates that a VOC emission (leak) is not present.
    3.5 Reference compound means the VOC species selected as the 
instrument calibration basis for specification of the leak definition 
concentration. (For example, if a leak definition concentration is 
10,000 ppm as methane, then any source emission that results in a local 
concentration that yields a meter reading of 10,000 on an instrument 
meter calibrated with methane would be classified as a leak. In this 
example, the leak definition concentration is 10,000 ppm and the 
reference compound is methane.)
    3.6 Response factor means the ratio of the known concentration of a 
VOC compound to the observed meter reading when measured using an 
instrument calibrated with the reference compound specified in the 
applicable regulation.
    3.7 Response time means the time interval from a step change in VOC 
concentration at the input of the sampling system to the time at which 
90 percent of the corresponding final value is reached as displayed on 
the instrument readout meter.

                      4.0 Interferences. [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Hazardous Pollutants. Several of the compounds, leaks of which 
may be determined by this method, may be irritating or corrosive to 
tissues (e.g., heptane) or may be toxic (e.g., benzene, methyl alcohol). 
Nearly all are fire hazards. Compounds in emissions should be determined 
through familiarity with the source. Appropriate precautions can be 
found in reference documents, such as reference No. 4 in Section 16.0.

[[Page 473]]

                       6.0 Equipment and Supplies

    A VOC monitoring instrument meeting the following specifications is 
required:
    6.1 The VOC instrument detector shall respond to the compounds being 
processed. Detector types that may meet this requirement include, but 
are not limited to, catalytic oxidation, flame ionization, infrared 
absorption, and photoionization.
    6.2 The instrument shall be capable of measuring the leak definition 
concentration specified in the regulation.
    6.3 The scale of the instrument meter shall be readable to 2.5 percent of the specified leak definition 
concentration.
    6.4 The instrument shall be equipped with an electrically driven 
pump to ensure that a sample is provided to the detector at a constant 
flow rate. The nominal sample flow rate, as measured at the sample probe 
tip, shall be 0.10 to 3.0 l/min (0.004 to 0.1 ft\3\/min) when the probe 
is fitted with a glass wool plug or filter that may be used to prevent 
plugging of the instrument.
    6.5 The instrument shall be equipped with a probe or probe extension 
or sampling not to exceed 6.4 mm (\1/4\ in) in outside diameter, with a 
single end opening for admission of sample.
    6.6 The instrument shall be intrinsically safe for operation in 
explosive atmospheres as defined by the National Electrical Code by the 
National Fire Prevention Association or other applicable regulatory code 
for operation in any explosive atmospheres that may be encountered in 
its use. The instrument shall, at a minimum, be intrinsically safe for 
Class 1, Division 1 conditions, and/or Class 2, Division 1 conditions, 
as appropriate, as defined by the example code. The instrument shall not 
be operated with any safety device, such as an exhaust flame arrestor, 
removed.

                       7.0 Reagents and Standards

    7.1 Two gas mixtures are required for instrument calibration and 
performance evaluation:
    7.1.1 Zero Gas. Air, less than 10 parts per million by volume (ppmv) 
VOC.
    7.1.2 Calibration Gas. For each organic species that is to be 
measured during individual source surveys, obtain or prepare a known 
standard in air at a concentration approximately equal to the applicable 
leak definition specified in the regulation.
    7.2 Cylinder Gases. If cylinder calibration gas mixtures are used, 
they must be analyzed and certified by the manufacturer to be within 2 
percent accuracy, and a shelf life must be specified. Cylinder standards 
must be either reanalyzed or replaced at the end of the specified shelf 
life.
    7.3 Prepared Gases. Calibration gases may be prepared by the user 
according to any accepted gaseous preparation procedure that will yield 
a mixture accurate to within 2 percent. Prepared standards must be 
replaced each day of use unless it is demonstrated that degradation does 
not occur during storage.
    7.4 Mixtures with non-Reference Compound Gases. Calibrations may be 
performed using a compound other than the reference compound. In this 
case, a conversion factor must be determined for the alternative 
compound such that the resulting meter readings during source surveys 
can be converted to reference compound results.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Instrument Performance Evaluation. Assemble and start up the 
instrument according to the manufacturer's instructions for recommended 
warmup period and preliminary adjustments.
    8.1.1 Response Factor. A response factor must be determined for each 
compound that is to be measured, either by testing or from reference 
sources. The response factor tests are required before placing the 
analyzer into service, but do not have to be repeated at subsequent 
intervals.
    8.1.1.1 Calibrate the instrument with the reference compound as 
specified in the applicable regulation. Introduce the calibration gas 
mixture to the analyzer and record the observed meter reading. Introduce 
zero gas until a stable reading is obtained. Make a total of three 
measurements by alternating between the calibration gas and zero gas. 
Calculate the response factor for each repetition and the average 
response factor.
    8.1.1.2 The instrument response factors for each of the individual 
VOC to be measured shall be less than 10 unless otherwise specified in 
the applicable regulation. When no instrument is available that meets 
this specification when calibrated with the reference VOC specified in 
the applicable regulation, the available instrument may be calibrated 
with one of the VOC to be measured, or any other VOC, so long as the 
instrument then has a response factor of less than 10 for each of the 
individual VOC to be measured.
    8.1.1.3 Alternatively, if response factors have been published for 
the compounds of interest for the instrument or detector type, the 
response factor determination is not required, and existing results may 
be referenced. Examples of published response factors for flame 
ionization and catalytic oxidation detectors are included in References 
1-3 of Section 17.0.
    8.1.2 Calibration Precision. The calibration precision test must be 
completed prior to placing the analyzer into service and at subsequent 
3-month intervals or at the next use, whichever is later.
    8.1.2.1 Make a total of three measurements by alternately using zero 
gas and the specified calibration gas. Record the meter

[[Page 474]]

readings. Calculate the average algebraic difference between the meter 
readings and the known value. Divide this average difference by the 
known calibration value and multiply by 100 to express the resulting 
calibration precision as a percentage.
    8.1.2.2 The calibration precision shall be equal to or less than 10 
percent of the calibration gas value.
    8.1.3 Response Time. The response time test is required before 
placing the instrument into service. If a modification to the sample 
pumping system or flow configuration is made that would change the 
response time, a new test is required before further use.
    8.1.3.1 Introduce zero gas into the instrument sample probe. When 
the meter reading has stabilized, switch quickly to the specified 
calibration gas. After switching, measure the time required to attain 90 
percent of the final stable reading. Perform this test sequence three 
times and record the results. Calculate the average response time.
    8.1.3.2 The instrument response time shall be equal to or less than 
30 seconds. The instrument pump, dilution probe (if any), sample probe, 
and probe filter that will be used during testing shall all be in place 
during the response time determination.
    8.2 Instrument Calibration. Calibrate the VOC monitoring instrument 
according to Section 10.0.
    8.3 Individual Source Surveys.
    8.3.1 Type I--Leak Definition Based on Concentration. Place the 
probe inlet at the surface of the component interface where leakage 
could occur. Move the probe along the interface periphery while 
observing the instrument readout. If an increased meter reading is 
observed, slowly sample the interface where leakage is indicated until 
the maximum meter reading is obtained. Leave the probe inlet at this 
maximum reading location for approximately two times the instrument 
response time. If the maximum observed meter reading is greater than the 
leak definition in the applicable regulation, record and report the 
results as specified in the regulation reporting requirements. Examples 
of the application of this general technique to specific equipment types 
are:
    8.3.1.1 Valves. The most common source of leaks from valves is the 
seal between the stem and housing. Place the probe at the interface 
where the stem exits the packing gland and sample the stem 
circumference. Also, place the probe at the interface of the packing 
gland take-up flange seat and sample the periphery. In addition, survey 
valve housings of multipart assembly at the surface of all interfaces 
where a leak could occur.
    8.3.1.2 Flanges and Other Connections. For welded flanges, place the 
probe at the outer edge of the flange-gasket interface and sample the 
circumference of the flange. Sample other types of nonpermanent joints 
(such as threaded connections) with a similar traverse.
    8.3.1.3 Pumps and Compressors. Conduct a circumferential traverse at 
the outer surface of the pump or compressor shaft and seal interface. If 
the source is a rotating shaft, position the probe inlet within 1 cm of 
the shaft-seal interface for the survey. If the housing configuration 
prevents a complete traverse of the shaft periphery, sample all 
accessible portions. Sample all other joints on the pump or compressor 
housing where leakage could occur.
    8.3.1.4 Pressure Relief Devices. The configuration of most pressure 
relief devices prevents sampling at the sealing seat interface. For 
those devices equipped with an enclosed extension, or horn, place the 
probe inlet at approximately the center of the exhaust area to the 
atmosphere.
    8.3.1.5 Process Drains. For open drains, place the probe inlet at 
approximately the center of the area open to the atmosphere. For covered 
drains, place the probe at the surface of the cover interface and 
conduct a peripheral traverse.
    8.3.1.6 Open-ended Lines or Valves. Place the probe inlet at 
approximately the center of the opening to the atmosphere.
    8.3.1.7 Seal System Degassing Vents and Accumulator Vents. Place the 
probe inlet at approximately the center of the opening to the 
atmosphere.
    8.3.1.8 Access door seals. Place the probe inlet at the surface of 
the door seal interface and conduct a peripheral traverse.
    8.3.2 Type II--``No Detectable Emission''. Determine the local 
ambient VOC concentration around the source by moving the probe randomly 
upwind and downwind at a distance of one to two meters from the source. 
If an interference exists with this determination due to a nearby 
emission or leak, the local ambient concentration may be determined at 
distances closer to the source, but in no case shall the distance be 
less than 25 centimeters. Then move the probe inlet to the surface of 
the source and determine the concentration as outlined in Section 8.3.1. 
The difference between these concentrations determines whether there are 
no detectable emissions. Record and report the results as specified by 
the regulation. For those cases where the regulation requires a specific 
device installation, or that specified vents be ducted or piped to a 
control device, the existence of these conditions shall be visually 
confirmed. When the regulation also requires that no detectable 
emissions exist, visual observations and sampling surveys are required. 
Examples of this technique are:
    8.3.2.1 Pump or Compressor Seals. If applicable, determine the type 
of shaft seal. Perform a survey of the local area ambient VOC 
concentration and determine if detectable emissions exist as described 
in Section 8.3.2.

[[Page 475]]

    8.3.2.2 Seal System Degassing Vents, Accumulator Vessel Vents, 
Pressure Relief Devices. If applicable, observe whether or not the 
applicable ducting or piping exists. Also, determine if any sources 
exist in the ducting or piping where emissions could occur upstream of 
the control device. If the required ducting or piping exists and there 
are no sources where the emissions could be vented to the atmosphere 
upstream of the control device, then it is presumed that no detectable 
emissions are present. If there are sources in the ducting or piping 
where emissions could be vented or sources where leaks could occur, the 
sampling surveys described in Section 8.3.2 shall be used to determine 
if detectable emissions exist.
    8.3.3 Alternative Screening Procedure.
    8.3.3.1 A screening procedure based on the formation of bubbles in a 
soap solution that is sprayed on a potential leak source may be used for 
those sources that do not have continuously moving parts, that do not 
have surface temperatures greater than the boiling point or less than 
the freezing point of the soap solution, that do not have open areas to 
the atmosphere that the soap solution cannot bridge, or that do not 
exhibit evidence of liquid leakage. Sources that have these conditions 
present must be surveyed using the instrument technique of Section 8.3.1 
or 8.3.2.
    8.3.3.2 Spray a soap solution over all potential leak sources. The 
soap solution may be a commercially available leak detection solution or 
may be prepared using concentrated detergent and water. A pressure 
sprayer or squeeze bottle may be used to dispense the solution. Observe 
the potential leak sites to determine if any bubbles are formed. If no 
bubbles are observed, the source is presumed to have no detectable 
emissions or leaks as applicable. If any bubbles are observed, the 
instrument techniques of Section 8.3.1 or 8.3.2 shall be used to 
determine if a leak exists, or if the source has detectable emissions, 
as applicable.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.1.2.........................  Instrument         Ensure precision and
                                 calibration        accuracy,
                                 precision check.   respectively, of
                                                    instrument response
                                                    to standard.
10.0..........................  Instrument
                                 calibration.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 Calibrate the VOC monitoring instrument as follows. After the 
appropriate warmup period and zero internal calibration procedure, 
introduce the calibration gas into the instrument sample probe. Adjust 
the instrument meter readout to correspond to the calibration gas value.

    Note: If the meter readout cannot be adjusted to the proper value, a 
malfunction of the analyzer is indicated and corrective actions are 
necessary before use.

                 11.0 Analytical Procedures. [Reserved]

             12.0 Data Analyses and Calculations. [Reserved]

                   13.0 Method Performance. [Reserved]

                  14.0 Pollution Prevention. [Reserved]

                    15.0 Waste Management. [Reserved]

                             16.0 References

    1. Dubose, D.A., and G.E. Harris. Response Factors of VOC Analyzers 
at a Meter Reading of 10,000 ppmv for Selected Organic Compounds. U.S. 
Environmental Protection Agency, Research Triangle Park, NC. Publication 
No. EPA 600/2-81051. September 1981.
    2. Brown, G.E., et al. Response Factors of VOC Analyzers Calibrated 
with Methane for Selected Organic Compounds. U.S. Environmental 
Protection Agency, Research Triangle Park, NC. Publication No. EPA 600/
2-81-022. May 1981.
    3. DuBose, D.A. et al. Response of Portable VOC Analyzers to 
Chemical Mixtures. U.S. Environmental Protection Agency, Research 
Triangle Park, NC. Publication No. EPA 600/2-81-110. September 1981.
    4. Handbook of Hazardous Materials: Fire, Safety, Health. Alliance 
of American Insurers. Schaumberg, IL. 1983.

   17.0 Tables, Diagrams, Flowcharts, and Validation Data. [Reserved]

  Method 22--Visual Determination of Fugitive Emissions From Material 
                 Sources and Smoke Emissions From Flares

    Note: This method is not inclusive with respect to observer 
certification. Some material is incorporated by reference from Method 9.

                        1.0 Scope and Application

    This method is applicable for the determination of the frequency of 
fugitive emissions from stationary sources, only as specified in an 
applicable subpart of the regulations. This method also is applicable 
for the determination of the frequency of visible smoke emissions from 
flares.

[[Page 476]]

                          2.0 Summary of Method

    2.1 Fugitive emissions produced during material processing, 
handling, and transfer operations or smoke emissions from flares are 
visually determined by an observer without the aid of instruments.
    2.2 This method is used also to determine visible smoke emissions 
from flares used for combustion of waste process materials.
    2.3 This method determines the amount of time that visible emissions 
occur during the observation period (i.e., the accumulated emission 
time). This method does not require that the opacity of emissions be 
determined. Since this procedure requires only the determination of 
whether visible emissions occur and does not require the determination 
of opacity levels, observer certification according to the procedures of 
Method 9 is not required. However, it is necessary that the observer is 
knowledgeable with respect to the general procedures for determining the 
presence of visible emissions. At a minimum, the observer must be 
trained and knowledgeable regarding the effects of background contrast, 
ambient lighting, observer position relative to lighting, wind, and the 
presence of uncombined water (condensing water vapor) on the visibility 
of emissions. This training is to be obtained from written materials 
found in References 1 and 2 or from the lecture portion of the Method 9 
certification course.

                             3.0 Definitions

    3.1 Emission frequency means the percentage of time that emissions 
are visible during the observation period.
    3.2 Emission time means the accumulated amount of time that 
emissions are visible during the observation period.
    3.3 Fugitive emissions means emissions generated by an affected 
facility which is not collected by a capture system and is released to 
the atmosphere. This includes emissions that (1) escape capture by 
process equipment exhaust hoods; (2) are emitted during material 
transfer; (3) are emitted from buildings housing material processing or 
handling equipment; or (4) are emitted directly from process equipment.
    3.4 Observation period means the accumulated time period during 
which observations are conducted, not to be less than the period 
specified in the applicable regulation.
    3.5 Smoke emissions means a pollutant generated by combustion in a 
flare and occurring immediately downstream of the flame. Smoke occurring 
within the flame, but not downstream of the flame, is not considered a 
smoke emission.

                            4.0 Interferences

    4.1 Occasionally, fugitive emissions from sources other than the 
affected facility (e.g., road dust) may prevent a clear view of the 
affected facility. This may particularly be a problem during periods of 
high wind. If the view of the potential emission points is obscured to 
such a degree that the observer questions the validity of continuing 
observations, then the observations shall be terminated, and the 
observer shall clearly note this fact on the data form.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.

                              6.0 Equipment

    6.1 Stopwatches (two). Accumulative type with unit divisions of at 
least 0.5 seconds.
    6.2 Light Meter. Light meter capable of measuring illuminance in the 
50 to 200 lux range, required for indoor observations only.

                  7.0 Reagents and Supplies. [Reserved]

 8.0 Sample Collection, Preservation, Storage, and Transfer. [Reserved]

                     9.0 Quality Control. [Reserved]

            10.0 Calibration and Standardization. [Reserved]

                        11.0 Analytical Procedure

    11.1 Selection of Observation Location. Survey the affected 
facility, or the building or structure housing the process to be 
observed, and determine the locations of potential emissions. If the 
affected facility is located inside a building, determine an observation 
location that is consistent with the requirements of the applicable 
regulation (i.e., outside observation of emissions escaping the 
building/structure or inside observation of emissions directly emitted 
from the affected facility process unit). Then select a position that 
enables a clear view of the potential emission point(s) of the affected 
facility or of the building or structure housing the affected facility, 
as appropriate for the applicable subpart. A position at least 4.6 m (15 
feet), but not more than 400 m (0.25 miles), from the emission source is 
recommended. For outdoor locations, select a position where the sunlight 
is not shining directly in the observer's eyes.
    11.2 Field Records.
    11.2.1 Outdoor Location. Record the following information on the 
field data sheet (Figure 22-1): Company name, industry, process unit, 
observer's name, observer's affiliation, and date. Record also the 
estimated

[[Page 477]]

wind speed, wind direction, and sky condition. Sketch the process unit 
being observed, and note the observer location relative to the source 
and the sun. Indicate the potential and actual emission points on the 
sketch.
    11.2.2 Indoor Location. Record the following information on the 
field data sheet (Figure 22-2): Company name, industry, process unit, 
observer's name, observer's affiliation, and date. Record as appropriate 
the type, location, and intensity of lighting on the data sheet. Sketch 
the process unit being observed, and note the observer location relative 
to the source. Indicate the potential and actual fugitive emission 
points on the sketch.
    11.3 Indoor Lighting Requirements. For indoor locations, use a light 
meter to measure the level of illumination at a location as close to the 
emission source(s) as is feasible. An illumination of greater than 100 
lux (10 foot candles) is considered necessary for proper application of 
this method.
    11.4 Observations.
    11.4.1 Procedure. Record the clock time when observations begin. Use 
one stopwatch to monitor the duration of the observation period. Start 
this stopwatch when the observation period begins. If the observation 
period is divided into two or more segments by process shutdowns or 
observer rest breaks (see Section 11.4.3), stop the stopwatch when a 
break begins and restart the stopwatch without resetting it when the 
break ends. Stop the stopwatch at the end of the observation period. The 
accumulated time indicated by this stopwatch is the duration of 
observation period. When the observation period is completed, record the 
clock time. During the observation period, continuously watch the 
emission source. Upon observing an emission (condensed water vapor is 
not considered an emission), start the second accumulative stopwatch; 
stop the watch when the emission stops. Continue this procedure for the 
entire observation period. The accumulated elapsed time on this 
stopwatch is the total time emissions were visible during the 
observation period (i.e., the emission time.)
    11.4.2 Observation Period. Choose an observation period of 
sufficient length to meet the requirements for determining compliance 
with the emission standard in the applicable subpart of the regulations. 
When the length of the observation period is specifically stated in the 
applicable subpart, it may not be necessary to observe the source for 
this entire period if the emission time required to indicate 
noncompliance (based on the specified observation period) is observed in 
a shorter time period. In other words, if the regulation prohibits 
emissions for more than 6 minutes in any hour, then observations may 
(optional) be stopped after an emission time of 6 minutes is exceeded. 
Similarly, when the regulation is expressed as an emission frequency and 
the regulation prohibits emissions for greater than 10 percent of the 
time in any hour, then observations may (optional) be terminated after 6 
minutes of emission are observed since 6 minutes is 10 percent of an 
hour. In any case, the observation period shall not be less than 6 
minutes in duration. In some cases, the process operation may be 
intermittent or cyclic. In such cases, it may be convenient for the 
observation period to coincide with the length of the process cycle.
    11.4.3 Observer Rest Breaks. Do not observe emissions continuously 
for a period of more than 15 to 20 minutes without taking a rest break. 
For sources requiring observation periods of greater than 20 minutes, 
the observer shall take a break of not less than 5 minutes and not more 
than 10 minutes after every 15 to 20 minutes of observation. If 
continuous observations are desired for extended time periods, two 
observers can alternate between making observations and taking breaks.
    11.5 Recording Observations. Record the accumulated time of the 
observation period on the data sheet as the observation period duration. 
Record the accumulated time emissions were observed on the data sheet as 
the emission time. Record the clock time the observation period began 
and ended, as well as the clock time any observer breaks began and 
ended.

                   12.0 Data Analysis and Calculations

    If the applicable subpart requires that the emission rate be 
expressed as an emission frequency (in percent), determine this value as 
follows: Divide the accumulated emission time (in seconds) by the 
duration of the observation period (in seconds) or by any minimum 
observation period required in the applicable subpart, if the actual 
observation period is less than the required period, and multiply this 
quotient by 100.

                   13.0 Method Performance. [Reserved]

                  14.0 Pollution Prevention. [Reserved]

                    15.0 Waste Management. [Reserved]

                             16.0 References

    1. Missan, R., and A. Stein. Guidelines for Evaluation of Visible 
Emissions Certification, Field Procedures, Legal Aspects, and Background 
Material. EPA Publication No. EPA-340/1-75-007. April 1975.
    2. Wohlschlegel, P., and D.E. Wagoner. Guideline for Development of 
a Quality Assurance Program: Volume IX-- Visual Determination of Opacity 
Emissions from Stationary Sources. EPA Publication No. EPA-650/4-74-
005i. November 1975.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 478]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.354


[[Page 479]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.355

   Method 23--Determination of Polychlorinated Dibenzo-p-Dioxins and 
          Polychlorinated Dibenzofurans From Stationary Sources

                     1. Applicability and Principle

    1.1 Applicability. This method is applicable to the determination of 
polychlorinated dibenzo-p-dioxins (PCDD's) and poly chlor inated 
dibenzofurans (PCDF's) from stationary sources.
    1.2 Principle. A sample is withdrawn from the gas stream 
isokinetically and collected in the sample probe, on a glass fiber 
filter, and on a packed column of adsorbent material. The sample cannot 
be separated into a particle vapor fraction. The PCDD's and

[[Page 480]]

PCDF's are extracted from the sample, separated by high resolution gas 
chromatography, and measured by high resolution mass spectrometry.

                              2. Apparatus

    2.1 Sampling. A schematic of the sampling train used in this method 
is shown in Figure 23-1. Sealing greases may not be used in assembling 
the train. The train is identical to that described in section 2.1 of 
Method 5 of this appendix with the following additions:
[GRAPHIC] [TIFF OMITTED] TC01JN92.249


[[Page 481]]


    2.1.1 Nozzle. The nozzle shall be made of nickel, nickel-plated 
stainless steel, quartz, or borosilicate glass.
    2.1.2 Sample Transfer Lines. The sample transfer lines, if needed, 
shall be heat traced, heavy walled TFE (\1/2\ in. OD with \1/8\ in. 
wall) with connecting fittings that are capable of forming leak-free, 
vacuum-tight connections without using sealing greases. The line shall 
be as short as possible and must be maintained at 120 [deg]C.
    2.1.1 Filter Support. Teflon or Teflon-coated wire.
    2.1.2 Condenser. Glass, coil type with compatible fittings. A 
schematic diagram is shown in Figure 23-2.
    2.1.3 Water Bath. Thermostatically controlled to maintain the gas 
temperature exiting the condenser at <20 [deg]C (68 [deg]F).
    2.1.4 Adsorbent Module. Glass container to hold the solid adsorbent. 
A shematic diagram is shown in Figure 23-2. Other physical 
configurations of the resin trap/condenser assembly are acceptable. The 
connecting fittings shall form leak-free, vacuum tight seals. No sealant 
greases shall be used in the sampling train. A coarse glass frit is 
included to retain the adsorbent.
    2.2 Sample Recovery.
    2.2.1 Fitting Caps. Ground glass, Teflon tape, or aluminum foil 
(Section 2.2.6) to cap off the sample exposed sections of the train.
    2.2.2 Wash Bottles. Teflon, 500-ml.
    2.2.3 Probe-Liner Probe-Nozzle, and Filter-Holder Brushes. Inert 
bristle brushes with precleaned stainless steel or Teflon handles. The 
probe brush shall have extensions of stainless steel or Teflon, at least 
as long as the probe. The brushes shall be properly sized and shaped to 
brush out the nozzle, probe liner, and transfer line, if used.

[[Page 482]]

[GRAPHIC] [TIFF OMITTED] TC01JN92.250

    2.2.4 Filter Storage Container. Sealed filter holder, wide-mouth 
amber glass jar with Teflon-lined cap, or glass petri dish.
    2.2.5 Balance. Triple beam.
    2.2.6 Aluminum Foil. Heavy duty, hexane-rinsed.
    2.2.7 Metal Storage Container. Air tight container to store silica 
gel.

[[Page 483]]

    2.2.8 Graduated Cylinder. Glass, 250-ml with 2-ml graduation.
    2.2.9 Glass Sample Storage Container. Amber glass bottle for sample 
glassware washes, 500- or 1000-ml, with leak free Teflon-lined caps.
    2.3 Analysis.
    2.3.1 Sample Container. 125- and 250-ml flint glass bottles with 
Teflon-lined caps.
    2.3.2 Test Tube. Glass.
    2.3.3 Soxhlet Extraction Apparatus. Capable of holding 43x123 mm 
extraction thimbles.
    2.3.4 Extraction Thimble. Glass, pre cleaned cellulosic, or glass 
fiber.
    2.3.5 Pasteur Pipettes. For preparing liquid chromatographic 
columns.
    2.3.6 Reacti-vials. Amber glass, 2-ml, silanized prior to use.
    2.3.7 Rotary Evaporator. Buchi/Brinkman RF-121 or equivalent.
    2.3.8 Nitrogen Evaporative Concentrator. N-Evap Analytical 
Evaporator Model III or equivalent.
    2.3.9 Separatory Funnels. Glass, 2-liter.
    2.3.10 Gas Chromatograph. Consisting of the following components:
    2.3.10.1 Oven. Capable of maintaining the separation column at the 
proper operating temperature [deg]C and performing 
programmed increases in temperature at rates of at least 40 [deg]C/min.
    2.3.10.2 Temperature Gauge. To monitor column oven, detector, and 
exhaust temperatures 1 [deg]C.
    2.3.10.3 Flow System. Gas metering system to measure sample, fuel, 
combustion gas, and carrier gas flows.
    2.3.10.4 Capillary Columns. A fused silica column, 60 x 0.25 mm 
inside diameter (ID), coated with DB-5 and a fused silica column, 30 m x 
0.25 mm ID coated with DB-225. Other column systems may be used provided 
that the user is able to demonstrate using calibration and performance 
checks that the column system is able to meet the specifications of 
section 6.1.2.2.
    2.3.11 Mass Spectrometer. Capable of routine operation at a 
resolution of 1:10000 with a stability of 5 ppm.
    2.3.12 Data System. Compatible with the mass spectrometer and 
capable of monitoring at least five groups of 25 ions.
    2.3.13 Analytical Balance. To measure within 0.1 mg.

                               3. Reagents

    3.1 Sampling.
    3.1.1 Filters. Glass fiber filters, without organic binder, 
exhibiting at least 99.95 percent efficiency (<0.05 percent penetration) 
on 0.3-micron dioctyl phthalate smoke particles. The filter efficiency 
test shall be conducted in accordance with ASTM Standard Method D 2986-
71 (Reapproved 1978) (incorporated by reference--see Sec. 60.17).
    3.1.1.1 Precleaning. All filters shall be cleaned before their 
initial use. Place a glass extraction thimble and 1 g of silica gel and 
a plug of glass wool into a Soxhlet apparatus, charge the apparatus with 
toluene, and reflux for a minimum of 3 hours. Remove the toluene and 
discard it, but retain the silica gel. Place no more than 50 filters in 
the thimble onto the silica gel bed and top with the cleaned glass wool. 
Charge the Soxhlet with toluene and reflux for 16 hours. After 
extraction, allow the Soxhlet to cool, remove the filters, and dry them 
under a clean N2 stream. Store the filters in a glass petri 
dish sealed with Teflon tape.
    3.1.2 Adsorbent Resin. Amberlite XAD-2 resin. Thoroughly cleaned 
before initial use.
    3.1.2.1 Cleaning Procedure. This procedure may be carried out in a 
giant Soxhlet extractor. An all-glass filter thimble containing an 
extra-course frit is used for extraction of XAD-2. The frit is recessed 
10-15 mm above a crenelated ring at the bottom of the thimble to 
facilitate drainage. The resin must be carefully retained in the 
extractor cup with a glass wool plug and a stainless steel ring because 
it floats on methylene chloride. This process involves sequential 
extraction in the following order.

------------------------------------------------------------------------
                  Solvent                             Procedure
------------------------------------------------------------------------
Water.....................................  Initial rinse: Place resin
                                             in a beaker, rinse once
                                             with water, and discard.
                                             Fill with water a second
                                             time, let stand overnight,
                                             and discard.
Water.....................................  Extract with water for 8
                                             hours.
Methanol..................................  Extract for 22 hours.
Methylene Chloride........................  Extract for 22 hours.
Toluene...................................  Extract for 22 hours.
------------------------------------------------------------------------

    3.1.2.2 Drying.
    3.1.2.2.1 Drying Column. Pyrex pipe, 10.2 cm ID by 0.6 m long, with 
suitable retainers.
    3.1.2.2.2 Procedure. The adsorbent must be dried with clean inert 
gas. Liquid nitrogen from a standard commercial liquid nitrogen cylinder 
has proven to be a reliable source of large volumes of gas free from 
organic contaminants. Connect the liquid nitrogen cylinder to the column 
by a length of cleaned copper tubing, 0.95 cm ID, coiled to pass through 
a heat source. A convenient heat source is a water-bath heated from a 
steam line. The final nitrogen temperature should only be warm to the 
touch and not over 40 [deg]C. Continue flowing nitrogen through the 
adsorbent until all the residual solvent is removed. The flow rate 
should be sufficient to gently agitate the particles but not so 
excessive as the cause the particles to fracture.
    3.1.2.3 Quality Control Check. The adsorbent must be checked for 
residual toluene.
    3.1.2.3.1 Extraction. Weigh 1.0 g sample of dried resin into a small 
vial, add 3 ml of toluene, cap the vial, and shake it well.

[[Page 484]]

    3.1.2.3.2 Analysis. Inject a 2 [mu]l sample of the extract into a 
gas chromatograph operated under the following conditions:

    Column: 6 ft x \1/8\ in stainless steel containing 10 percent OV-101 
on 100/120 Supelcoport.
    Carrier Gas: Helium at a rate of 30 ml/min.
    Detector: Flame ionization detector operated at a sensitivity of 4 x 
10-11 A/mV.
    Injection Port Temperature: 250 [deg]C.
    Detector Temperature: 305 [deg]C.
    Oven Temperature: 30 [deg]C for 4 min; programmed to rise at 40 
[deg]C/min until it reaches 250 [deg]C; return to 30 [deg]C after 17 
minutes.

    Compare the results of the analysis to the results from the 
reference solution. Prepare the reference solution by injection 2.5 
[mu]l of methylene chloride into 100 ml of toluene. This corresponds to 
100 [mu]g of methylene chloride per g of adsorbent. The maximum 
acceptable concentration is 1000 [mu]g/g of adsorbent. If the adsorbent 
exceeds this level, drying must be continued until the excess methylene 
chloride is removed.
    3.1.2.4 Storage. The adsorbent must be used within 4 weeks of 
cleaning. After cleaning, it may be stored in a wide mouth amber glass 
container with a Teflon-lined cap or placed in one of the glass 
adsorbent modules tightly sealed with glass stoppers. If precleaned 
adsorbent is purchased in sealed containers, it must be used within 4 
weeks after the seal is broken.
    3.1.3 Glass Wool. Cleaned by sequential immersion in three aliquots 
of methylene chloride, dried in a 110 [deg]C oven, and stored in a 
methylene chloride-washed glass jar with a Teflon-lined screw cap.
    3.1.4 Water. Deionized distilled and stored in a methylene chloride-
rinsed glass container with a Teflon-lined screw cap.
    3.1.5 Silica Gel. Indicating type, 6 to 16 mesh. If previously used, 
dry at 175 [deg]C (350 [deg]F) for two hours. New silica gel may be used 
as received. Alternately other types of desiccants (equivalent or 
better) may be used, subject to the approval of the Administrator.
    3.1.6 Chromic Acid Cleaning Solution. Dissolve 20 g of sodium 
dichromate in 15 ml of water, and then carefully add 400 ml of 
concentrated sulfuric acid.
    3.2 Sample Recovery.
    3.2.2 Acetone. Pesticide quality.
    3.2.2 Methylene Chloride. Pesticide qualtity.
    3.2.3 Toluene. Pesticide quality.
    3.3 Analysis.
    3.3.1 Potassium Hydroxide. ACS grade, 2-percent (weight/volume) in 
water.
    3.3.2 Sodium Sulfate. Granulated, reagent grade. Purify prior to use 
by rinsing with methylene chloride and oven drying. Store the cleaned 
material in a glass container with a Teflon-lined screw cap.
    3.3.3 Sulfuric Acid. Reagent grade.
    3.3.4 Sodium Hydroxide. 1.0 N. Weigh 40 g of sodium hydroxide into a 
1-liter volumetric flask. Dilute to 1 liter with water.
    3.3.5 Hexane. Pesticide grade.
    3.3.6 Methylene Chloride. Pesticide grade.
    3.3.7 Benzene. Pesticide Grade.
    3.3.8 Ethyl Acetate.
    3.3.9 Methanol. Pesticide Grade.
    3.3.10 Toluene. Pesticide Grade.
    3.3.11 Nonane. Pesticide Grade.
    3.3.12 Cyclohexane. Pesticide Grade.
    3.3.13 Basic Alumina. Activity grade 1, 100-200 mesh. Prior to use, 
activate the alumina by heating for 16 hours at 130 [deg]C before use. 
Store in a desiccator. Pre-activated alumina may be purchased from a 
supplier and may be used as received.
    3.3.14 Silica Gel. Bio-Sil A, 100-200 mesh. Prior to use, activate 
the silica gel by heating for at least 30 minutes at 180 [deg]C. After 
cooling, rinse the silica gel sequentially with methanol and methylene 
chloride. Heat the rinsed silica gel at 50 [deg]C for 10 minutes, then 
increase the temperature gradually to 180 [deg]C over 25 minutes and 
maintain it at this temperature for 90 minutes. Cool at room temperature 
and store in a glass container with a Teflon-lined screw cap.
    3.3.15 Silica Gel Impregnated with Sulfuric Acid. Combine 100 g of 
silica gel with 44 g of concentrated sulfuric acid in a screw capped 
glass bottle and agitate thoroughly. Disperse the solids with a stirring 
rod until a uniform mixture is obtained. Store the mixture in a glass 
container with a Teflon-lined screw cap.
    3.3.16 Silica Gel Impregnated with Sodium Hydroxide. Combine 39 g of 
1 N sodium hydroxide with 100 g of silica gel in a screw capped glass 
bottle and agitate thoroughly. Disperse solids with a stirring rod until 
a uniform mixture is obtained. Store the mixture in glass container with 
a Teflon-lined screw cap.
    3.3.17 Carbon/Celite. Combine 10.7 g of AX-21 carbon with 124 g of 
Celite 545 in a 250-ml glass bottle with a Teflon-lined screw cap. 
Agitate the mixture thoroughly until a uniform mixture is obtained. 
Store in the glass container.
    3.3.18 Nitrogen. Ultra high purity.
    3.3.19 Hydrogen. Ultra high purity.
    3.3.20 Internal Standard Solution. Prepare a stock standard solution 
containing the isotopically labelled PCDD's and PCDF's at the 
concentrations shown in Table 1 under the heading ``Internal Standards'' 
in 10 ml of nonane.
    3.3.21 Surrogate Standard Solution. Prepare a stock standard 
solution containing the isotopically labelled PCDD's and PCDF's at the 
concentrations shown in Table 1 under the heading ``Surrogate 
Standards'' in 10 ml of nonane.
    3.3.22 Recovery Standard Solution. Prepare a stock standard solution 
containing

[[Page 485]]

the isotopically labelled PCDD's and PCDF's at the concentrations shown 
in Table 1 under the heading ``Recovery Standards'' in 10 ml of nonane.

                              4. Procedure

    4.1 Sampling. The complexity of this method is such that, in order 
to obtain reliable results, testers should be trained and experienced 
with the test procedures.
    4.1.1 Pretest Preparation.
    4.1.1.1 Cleaning Glassware. All glass components of the train 
upstream of and including the adsorbent module, shall be cleaned as 
described in section 3A of the ``Manual of Analytical Methods for the 
Analysis of Pesticides in Human and Environmental Samples.'' Special 
care shall be devoted to the removal of residual silicone grease 
sealants on ground glass connections of used glassware. Any residue 
shall be removed by soaking the glassware for several hours in a chromic 
acid cleaning solution prior to cleaning as described above.
    4.1.1.2 Adsorbent Trap. The traps must be loaded in a clean area to 
avoid contamination. They may not be loaded in the field. Fill a trap 
with 20 to 40 g of XAD-2. Follow the XAD-2 with glass wool and tightly 
cap both ends of the trap. Add 100 [mu]l of the surrogate standard 
solution (section 3.3.21) to each trap.
    4.1.1.3 Sample Train. It is suggested that all components be 
maintained according to the procedure described in APTD-0576.
    4.1.1.4 Silica Gel. Weigh several 200 to 300 g portions of silica 
gel in an air tight container to the nearest 0.5 g. Record the total 
weight of the silica gel plus container, on each container. As an 
alternative, the silica gel may be weighed directly in its impinger or 
sampling holder just prior to sampling.
    4.1.1.5 Filter. Check each filter against light for irregularities 
and flaws or pinhole leaks. Pack the filters flat in a clean glass 
container.
    4.1.2 Preliminary Determinations. Same as section 4.1.2 of Method 5.
    4.1.3 Preparation of Collection Train.
    4.1.3.1 During preparation and assembly of the sampling train, keep 
all train openings where contamination can enter, sealed until just 
prior to assembly or until sampling is about to begin.

    Note: Do not use sealant grease in assembling the train.

    4.1.3.2 Place approximately 100 ml of water in the second and third 
impingers, leave the first and fourth impingers empty, and transfer 
approximately 200 to 300 g of preweighed silica gel from its container 
to the fifth impinger.
    4.1.3.3 Place the silica gel container in a clean place for later 
use in the sample recovery. Alternatively, the weight of the silica gel 
plus impinger may be determined to the nearest 0.5 g and recorded.
    4.1.3.4 Assemble the train as shown in Figure 23-1.
    4.1.3.5 Turn on the adsorbent module and condenser coil 
recirculating pump and begin monitoring the adsorbent module gas entry 
temperature. Ensure proper sorbent temperature gas entry temperature 
before proceeding and before sampling is initiated. It is extremely 
important that the XAD-2 adsorbent resin temperature never exceed 50 
[deg]C because thermal decomposition will occur. During testing, the 
XAD-2 temperature must not exceed 20 [deg]C for efficient capture of the 
PCDD's and PCDF's.
    4.1.4 Leak-Check Procedure. Same as Method 5, section 4.1.4.
    4.1.5 Sample Train Operation. Same as Method 5, section 4.1.5.
    4.2 Sample Recovery. Proper cleanup procedure begins as soon as the 
probe is removed from the stack at the end of the sampling period. Seal 
the nozzle end of the sampling probe with Teflon tape or aluminum foil.
    When the probe can be safely handled, wipe off all external 
particulate matter near the tip of the probe. Remove the probe from the 
train and close off both ends with aluminum foil. Seal off the inlet to 
the train with Teflon tape, a ground glass cap, or aluminum foil.
    Transfer the probe and impinger assembly to the cleanup area. This 
area shall be clean and enclosed so that the chances of losing or 
contaminating the sample are minimized. Smoking, which could contaminate 
the sample, shall not be allowed in the cleanup area.
    Inspect the train prior to and during disassembly and note any 
abnormal conditions, e.g., broken filters, colored impinger liquid, etc. 
Treat the samples as follows:
    4.2.1 Container No. 1. Either seal the filter holder or carefully 
remove the filter from the filter holder and place it in its identified 
container. Use a pair of cleaned tweezers to handle the filter. If it is 
necessary to fold the filter, do so such that the particulate cake is 
inside the fold. Carefully transfer to the container any particulate 
matter and filter fibers which adhere to the filter holder gasket, by 
using a dry inert bristle brush and a sharp-edged blade. Seal the 
container.
    4.2.2 Adsorbent Module. Remove the module from the train, tightly 
cap both ends, label it, cover with aluminum foil, and store it on ice 
for transport to the laboratory.
    4.2.3 Container No. 2. Quantitatively recover material deposited in 
the nozzle, probe transfer lines, the front half of the filter holder, 
and the cyclone, if used, first, by brushing while rinsing three times 
each with acetone and then, by rinsing the probe three times with 
methylene chloride. Collect all the rinses in Container No. 2.

[[Page 486]]

    Rinse the back half of the filter holder three times with acetone. 
Rinse the connecting line between the filter and the condenser three 
times with acetone. Soak the connecting line with three separate 
portions of methylene chloride for 5 minutes each. If using a separate 
condenser and adsorbent trap, rinse the condenser in the same manner as 
the connecting line. Collect all the rinses in Container No. 2 and mark 
the level of the liquid on the container.
    4.2.4 Container No. 3. Repeat the methylene chloride-rinsing 
described in Section 4.2.3 using toluene as the rinse solvent. Collect 
the rinses in Container No. 3 and mark the level of the liquid on the 
container.
    4.2.5 Impinger Water. Measure the liquid in the first three 
impingers to within 1 ml by using a graduated 
cylinder or by weighing it to within 0.5 g by 
using a balance. Record the volume or weight of liquid present. This 
information is required to calculate the moisture content of the 
effluent gas.
    Discard the liquid after measuring and recording the volume or 
weight.
    4.2.7 Silica Gel. Note the color of the indicating silica gel to 
determine if it has been completely spent and make a mention of its 
condition. Transfer the silica gel from the fifth impinger to its 
original container and seal.

                               5. Analysis

    All glassware shall be cleaned as described in section 3A of the 
``Manual of Analytical Methods for the Analysis of Pesticides in Human 
and Environmental Samples.'' All samples must be extracted within 30 
days of collection and analyzed within 45 days of extraction.
    5.1 Sample Extraction.
    5.1.1 Extraction System. Place an extraction thimble (section 
2.3.4), 1 g of silica gel, and a plug of glass wool into the Soxhlet 
apparatus, charge the apparatus with toluene, and reflux for a minimum 
of 3 hours. Remove the toluene and discard it, but retain the silica 
gel. Remove the extraction thimble from the extraction system and place 
it in a glass beaker to catch the solvent rinses.
    5.1.2 Container No. 1 (Filter). Transfer the contents directly to 
the glass thimble of the extraction system and extract them 
simultaneously with the XAD-2 resin.
    5.1.3 Adsorbent Cartridge. Suspend the adsorbent module directly 
over the extraction thimble in the beaker (See section 5.1.1). The glass 
frit of the module should be in the up position. Using a Teflon squeeze 
bottle containing toluene, flush the XAD-2 into the thimble onto the bed 
of cleaned silica gel. Thoroughly rinse the glass module catching the 
rinsings in the beaker containing the thimble. If the resin is wet, 
effective extraction can be accomplished by loosely packing the resin in 
the thimble. Add the XAD-2 glass wool plug into the thimble.
    5.1.4 Container No. 2 (Acetone and Methylene Chloride). Concentrate 
the sample to a volume of about 1-5 ml using the rotary evaporator 
apparatus, at a temperature of less than 37 [deg]C. Rinse the sample 
container three times with small portions of methylene chloride and add 
these to the concentrated solution and concentrate further to near 
dryness. This residue contains particulate matter removed in the rinse 
of the train probe and nozzle. Add the concentrate to the filter and the 
XAD-2 resin in the Soxhlet apparatus described in section 5.1.1.
    5.1.5 Extraction. Add 100 [mu]l of the internal standard solution 
(Section 3.3.20) to the extraction thimble containing the contents of 
the adsorbent cartridge, the contents of Container No. 1, and the 
concentrate from section 5.1.4. Cover the contents of the extraction 
thimble with the cleaned glass wool plug to prevent the XAD-2 resin from 
floating into the solvent reservoir of the extractor. Place the thimble 
in the extractor, and add the toluene contained in the beaker to the 
solvent reservoir. Pour additional toluene to fill the reservoir 
approximately 2/3 full. Add Teflon boiling chips and assemble the 
apparatus. Adjust the heat source to cause the extractor to cycle three 
times per hour. Extract the sample for 16 hours. After extraction, allow 
the Soxhlet to cool. Transfer the toluene extract and three 10-ml rinses 
to the rotary evaporator. Concentrate the extract to approximately 10 
ml. At this point the analyst may choose to split the sample in half. If 
so, split the sample, store one half for future use, and analyze the 
other according to the procedures in sections 5.2 and 5.3. In either 
case, use a nitrogen evaporative concentrator to reduce the volume of 
the sample being analyzed to near dryness. Dissolve the residue in 5 ml 
of hexane.
    5.1.6 Container No. 3 (Toluene Rinse). Add 100 [mu]l of the Internal 
Standard solution (section 3.3.2) to the contents of the container. 
Concentrate the sample to a volume of about 1-5 ml using the rotary 
evaporator apparatus at a temperature of less than 37 [deg]C. Rinse the 
sample container apparatus at a temperature of less than 37 [deg]C. 
Rinse the sample container three times with small portions of toluene 
and add these to the concentrated solution and concentrate further to 
near dryness. Analyze the extract separately according to the procedures 
in sections 5.2 and 5.3, but concentrate the solution in a rotary 
evaporator apparatus rather than a nitrogen evaporative concentrator.
    5.2 Sample Cleanup and Fractionation.
    5.2.1 Silica Gel Column. Pack one end of a glass column, 20 mmx230 
mm, with glass wool. Add in sequence, 1 g silica gel, 2 g of sodium 
hydroxide impregnated silica gel, 1 g silica gel, 4 g of acid-modified 
silica gel, and 1 g of silica gel. Wash the column with 30 ml

[[Page 487]]

of hexane and discard it. Add the sample extract, dissolved in 5 ml of 
hexane to the column with two additional 5-ml rinses. Elute the column 
with an additional 90 ml of hexane and retain the entire eluate. 
Concentrate this solution to a volume of about 1 ml using the nitrogen 
evaporative concentrator (section 2.3.7).
    5.2.2 Basic Alumina Column. Shorten a 25-ml disposable Pasteur 
pipette to about 16 ml. Pack the lower section with glass wool and 12 g 
of basic alumina. Transfer the concentrated extract from the silica gel 
column to the top of the basic alumina column and elute the column 
sequentially with 120 ml of 0.5 percent methylene chloride in hexane 
followed by 120 ml of 35 percent methylene chloride in hexane. Discard 
the first 120 ml of eluate. Collect the second 120 ml of eluate and 
concentrate it to about 0.5 ml using the nitrogen evaporative 
concentrator.
    5.2.3 AX-21 Carbon/Celite 545 Column. Remove the botton 0.5 in. from 
the tip of a 9-ml disposable Pasteur pipette. Insert a glass fiber 
filter disk in the top of the pipette 2.5 cm from the constriction. Add 
sufficient carbon/celite mixture to form a 2 cm column. Top with a glass 
wool plug. In some cases AX-21 carbon fines may wash through the glass 
wool plug and enter the sample. This may be prevented by adding a celite 
plug to the exit end of the column. Rinse the column in sequence with 2 
ml of 50 percent benzene in ethyl acetate, 1 ml of 50 percent methylene 
chloride in cyclohexane, and 2 ml of hexane. Discard these rinses. 
Transfer the concentrate in 1 ml of hexane from the basic alumina column 
to the carbon/celite column along with 1 ml of hexane rinse. Elute the 
column sequentially with 2 ml of 50 percent methylene chloride in hexane 
and 2 ml of 50 percent benzene in ethyl acetate and discard these 
eluates. Invert the column and elute in the reverse direction with 13 ml 
of toluene. Collect this eluate. Concentrate the eluate in a rotary 
evaporator at 50 [deg]C to about 1 ml. Transfer the concentrate to a 
Reacti-vial using a toluene rinse and concentrate to a volume of 200 
[mu]l using a stream of N2. Store extracts at room 
temperature, shielded from light, until the analysis is performed.
    5.3 Analysis. Analyze the sample with a gas chromatograph coupled to 
a mass spectrometer (GC/MS) using the instrumental parameters in 
sections 5.3.1 and 5.3.2. Immediately prior to analysis, add a 20 [mu]l 
aliquot of the Recovery Standard solution from Table 1 to each sample. A 
2 [mu]l aliquot of the extract is injected into the GC. Sample extracts 
are first analyzed using the DB-5 capillary column to determine the 
concentration of each isomer of PCDD's and PCDF's (tetra-through octa-). 
If tetra-chlorinated dibenzofurans are detected in this analysis, then 
analyze another aliquot of the sample in a separate run, using the DB-
225 column to measure the 2,3,7,8 tetra-chloro dibenzofuran isomer. 
Other column systems may be used, provided that the user is able to 
demonstrate using calibration and performance checks that the column 
system is able to meet the specifications of section 6.1.2.2.
    5.3.1 Gas Chromatograph Operating Conditions.
    5.3.1.1 Injector. Configured for capillary column, splitless, 250 
[deg]C.
    5.3.1.2 Carrier Gas. Helium, 1-2 ml/min.
    5.3.1.3 Oven. Initially at 150 [deg]C. Raise by at least 40 [deg]C/
min to 190 [deg]C and then at 3 [deg]C/min up to 300 [deg]C.
    5.3.2 High Resolution Mass Spectrometer.
    5.3.2.1 Resolution. 10000 m/e.
    5.3.2.2 Ionization Mode. Electron impact.
    5.3.2.3 Source Temperature 250 [deg]C.
    5.3.2.4 Monitoring Mode. Selected ion monitoring. A list of the 
various ions to be monitored is summarized in Table 3.
    5.3.2.5 Identification Criteria. The following identification 
criteria shall be used for the characterization of polychlorinated 
dibenzodioxins and dibenzofurans.
    1. The integrated ion-abundance ratio (M/M+2 or M+2/M+4) shall be 
within 15 percent of the theoretical value. The acceptable ion-abundance 
ratio ranges for the identification of chlorine-containing compounds are 
given in Table 4.
    2. The retention time for the analytes must be within 3 seconds of 
the corresponding \1\\3\ C-labeled internal standard, surrogate or 
alternate standard.
    3. The monitored ions, shown in Table 3 for a given analyte, shall 
reach their maximum within 2 seconds of each other.
    4. The identification of specific isomers that do not have 
corresponding \1\\3\ C-labeled standards is done by comparison of the 
relative retention time (RRT) of the analyte to the nearest internal 
standard retention time with reference (i.e., within 0.005 RRT units) to 
the comparable RRT's found in the continuing calibration.
    5. The signal to noise ratio for all monitored ions must be greater 
than 2.5.
    6. The confirmation of 2, 3, 7, 8-TCDD and 2, 3, 7, 8-TCDF shall 
satisfy all of the above identification criteria.
    7. For the identification of PCDF's, no signal may be found in the 
corresponding PCDPE channels.
    5.3.2.6 Quantification. The peak areas for the two ions monitored 
for each analyte are summed to yield the total response for each 
analyte. Each internal standard is used to quantify the indigenous 
PCDD's or PCDF's in its homologous series. For example, the \1\\3\ C 
12-2,3,7,8-tetra chlorinated dibenzodioxin is used to 
calculate the concentrations of all other tetra chlorinated isomers. 
Recoveries of the tetra- and penta- internal standards are calculated 
using the \1\\3\ C 12-1,2,3,4-TCDD. Recoveries of the hexa- 
through octa- internal standards are calculated using \1\\3\ C 
12-

[[Page 488]]

1,2,3,7,8,9-HxCDD. Recoveries of the surrogate standards are calculated 
using the corresponding homolog from the internal standard.

                             6. Calibration

    Same as Method 5 with the following additions.
    6.1 GC/MS System.
    6.1.1 Initial Calibration. Calibrate the GC/MS system using the set 
of five standards shown in Table 2. The relative standard deviation for 
the mean response factor from each of the unlabeled analytes (Table 2) 
and of the internal, surrogate, and alternate standards shall be less 
than or equal to the values in Table 5. The signal to noise ratio for 
the GC signal present in every selected ion current profile shall be 
greater than or equal to 2.5. The ion abundance ratios shall be within 
the control limits in Table 4.
    6.1.2 Daily Performance Check.
    6.1.2.1 Calibration Check. Inject on [mu]l of solution Number 3 from 
Table 2. Calculate the relative response factor (RRF) for each compound 
and compare each RRF to the corresponding mean RRF obtained during the 
initial calibration. The analyzer performance is acceptable if the 
measured RRF's for the labeled and unlabeled compounds for the daily run 
are within the limits of the mean values shown in Table 5. In addition, 
the ion-abundance ratios shall be within the allowable control limits 
shown in Table 4.
    6.1.2.2 Column Separation Check. Inject a solution of a mixture of 
PCDD's and PCDF's that documents resolution between 2,3,7,8-TCDD and 
other TCDD isomers. Resolution is defined as a valley between peaks that 
is less than 25 percent of the lower of the two peaks. Identify and 
record the retention time windows for each homologous series.
    Perform a similar resolution check on the confirmation column to 
document the resolution between 2,3,7,8 TCDF and other TCDF isomers.
    6.2 Lock Channels. Set mass spectrometer lock channels as specified 
in Table 3. Monitor the quality control check channels specified in 
Table 3 to verify instrument stability during the analysis.

                           7. Quality Control

    7.1 Sampling Train Collection Efficiency Check. Add 100 [mu]l of the 
surrogate standards in Table 1 to the absorbent cartridge of each train 
before collecting the field samples.
    7.2 Internal Standard Percent Recoveries. A group of nine carbon 
labeled PCDD's and PCDF's representing, the tetra-through 
octachlorinated homologues, is added to every sample prior to 
extraction. The role of the internal standards is to quantify the native 
PCDD's and PCDF's present in the sample as well as to determine the 
overall method efficiency. Recoveries of the internal standards must be 
between 40 to 130 percent for the tetra-through hexachlorinated 
compounds while the range is 25 to 130 percent for the higher hepta- and 
octachlorinated homologues.
    7.3 Surrogate Recoveries. The five surrogate compounds in Table 2 
are added to the resin in the adsorbent sampling cartridge before the 
sample is collected. The surrogate recoveries are measured relative to 
the internal standards and are a measure of collection efficiency. They 
are not used to measure native PCDD's and PCDF's. All recoveries shall 
be between 70 and 130 percent. Poor recoveries for all the surrogates 
may be an indication of breakthrough in the sampling train. If the 
recovery of all standards is below 70 percent, the sampling runs must be 
repeated. As an alternative, the sampling runs do not have to be 
repeated if the final results are divided by the fraction of surrogate 
recovery. Poor recoveries of isolated surrogate compounds should not be 
grounds for rejecting an entire set of the samples.
    7.4 Toluene QA Rinse. Report the results of the toluene QA rinse 
separately from the total sample catch. Do not add it to the total 
sample.

                          8. Quality Assurance

    8.1 Applicability. When the method is used to analyze samples to 
demonstrate compliance with a source emission regulation, an audit 
sample must be analyzed, subject to availability.
    8.2 Audit Procedure. Analyze an audit sample with each set of 
compliance samples. The audit sample contains tetra through octa isomers 
of PCDD and PCDF. Concurrently, analyze the audit sample and a set of 
compliance samples in the same manner to evaluate the technique of the 
analyst and the standards preparation. The same analyst, analytical 
reagents, and analytical system shall be used both for the compliance 
samples and the EPA audit sample.
    8.3 Audit Sample Availability. Audit samples will be supplied only 
to enforcement agencies for compliance tests. The availability of audit 
samples may be obtained by writing: Source Test Audit Coordinator (MD-
77B), Quality Assurance Division, Atmospheric Research and Exposure 
Assessment Laboratory, U.S. Environmental Protection Agency, Research 
Triangle Park, NC 27711, or by calling the Source Test Audit Coordinator 
(STAC) at (919) 541-7834. The request for the audit sample must be made 
at least 30 days prior to the scheduled compliance sample analysis.
    8.4 Audit Results. Calculate the audit sample concentration 
according to the calculation procedure described in the audit 
instructions included with the audit sample. Fill in the audit sample 
concentration and the analyst's name on the audit response form included 
with the audit instructions.

[[Page 489]]

Send one copy to the EPA Regional Office or the appropriate enforcement 
agency and a second copy to the STAC. The EPA Regional office or the 
appropriate enforcement agency will report the results of the audit to 
the laboratory being audited. Include this response with the results of 
the compliance samples in relevant reports to the EPA Regional Office or 
the appropriate enforcement agency.

                             9. Calculations

    Same as Method 5, section 6 with the following additions.
    9.1 Nomenclature.

Aai=Integrated ion current of the noise at the retention time 
of the analyte.
A*ci=Integrated ion current of the two ions characteristic of 
the internal standard i in the calibration standard.
Acij=Integrated ion current of the two ions characteristic of 
compound i in the jth calibration standard.
A*cij=Integrated ion current of the two ions characteristic 
of the internal standard i in the jth calibration standard.
Acsi=Integrated ion current of the two ions characteristic of 
surrogate compound i in the calibration standard.
Ai=Integrated ion current of the two ions characteristic of 
compound i in the sample.
A*i=Integrated ion current of the two ions characteristic of 
internal standard i in the sample.
Ars=Integrated ion current of the two ions characteristic of 
the recovery standard.
Asi=Integrated ion current of the two ions characteristic of 
surrogate compound i in the sample.
Ci=Concentration of PCDD or PCDF i in the sample, pg/M \3\.
CT=Total concentration of PCDD's or PCDF's in the sample, pg/
M \3\.
mci=Mass of compound i in the calibration standard injected 
into the analyzer, pg.
mrs=Mass of recovery standard in the calibration standard 
injected into the analyzer, pg.
msi=Mass of surrogate compound in the calibration standard, 
pg.
RRFi=Relative response factor.
RRFrs=Recovery standard response factor.
RRFs=Surrogate compound response factor.
    9.2 Average Relative Response Factor.
    [GRAPHIC] [TIFF OMITTED] TC16NO91.219
    
    9.3 Concentration of the PCDD's and PCDF's.
    [GRAPHIC] [TIFF OMITTED] TC16NO91.220
    
    9.4 Recovery Standard Response Factor.
    [GRAPHIC] [TIFF OMITTED] TC16NO91.221
    
    9.5 Recovery of Internal Standards (R*).
    [GRAPHIC] [TIFF OMITTED] TC16NO91.222
    
    9.6 Surrogate Compound Response Factor.
    [GRAPHIC] [TIFF OMITTED] TC16NO91.223
    
    9.7 Recovery of Surrogate Compounds (Rs).
    [GRAPHIC] [TIFF OMITTED] TC16NO91.224
    
    9.8 Minimum Detectable Limit (MDL).
    [GRAPHIC] [TIFF OMITTED] TC16NO91.225
    
    9.9 Total Concentration of PCDD's and PCDF's in the Sample.
    [GRAPHIC] [TIFF OMITTED] TC16NO91.226
    
    Any PCDD's or PCDF's that are reported as nondetected (below the 
MDL) shall be counted as zero for the purpose of calculating the total 
concentration of PCDD's and PCDF's in the sample.

                            10. Bibliography

    1. American Society of Mechanical Engineers. Sampling for the 
Determination of Chlorinated Organic Compounds in Stack Emissions. 
Prepared for U.S. Department of Energy and U.S. Environmental Protection 
Agency. Washington DC. December 1984. 25 p.
    2. American Society of Mechanical Engineers. Analytical Procedures 
to Assay Stack Effluent Samples and Residual Combustion Products for 
Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Di ben 
zofurans (PCDF). Prepared for the U.S. Department of Energy and U.S. 
Environmental Protection Agency. Washington, DC. December 1984. 23 p.
    3. Thompson, J. R. (ed.). Analysis of Pesticide Residues in Human 
and Environmental Samples. U.S. Environmental Protection Agency. 
Research Triangle Park, NC. 1974.
    4. Triangle Laboratories. Case Study: Analysis of Samples for the 
Presence of Tetra Through Octachloro-p-Dibenzodioxins and Dibenzofurans. 
Research Triangle Park, NC. 1988. 26 p.

[[Page 490]]

    5. U.S. Environmental Protection Agency. Method 8290--The Analysis 
of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofurans by 
High-Resolution Gas Chromotography/High-Resolution Mass Spectrometry. 
In: Test Methods for Evaluating Solid Waste. Washington, DC. SW-846.

 Table 1--Composition of the Sample Fortification and Recovery Standards
                                Solutions
------------------------------------------------------------------------
                                                           Concentration
                         Analyte                             (pg/[mu]l)
------------------------------------------------------------------------
Internal Standards:
  13 C12-2,3,7,8-TCDD....................................           100
  13 C12-1,2,3,7,8-PeCDD.................................           100
  13 C12-1,2,3,6,7,8-HxCDD...............................           100
  13 C12-1,2,3,4,6,7,8-HpCDD.............................           100
  13 C12-OCDD............................................           100
  13 C12-2,3,7,8-TCDF....................................           100
  13 C12-1,2,3,7,8-PeCDF.................................           100
  13 C12-1,2,3,6,7,8-HxCDF...............................           100
  13 C12-1,2,3,4,6,7,8-HpCDF.............................           100
Surrogate Standards:
  37 Cl4-2,3,7,8-TCDD....................................           100
  13 C12-1,2,3,4,7,8-HxCDD...............................           100
  13 C12-2,3,4,7,8-PeCDF.................................           100
  13 C12-1,2,3,4,7,8-HxCDF...............................           100
  13 C12-1,2,3,4,7,8,9-HpCDF.............................           100
Recovery Standards:
  13 C12-1,2,3,4-TCDD....................................           500
  13 C12-1,2,3,7,8,9-HxCDD...............................           500
------------------------------------------------------------------------


        Table 2--Composition of the Initial Calibration Solutions
------------------------------------------------------------------------
                                           Concentrations (pg/[mu]L)
                                      ----------------------------------
               Compound                           Solution No.
                                      ----------------------------------
                                         1      2      3      4      5
------------------------------------------------------------------------
Alternate Standard:
  13 C12-1,2,3,7,8,9-HxCDF...........    2.5      5     25    250    500
Recovery Standards:
  13 C12-1,2,3,4-TCDD................    100    100    100    100    100
  13 C12-1,2,3,7,8,9-HxCDD...........    100    100    100    100    100
------------------------------------------------------------------------


 Table 3--Elemental Compositions and Exact Masses of the Ions Monitored by High Resolution Mass Spectrometry for
                                                PCDD's and PCDF's
----------------------------------------------------------------------------------------------------------------
Descriptor
    No.      Accurate mass         Ion type               Elemental composition                  Analyte
----------------------------------------------------------------------------------------------------------------
         2        292.9825  LOCK                   C7F11                                PFK
                  303.9016  M                      C12H435Cl4O                          TCDF
                  305.8987  M+2                    C12H435Cl37O                         TCDF
                  315.9419  M                      13C12H435Cl4O                        TCDF (S)
                  317.9389  M+2                    13C12H435Cl337ClO                    TCDF (S)
                  319.8965  M                      C12H435ClO2                          TCDD
                  321.8936  M+2                    C12H435Cl337ClO2                     TCDD
                  327.8847  M                      C12H437Cl4O2                         TCDD (S)
                  330.9792  QC                     C7F13                                PFK
                  331.9368  M                      13C12H435Cl4O2                       TCDD (S)
                  333.9339  M+2                    13C12H435Cl37ClO2                    TCDD (S)
                  339.8597  M+2                    C12H335Cl437ClO                      PECDF
                  341.8567  M+4                    C12H335Cl337Cl2O                     PeCDF
                  351.9000  M+2                    13C12H335Cl437ClO                    PeCDF (S)
                  353.8970  M+4                    13C12H335Cl3537Cl2O                  PeCDF (S)
                  355.8546  M+2                    C12H335Cl337ClO2                     PeCDD
                  357.8516  M+4                    C12H335Cl337Cl2O2                    PeCDD
                  367.8949  M+2                    13C12H335Cl437ClO2                   PeCDD (S)
                  369.8919  M+4                    13C12H335Cl337 Cl2O2                 PeCDD (S)
                  375.8364  M+2                    C12H435Cl537ClO                      HxCDPE
                  409.7974  M+2                    C12H335Cl637ClO                      HpCPDE
         3        373.8208  M+2                    C12H235Cl537ClO                      HxCDF
                  375.8178  M+4                    C12H235Cl437Cl2O                     HxCDF
                  383.8639  M                      13C12H235Cl6O                        HxCDF (S)
                  385.8610  M+2                    13C12H235Cl537ClO                    HxCDF (S)
                  389.8157  M+2                    C12H235Cl537ClO2                     HxCDD
                  391.8127  M+4                    C12H235Cl437Cl2O2                    HxCDD
                  392.9760  LOCK                   C9F15                                PFK
                  401.8559  M+2                    13C12H235Cl537ClO2                   HxCDD (S)
                  403.8529  M+4                    13C12H235Cl437Cl2O                   HxCDD (S)
                  445.7555  M+4                    C12H235Cl637Cl2O                     OCDPE
                  430.9729  QC                     C9F17                                PFK
         4        407.7818  M+2                    C12H35Cl637ClO                       HpCDF
                  409.7789  M+4                    C12H35Cl537Cl2O                      HpCDF
                  417.8253  M                      13C12H35Cl7O                         HpCDF (S)
                  419.8220  M+2                    13C12H35Cl637ClO                     HpCDF (S)
                  423.7766  M+2                    C12H35Cl637ClO2                      HpCDD
                  425.7737  M+4                    C12H35Cl537Cl2O2                     HpCDD

[[Page 491]]


                  435.8169  M+2                    13C12H35Cl637ClO2                    HpCDD (S)
                  437.8140  M+4                    13C12H35Cl537Cl2O2                   HpCDD (S)
                  479.7165  M+4                    C12H35Cl737Cl2O                      NCPDE
                  430.9729  LOCK                   C9F17                                PFK
                  441.7428  M+2                    C1235Cl737ClO                        OCDF
                  443.7399  M+4                    C1235Cl637Cl2O                       OCDF
                  457.7377  M+2                    C1235Cl737ClO2                       OCDD
                  459.7348  M+4                    C1235Cl637Cl2O2                      OCDD
                  469.7779  M+2                    13C1235Cl737ClO2                     OCDD (S)
                  471.7750  M+4                    13C1235Cl637Cl2O2                    OCDD (S)
                  513.6775  M+4                    C1235Cl837Cl2O2                      DCDPE
                  442.9728  QC                     C10F17                               PFK
----------------------------------------------------------------------------------------------------------------
(a) The following nuclidic masses were used:
H=1.007825
C=12.000000
13C=13.003355
F=18.9984
O=15.994915
35Cl=34.968853
37Cl=36.965903
S=Labeled Standard
QC=Ion selected for monitoring instrument stability during the GC/MS analysis.


Table 4--Acceptable Ranges for Ion-Abundance Ratios of PCDD's and PCDF's
------------------------------------------------------------------------
  No. of                                                 Control limits
 chlorine             Ion type             Theoretical -----------------
  atoms                                       ratio      Lower    Upper
------------------------------------------------------------------------
        4  M/M+2                                0.77       0.65     0.89
        5  M+2/M+4                              1.55       1.32     1.78
        6  M+2/M+4                              1.24       1.05     1.43
      6 a  M/M+2                                0.51       0.43     0.59
      7 b  M/M+2                                0.44       0.37     0.51
        7  M+2/M+4                              1.04       0.88     1.20
        8  M+2/M+4                              0.89       0.76     1.02
------------------------------------------------------------------------
a Used only for \13\C-HxCDF.
b Used only for \13\C-HpCDF.


Table 5--Minimum Requirements for Initial and Daily Calibration Response
                                 Factors
------------------------------------------------------------------------
                                             Relative response factors
                                         -------------------------------
                Compound                      Initial          Daily
                                            calibration    calibration %
                                                RSD         difference
------------------------------------------------------------------------
Unlabeled
 Analytes:
  2,3,7,8-TCDD..........................              25              25
  2,3,7,8-TCDF..........................              25              25
  1,2,3,7,8-PeCDD.......................              25              25
  1,2,3,7,8-PeCDF.......................              25              25
  2,3,4,7,8-PeCDF.......................              25              25
  1,2,4,5,7,8-HxCDD.....................              25              25
  1,2,3,6,7,8-HxCDD.....................              25              25
  1,2,3,7,8,9-HxCDD.....................              25              25
  1,2,3,4,7,8-HxCDF.....................              25              25
  1,2,3,6,7,8-HxCDF.....................              25              25
  1,2,3,7,8,9-HxCDF.....................              25              25
  2,3,4,6,7,8-HxCDF.....................              25              25
  1,2,3,4,6,7,8-HpCDD...................              25              25
  1,2,3,4,6,7,8-HpCDF...................              25              25
  OCDD..................................              25              25
  OCDF..................................              30              30
Internal
 Standards:
  \13\C12-2,3,7,8-TCDD..................              25              25
  \13\C12-1,2,3,7,8-PeCDD...............              30              30
  \13\C12-1,2,3,6,7,8-HxCDD.............              25              25
  \13\C12-1,2,3,4,6,7,8-HpCDD...........              30              30
  \13\C12-OCDD..........................              30              30
  \13\C12-2,3,7,8-TCDF..................              30              30
  \13\C12-1,2,3,7,8-PeCDF...............              30              30
  \13\C12-1,2,3,6,7,8-HxCDF.............              30              30
  \13\C12-1,2,3,4,6,7,8-HpCDF...........              30              30
Surrogate
 Standards:
  \37\Cl4-2,3,7,8-TCDD..................              25              25
  \13\C12-2,3,4,7,8-PeCDF...............              25              25
  \13\C12-1,2,3,4,7,8-HxCDD.............              25              25
  \13\C12-1,2,3,4,7,8-HxCDF.............              25              25
  \13\C12-1,2,3,4,7,8,9-HpCDF...........              25              25
Alternate
 Standard:
  \13\C12-1,2,3,7,8,9-HxCDF.............              25              25
------------------------------------------------------------------------

  Method 24--Determination of Volatile Matter Content, Water Content, 
      Density, Volume Solids, and Weight Solids of Surface Coatings

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
                  Analyte                              CAS No.
------------------------------------------------------------------------
Volatile organic compounds Water..........  No CAS Number assigned 7732-
                                             18-5
------------------------------------------------------------------------


[[Page 492]]

    1.2 Applicability. This method is applicable for the determination 
of volatile matter content, water content, density, volume solids, and 
weight solids of paint, varnish, lacquer, or other related surface 
coatings.
    1.3 Precision and Bias. Intra-and inter-laboratory analytical 
precision statements are presented in Section 13.1. No bias has been 
identified.

                          2.0 Summary of Method

    2.1 Standard methods are used to determine the volatile matter 
content, water content, density, volume solids, and weight solids of 
paint, varnish, lacquer, or other related surface coatings.

                             3.0 Definitions

    3.1 Waterborne coating means any coating which contains more than 5 
percent water by weight in its volatile fraction.
    3.2 Multicomponent coatings are coatings that are packaged in two or 
more parts, which are combined before application. Upon combination a 
coreactant from one part of the coating chemically reacts, at ambient 
conditions, with a coreactant from another part of the coating.
    3.3 Ultraviolet (UV) radiation-cured coatings are coatings which 
contain unreacted monomers that are polymerized by exposure to 
ultraviolet light.

                      4.0 Interferences. [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Hazardous Components. Several of the compounds that may be 
contained in the coatings analyzed by this method may be irritating or 
corrosive to tissues (e.g., heptane) or may be toxic (e.g., benzene, 
methyl alcohol). Nearly all are fire hazards. Appropriate precautions 
can be found in reference documents, such as Reference 3 of Section 
16.0.

                       6.0 Equipment and Supplies

    The equipment and supplies specified in the ASTM methods listed in 
Sections 6.1 through 6.6 (incorporated by reference--see Sec. 60.17 for 
acceptable versions of the methods) are required:
    6.1 ASTM D 1475-60, 80, or 90, Standard Test Method for Density of 
Paint, Varnish, Lacquer, and Related Products.
    6.2 ASTM D 2369-81, 87, 90, 92, 93, or 95, Standard Test Method for 
Volatile Content of Coatings.
    6.3 ASTM D 3792-79 or 91, Standard Test Method for Water Content of 
Water Reducible Paints by Direct Injection into a Gas Chromatograph.
    6.4 ASTM D 4017-81, 90, or 96a, Standard Test Method for Water in 
Paints and Paint Materials by the Karl Fischer Titration Method.
    6.5 ASTM 4457-85 91, Standard Test Method for Determination of 
Dichloromethane and 1,1,1-Trichloroethane in Paints and Coatings by 
Direct Injection into a Gas Chromatograph.
    6.6 ASTM D 5403-93, Standard Test Methods for Volatile Content of 
Radiation Curable Materials.

                       7.0 Reagents and Standards

    7.1 The reagents and standards specified in the ASTM methods listed 
in Sections 6.1 through 6.6 are required.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Follow the sample collection, preservation, storage, and 
transport procedures described in Reference 1 of Section 16.0.

                           9.0 Quality Control

    9.1 Reproducibility

    Note: Not applicable to UV radiation-cured coatings). The variety of 
coatings that may be subject to analysis makes it necessary to verify 
the ability of the analyst and the analytical procedures to obtain 
reproducible results for the coatings tested. Verification is 
accomplished by running duplicate analyses on each sample tested 
(Sections 11.2 through 11.4) and comparing the results with the intra-
laboratory precision statements (Section 13.1) for each parameter.

    9.2 Confidence Limits for Waterborne Coatings. Because of the 
inherent increased imprecision in the determination of the VOC content 
of waterborne coatings as the weight percent of water increases, 
measured parameters for waterborne coatings are replaced with 
appropriate confidence limits (Section 12.6). These confidence limits 
are based on measured parameters and inter-laboratory precision 
statements.

                  10.0 Calibration and Standardization

    10.1 Perform the calibration and standardization procedures 
specified in the ASTM methods listed in Sections 6.1 through 6.6.

                        11.0 Analytical Procedure

    Additional guidance can be found in Reference 2 of Section 16.0.
    11.1 Non Thin-film Ultraviolet Radiation-cured (UV radiation-cured) 
Coatings.

[[Page 493]]

    11.1.1 Volatile Content. Use the procedure in ASTM D 5403 to 
determine the volatile matter content of the coating except the curing 
test described in NOTE 2 of ASTM D 5403 is required.
    11.1.2 Water Content. To determine water content, follow Section 
11.3.2.
    11.1.3 Coating Density. To determine coating density, follow Section 
11.3.3.
    11.1.4 Solids Content. To determine solids content, follow Section 
11.3.4.
    11.1.5 To determine if a coating or ink can be classified as a thin-
film UV cured coating or ink, use the equation in Section 12.2. If C is 
less than 0.2 g and A is greater than or equal to 225 cm\2\ (35 in\2\) 
then the coating or ink is considered a thin-film UV radiation-cured 
coating and ASTM D 5403 is not applicable.

    Note: As noted in Section 1.4 of ASTM D 5403, this method may not be 
applicable to radiation curable materials wherein the volatile material 
is water.

    11.2 Multi-component Coatings.
    11.2.1 Sample Preparation.
    11.2.1.1 Prepare about 100 ml of sample by mixing the components in 
a storage container, such as a glass jar with a screw top or a metal can 
with a cap. The storage container should be just large enough to hold 
the mixture. Combine the components (by weight or volume) in the ratio 
recommended by the manufacturer. Tightly close the container between 
additions and during mixing to prevent loss of volatile materials. 
However, most manufacturers mixing instructions are by volume. Because 
of possible error caused by expansion of the liquid when measuring the 
volume, it is recommended that the components be combined by weight. 
When weight is used to combine the components and the manufacturer's 
recommended ratio is by volume, the density must be determined by 
Section 11.3.3.
    11.2.1.2 Immediately after mixing, take aliquots from this 100 ml 
sample for determination of the total volatile content, water content, 
and density.
    11.2.2 Volatile Content. To determine total volatile content, use 
the apparatus and reagents described in ASTM D2369 Sections 3 and 4 
(incorporated by reference--see Sec. 60.17 for the approved versions of 
the standard), respectively, and use the following procedures:
    11.2.2.1 Weigh and record the weight of an aluminum foil weighing 
dish. Add 3 1 ml of suitable solvent as specified 
in ASTM D2369 to the weighing dish. Using a syringe as specified in ASTM 
D2369, weigh to 1 mg, by difference, a sample of coating into the 
weighing dish. For coatings believed to have a volatile content less 
than 40 weight percent, a suitable size is 0.3 + 0.10 g, but for 
coatings believed to have a volatile content greater than 40 weight 
percent, a suitable size is 0.5 0.1 g.

    Note: If the volatile content determined pursuant to Section 12.4 is 
not in the range corresponding to the sample size chosen repeat the test 
with the appropriate sample size. Add the specimen dropwise, shaking 
(swirling) the dish to disperse the specimen completely in the solvent. 
If the material forms a lump that cannot be dispersed, discard the 
specimen and prepare a new one. Similarly, prepare a duplicate. The 
sample shall stand for a minimum of 1 hour, but no more than 24 hours 
prior to being oven cured at 110 5 [deg]C (230 
9 [deg]F) for 1 hour.

    11.2.2.2 Heat the aluminum foil dishes containing the dispersed 
specimens in the forced draft oven for 60 min at 110 5 [deg]C (230 9 [deg]F). Caution--
provide adequate ventilation, consistent with accepted laboratory 
practice, to prevent solvent vapors from accumulating to a dangerous 
level.
    11.2.2.3 Remove the dishes from the oven, place immediately in a 
desiccator, cool to ambient temperature, and weigh to within 1 mg.
    11.2.2.4 Run analyses in pairs (duplicate sets) for each coating 
mixture until the criterion in Section 11.4 is met. Calculate 
WV following Equation 24-2 and record the arithmetic average.
    11.2.3 Water Content. To determine water content, follow Section 
11.3.2.
    11.2.4 Coating Density. To determine coating density, follow Section 
11.3.3.
    11.2.5 Solids Content. To determine solids content, follow Section 
11.3.4.
    11.2.6 Exempt Solvent Content. To determine the exempt solvent 
content, follow Section 11.3.5.

    Note: For all other coatings (i.e., water-or solvent-borne coatings) 
not covered by multicomponent or UV radiation-cured coatings, analyze as 
shown below:

    11.3 Water-or Solvent-borne coatings.
    11.3.1 Volatile Content. Use the procedure in ASTM D 2369 to 
determine the volatile matter content (may include water) of the 
coating.
    11.3.1.1 Record the following information:

W1=weight of dish and sample before heating, g
W2=weight of dish and sample after heating, g
W3=sample weight, g.

    11.3.1.2 Calculate the weight fraction of the volatile matter 
(Wv) for each analysis as shown in Section 12.3.
    11.3.1.3 Run duplicate analyses until the difference between the two 
values in a set is less than or equal to the intra-laboratory precision 
statement in Section 13.1.
    11.3.1.4 Record the arithmetic average (Wv).

[[Page 494]]

    11.3.2 Water Content. For waterborne coatings only, determine the 
weight fraction of water (Ww) using either ASTM D 3792 or 
ASTM D 4017.
    11.3.2.1 Run duplicate analyses until the difference between the two 
values in a set is less than or equal to the intra-laboratory precision 
statement in Section 13.1.
    11.3.2.2 Record the arithmetic average (ww).
    11.3.3 Coating Density. Determine the density (Dc, kg/l) of the 
surface coating using the procedure in ASTM D 1475.
    11.3.3.1 Run duplicate analyses until each value in a set deviates 
from the mean of the set by no more than the intra-laboratory precision 
statement in Section 13.1.
    11.3.3.2 Record the arithmetic average (Dc).
    11.3.4 Solids Content. Determine the volume fraction (Vs) 
solids of the coating by calculation using the manufacturer's 
formulation.
    11.3.5 Exempt Solvent Content. Determine the weight fraction of 
exempt solvents (WE) by using ASTM Method D4457. Run a 
duplicate set of determinations and record the arithmetic average 
(WE).
    11.4 Sample Analysis Criteria. For Wv and Ww, 
run duplicate analyses until the difference between the two values in a 
set is less than or equal to the intra-laboratory precision statement 
for that parameter. For Dc, run duplicate analyses until each 
value in a set deviates from the mean of the set by no more than the 
intra-laboratory precision statement. If, after several attempts, it is 
concluded that the ASTM procedures cannot be used for the specific 
coating with the established intra-laboratory precision (excluding UV 
radiation-cured coatings), the U.S. Environmental Protection Agency 
(EPA) will assume responsibility for providing the necessary procedures 
for revising the method or precision statements upon written request to: 
Director, Emissions, Monitoring, and Analysis Division, MD-14, Office of 
Air Quality Planning and Standards, U.S. Environmental Protection 
Agency, Research Triangle Park, NC 27711.

                   12.0 Calculations and Data Analysis

    12.1 Nomenclature.

A=Area of substrate, cm2, (in2).
C=Amount of coating or ink added to the substrate, g.
Dc=Density of coating or ink, g/cm\3\ (g/in\3\).
F=Manufacturer's recommended film thickness, cm (in).
Wo=Weight fraction of nonaqueous volatile matter, g/g.
Ws=Weight fraction of solids, g/g.
Wv=Weight fraction of the volatile matter, g/g.
Ww=Weight fraction of the water, g/g.

    12.2 To determine if a coating or ink can be classified as a thin-
film UV cured coating or ink, use the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.356

    12.3 Calculate Wv for each analysis as shown below:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.357
    
    12.4 Nonaqueous Volatile Matter.
    12.4.1 Solvent-borne Coatings.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.358
    
    12.4.2 Waterborne Coatings.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.359
    
    12.4.3 Coatings Containing Exempt Solvents.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.360
    
    12.5 Weight Fraction Solids.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.361
    
    12.6 Confidence Limit Calculations for Waterborne Coatings. To 
calculate the lower confidence limit, subtract the appropriate inter-
laboratory precision value from the measured mean value for that 
parameter. To calculate the upper confidence limit, add the appropriate 
inter-laboratory precision value to the measured mean value for that 
parameter. For Wv and Dc, use the lower confidence 
limits; for Ww, use the upper confidence limit. Because 
Ws is calculated, there is no adjustment for this parameter.

                         13.0 Method Performance

    13.1 Analytical Precision Statements. The intra-and inter-laboratory 
precision statements are given in Table 24-1 in Section 17.0.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management. [Reserved]

                             16.0 References

    Same as specified in Section 6.0, with the addition of the 
following:
    1. Standard Procedure for Collection of Coating and Ink Samples for 
Analysis by Reference Methods 24 and 24A. EPA-340/1-91-010. U.S. 
Environmental Protection Agency, Stationary Source Compliance Division, 
Washington, D.C. September 1991.
    2. Standard Operating Procedure for Analysis of Coating and Ink 
Samples by Reference Methods 24 and 24A.
    EPA-340/1-91-011. U.S. Environmental Protection Agency, Stationary 
Source Compliance Division, Washington, D.C. September 1991.

[[Page 495]]

    3. Handbook of Hazardous Materials: Fire, Safety, Health. Alliance 
of American Insurers. Schaumberg, IL. 1983.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

                                   Table 24-1--Analytical Precision Statements
----------------------------------------------------------------------------------------------------------------
                                                   Intra-laboratory                    Inter-laboratory
----------------------------------------------------------------------------------------------------------------
Volatile matter content, Wv............   0.015 Wv....   0.047 W8v
Water content, Ww......................   0.029 W8w...   0.075 Ww
Density, Dc............................   0.001 kg/l..   0.002 kg/l
----------------------------------------------------------------------------------------------------------------

  Method 24A--Determination of Volatile Matter Content and Density of 
    Publication Rotogravure Inks and Related Publication Rotogravure 
                                Coatings

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
                  Analyte                              CAS No.
------------------------------------------------------------------------
Volatile organic compounds (VOC)..........  No CAS number assigned.
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of the VOC content and density of solvent-borne (solvent-reducible) 
publication rotogravure inks and related publication rotogravure 
coatings.

                          2.0 Summary of Method

    2.1 Separate procedures are used to determine the VOC weight 
fraction and density of the ink or related coating and the density of 
the solvent in the ink or related coating. The VOC weight fraction is 
determined by measuring the weight loss of a known sample quantity which 
has been heated for a specified length of time at a specified 
temperature. The density of both the ink or related coating and solvent 
are measured by a standard procedure. From this information, the VOC 
volume fraction is calculated.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method does not purport to address 
all of the safety problems associated with its use. It is the 
responsibility of the user of this test method to establish appropriate 
safety and health practices and to determine the applicability of 
regulatory limitations prior to performing this test method.
    5.2 Hazardous Components. Some of the compounds that may be 
contained in the inks or related coatings analyzed by this method may be 
irritating or corrosive to tissues or may be toxic. Nearly all are fire 
hazards. Appropriate precautions can be found in reference documents, 
such as Reference 6 of Section 16.0.

                       6.0 Equipment and Supplies

    The following equipment and supplies are required for sample 
analysis:
    6.1 Weighing Dishes. Aluminum foil, 58 mm (2.3 in.) in diameter by 
18 mm (0.7 in.) high, with a flat bottom. There must be at least three 
weighing dishes per sample.
    6.2 Disposable Syringe. 5 ml.
    6.3 Analytical Balance. To measure to within 0.1 mg.
    6.4 Oven. Vacuum oven capable of maintaining a temperature of 120 
2 [deg]C (248 4 [deg]F) and 
an absolute pressure of 510 51 mm Hg (20 2 in. Hg) for 4 hours. Alternatively, a forced draft 
oven capable of maintaining a temperature of 120 2 
[deg]C (248 4 [deg]F) for 24 hours.
    6.5 The equipment and supplies specified in ASTM D 1475-60, 80, or 
90 (incorporated by reference--see Sec. 60.17).

                       7.0 Reagents and Standards

    7.1 The reagents and standards specified in ASTM D 1475-60, 80, or 
90 are required.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Follow the sample collection, preservation, storage, and 
transport procedures described in Reference 4 of Section 16.0.

                     9.0 Quality Control [Reserved]

             10.0 Calibration and Standardization [Reserved]

                        11.0 Analytical Procedure

    Additional guidance can be found in Reference 5 of Section 16.0.
    11.1 VOC Weight Fraction. Shake or mix the ink or related coating 
sample thoroughly to assure that all the solids are completely 
suspended. Label and weigh to the nearest 0.1 mg a weighing dish and 
record this weight (Mx1). Using a 5 ml syringe, without a 
needle, extract an aliquot from the ink or related coating sample. Weigh 
the syringe and aliquot to the nearest 0.1 mg and record this weight 
(Mcy1). Transfer 1 to 3 g of the aliquot to the tared 
weighing dish. Reweigh the syringe and remaining aliquot to the nearest 
0.1 mg and record this weight (Mcy2). Heat the

[[Page 496]]

weighing dish with the transferred aliquot in a vacuum oven at an 
absolute pressure of 510 51 mm Hg (20 2 in. Hg) and a temperature of 120 2 [deg]C (248 4 [deg]F) for 4 
hours. Alternatively, heat the weighing dish with the transferred 
aliquot in a forced draft oven at a temperature of 120 2 [deg]C for 24 hours. After the weighing dish has 
cooled, reweigh it to the nearest 0.1 mg and record the weight 
(Mx2). Repeat this procedure two times for each ink or 
related coating sample, for a total of three samples.
    11.2 Ink or Related Coating Density. Determine the density of the 
ink or related coating (Dc) according to the procedure 
outlined in ASTM D 1475. Make a total of three determinations for each 
ink or related coating sample. Report the ink or related coating density 
as the arithmetic average (Dc) of the three determinations.
    11.3 Solvent Density. Determine the density of the solvent 
(Do) according to the procedure outlined in ASTM D 1475. Make 
a total of three determinations for each ink or related coating sample. 
Report the solvent density as the arithmetic average (Do) of 
the three determinations.

                   12.0 Calculations and Data Analysis

    12.1 VOC Weight Fraction. For each determination, calculate the 
volatile organic content weight fraction (Wo) using the 
following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.362

Make a total of three determinations. Report the VOC weight fraction as 
the arithmetic average (Wo) of the three determinations.
    12.2 VOC Volume Fraction. Calculate the volume fraction volatile 
organic content (Vo) using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.363

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Standard Test Method for Density of Paint, Varnish, Lacquer, and 
Related Products. ASTM Designation D 1475.
    2. Teleconversation. Wright, Chuck, Inmont Corporation with Reich, 
R., A., Radian Corporation. September 25, 1979, Gravure Ink Analysis.
    3. Teleconversation. Oppenheimer, Robert, Gravure Research Institute 
with Burt, Rick, Radian Corporation, November 5, 1979, Gravure Ink 
Analysis.
    4. Standard Procedure for Collection of Coating and Ink Samples for 
Analysis by Reference Methods 24 and 24A. EPA-340/1-91-010. U.S. 
Environmental Protection Agency, Stationary Source Compliance Division, 
Washington, D.C. September 1991.
    5. Standard Operating Procedure for Analysis of Coating and Ink 
Samples by Reference Methods 24 and 24A. EPA-340/1-91-011. U.S. 
Environmental Protection Agency, Stationary Source Compliance Division, 
Washington, D.C. September 1991.
    6. Handbook of Hazardous Materials: Fire, Safety, Health. Alliance 
of American Insurers. Schaumberg, IL. 1983.

   17.0 Tables, Diagrams, Flowcharts, and Validation Data. [Reserved]

 Method 25--Determination of Total Gaseous Nonmethane Organic Emissions 
                                as Carbon

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Total gaseous nonmethane organic               N/A  Dependent upon
 compounds (TGNMO).                                  analytical
                                                     equipment.
------------------------------------------------------------------------


[[Page 497]]

    1.2 Applicability.
    1.2.1 This method is applicable for the determination of volatile 
organic compounds (VOC) (measured as total gaseous nonmethane organics 
(TGNMO) and reported as carbon) in stationary source emissions. This 
method is not applicable for the determination of organic particulate 
matter.
    1.2.2 This method is not the only method that applies to the 
measurement of VOC. Costs, logistics, and other practicalities of source 
testing may make other test methods more desirable for measuring VOC 
contents of certain effluent streams. Proper judgment is required in 
determining the most applicable VOC test method. For example, depending 
upon the molecular composition of the organics in the effluent stream, a 
totally automated semicontinuous nonmethane organics (NMO) analyzer 
interfaced directly to the source may yield accurate results. This 
approach has the advantage of providing emission data semicontinuously 
over an extended time period.
    1.2.3 Direct measurement of an effluent with a flame ionization 
detector (FID) analyzer may be appropriate with prior characterization 
of the gas stream and knowledge that the detector responds predictably 
to the organic compounds in the stream. If present, methane 
(CH4) will, of course, also be measured. The FID can be used 
under any of the following limited conditions: (1) Where only one 
compound is known to exist; (2) when the organic compounds consist of 
only hydrogen and carbon; (3) where the relative percentages of the 
compounds are known or can be determined, and the FID responses to the 
compounds are known; (4) where a consistent mixture of the compounds 
exists before and after emission control and only the relative 
concentrations are to be assessed; or (5) where the FID can be 
calibrated against mass standards of the compounds emitted (solvent 
emissions, for example).
    1.2.4 Another example of the use of a direct FID is as a screening 
method. If there is enough information available to provide a rough 
estimate of the analyzer accuracy, the FID analyzer can be used to 
determine the VOC content of an uncharacterized gas stream. With a 
sufficient buffer to account for possible inaccuracies, the direct FID 
can be a useful tool to obtain the desired results without costly exact 
determination.
    1.2.5 In situations where a qualitative/quantitative analysis of an 
effluent stream is desired or required, a gas chromatographic FID system 
may apply. However, for sources emitting numerous organics, the time and 
expense of this approach will be formidable.

                          2.0 Summary of Method

    2.1 An emission sample is withdrawn from the stack at a constant 
rate through a heated filter and a chilled condensate trap by means of 
an evacuated sample tank. After sampling is completed, the TGNMO are 
determined by independently analyzing the condensate trap and sample 
tank fractions and combining the analytical results. The organic content 
of the condensate trap fraction is determined by oxidizing the NMO to 
carbon dioxide (CO2) and quantitatively collecting in the 
effluent in an evacuated vessel; then a portion of the CO2 is 
reduced to CH4 and measured by an FID. The organic content of 
the sample tank fraction is measured by injecting a portion of the 
sample into a gas chromatographic column to separate the NMO from carbon 
monoxide (CO), CO2, and CH4; the NMO are oxidized 
to CO2, reduced to CH4, and measured by an FID. In 
this manner, the variable response of the FID associated with different 
types of organics is eliminated.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    4.1 Carbon Dioxide and Water Vapor. When carbon dioxide 
(CO2) and water vapor are present together in the stack, they 
can produce a positive bias in the sample. The magnitude of the bias 
depends on the concentrations of CO2 and water vapor. As a 
guideline, multiply the CO2 concentration, expressed as 
volume percent, times the water vapor concentration. If this product 
does not exceed 100, the bias can be considered insignificant. For 
example, the bias is not significant for a source having 10 percent 
CO2 and 10 percent water vapor, but it might be significant 
for a source having 10 percent CO2 and 20 percent water 
vapor.
    4.2. Particulate Matter. Collection of organic particulate matter in 
the condensate trap would produce a positive bias. A filter is included 
in the sampling equipment to minimize this bias.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. The sampling system consists of a heated 
probe, heated filter, condensate trap, flow control system, and sample 
tank (see Figure 25-1). The TGNMO sampling equipment can be constructed 
from commercially available components and components fabricated in a 
machine shop. The following equipment is required:
    6.1.1 Heated Probe. 6.4-mm (\1/4\-in.) OD stainless steel tubing 
with a heating system

[[Page 498]]

capable of maintaining a gas temperature at the exit end of at least 129 
[deg]C (265 [deg]F). The probe shall be equipped with a temperature 
sensor at the exit end to monitor the gas temperature. A suitable probe 
is shown in Figure 25-1. The nozzle is an elbow fitting attached to the 
front end of the probe while the temperature sensor is inserted in the 
side arm of a tee fitting attached to the rear of the probe. The probe 
is wrapped with a suitable length of high temperature heating tape, and 
then covered with two layers of glass cloth insulation and one layer of 
aluminum foil or an equivalent wrapping.

    Note: If it is not possible to use a heating system for safety 
reasons, an unheated system with an in-stack filter is a suitable 
alternative.

    6.1.2 Filter Holder. 25-mm (\15/16\-in.) ID Gelman filter holder 
with 303 stainless steel body and 316 stainless steel support screen 
with the Viton O-ring replaced by a Teflon O-ring.
    6.1.3 Filter Heating System.
    6.1.3.1 A metal box consisting of an inner and an outer shell 
separated by insulating material with a heating element in the inner 
shell capable of maintaining a gas temperature at the filter of 121 
3 [deg]C (250 5 [deg]F). The 
heating box shall include temperature sensors to monitor the gas 
temperature immediately upstream and immediately downstream of the 
filter.
    6.1.3.2 A suitable heating box is shown in Figure 25-2. The outer 
shell is a metal box that measures 102 mmx280 mmx292 mm (4 in.x11 
in.x11\1/2\ in.), while the inner shell is a metal box measuring 76 
mmx229 mmx241 mm (3 in.x9 in.x9\1/2\ in.). The inner box is supported by 
13-mm (\1/2\-in.) phenolic rods. The void space between the boxes is 
filled with ceramic fiber insulation which is sealed in place by means 
of a silicon rubber bead around the upper sides of the box. A removable 
lid made in a similar manner, with a 25-mm (1-in.) gap between the parts 
is used to cover the heating chamber. The inner box is heated with a 
250-watt cartridge heater, shielded by a stainless steel shroud. The 
heater is regulated by a thermostatic temperature controller which is 
set to maintain a gas temperature of 121 [deg]C (250 [deg]F) as measured 
by the temperature sensor upstream of the filter.

    Note: If it is not possible to use a heating system for safety 
reasons, an unheated system with an in-stack filter is a suitable 
alternative.

    6.1.4 Condensate Trap. 9.5-mm (\3/8\-in.) OD 316 stainless steel 
tubing bent into a U-shape. Exact dimensions are shown in Figure 25-3. 
The tubing shall be packed with coarse quartz wool, to a density of 
approximately 0.11 g/cm\3\ before bending. While the condensate trap is 
packed with dry ice in the Dewar, an ice bridge may form between the 
arms of the condensate trap making it difficult to remove the condensate 
trap. This problem can be prevented by attaching a steel plate between 
the arms of the condensate trap in the same plane as the arms to 
completely fill the intervening space.
    6.1.5 Valve. Stainless steel control valve for starting and stopping 
sample flow.
    6.1.6 Metering Valve. Stainless steel valve for regulating the 
sample flow rate through the sample train.
    6.1.7 Rate Meter. Rotameter, or equivalent, capable of measuring 
sample flow in the range of 60 to 100 cm\3\/min (0.13 to 0.21 ft\3\/hr).
    6.1.8 Sample Tank. Stainless steel or aluminum tank with a minimum 
volume of 4 liters (0.14 ft\3\).

    Note: Sample volumes greater than 4 liters may be required for 
sources with low organic concentrations.

    6.1.9 Mercury Manometer. U-tube manometer or absolute pressure gauge 
capable of measuring pressure to within 1 mm Hg in the range of 0 to 900 
mm.
    6.1.10 Vacuum Pump. Capable of evacuating to an absolute pressure of 
10 mm Hg.
    6.2 Condensate Recovery. The system for the recovery of the organics 
captured in the condensate trap consists of a heat source, an oxidation 
catalyst, a nondispersive infrared (NDIR) analyzer, and an intermediate 
collection vessel (ICV). Figure 25-4 is a schematic of a typical system. 
The system shall be capable of proper oxidation and recovery, as 
specified in Section 10.1.1. The following major components are 
required:
    6.2.1 Heat Source. Sufficient to heat the condensate trap (including 
probe) to a temperature of 200 [deg]C (390 [deg]F). A system using both 
a heat gun and an electric tube furnace is recommended.
    6.2.2 Heat Tape. Sufficient to heat the connecting tubing between 
the water trap and the oxidation catalyst to 100 [deg]C (212 [deg]F).
    6.2.3 Oxidation Catalyst. A suitable length of 9.5 mm (\3/8\-in.) OD 
Inconel 600 tubing packed with 15 cm (6 in.) of 3.2 mm (\3/8\-in.) 
diameter 19 percent chromia on alumina pellets. The catalyst material is 
packed in the center of the catalyst tube with quartz wool packed on 
either end to hold it in place.
    6.2.4 Water Trap. Leak-proof, capable of removing moisture from the 
gas stream.
    6.2.5 Syringe Port. A 6.4-mm (\1/4\-in.) OD stainless steel tee 
fitting with a rubber septum placed in the side arm.
    6.2.6 NDIR Detector. Capable of indicating CO2 
concentration in the range of zero to 5 percent, to monitor the progress 
of combustion of the organic compounds from the condensate trap.
    6.2.7 Flow-Control Valve. Stainless steel, to maintain the trap 
conditioning system near atmospheric pressure.

[[Page 499]]

    6.2.8 Intermediate Collection Vessel. Stainless steel or aluminum, 
equipped with a female quick connect. Tanks with nominal volumes of at 
least 6 liters (0.2 ft\3\) are recommended.
    6.2.9 Mercury Manometer. Same as described in Section 6.1.9.
    6.2.10 Syringe. 10-ml gas-tight glass syringe equipped with an 
appropriate needle.
    6.2.11 Syringes. 10-[mu]l and 50-[mu]l liquid injection syringes.
    6.2.12 Liquid Sample Injection Unit. 316 Stainless steel U-tube 
fitted with an injection septum (see Figure 25-7).
    6.3 Analysis.
    6.3.1 NMO Analyzer. The NMO analyzer is a gas chromatograph (GC) 
with backflush capability for NMO analysis and is equipped with an 
oxidation catalyst, reduction catalyst, and FID. Figures 25-5 and 25-6 
are schematics of a typical NMO analyzer. This semicontinuous GC/FID 
analyzer shall be capable of: (1) Separating CO, CO2, and 
CH4 from NMO, (2) reducing the CO2 to 
CH4 and quantifying as CH4, and (3) oxidizing the 
NMO to CO2, reducing the CO2 to CH4 and 
quantifying as CH4, according to Section 10.1.2. The analyzer 
consists of the following major components:
    6.3.1.1 Oxidation Catalyst. A suitable length of 9.5-mm (\3/8\-in.) 
OD Inconel 600 tubing packed with 5.1 cm (2 in.) of 19 percent chromia 
on 3.2-mm (\1/8\-in.) alumina pellets. The catalyst material is packed 
in the center of the tube supported on either side by quartz wool. The 
catalyst tube must be mounted vertically in a 650 [deg]C (1200 [deg]F) 
furnace. Longer catalysts mounted horizontally may be used, provided 
they can meet the specifications of Section 10.1.2.1.
    6.3.1.2 Reduction Catalyst. A 7.6-cm (3-in.) length of 6.4-mm (\1/
4\-in.) OD Inconel tubing fully packed with 100-mesh pure nickel powder. 
The catalyst tube must be mounted vertically in a 400 [deg]C (750 
[deg]F) furnace.
    6.3.1.3 Separation Column(s). A 30-cm (1-ft) length of 3.2-mm (\1/
8\-in.) OD stainless steel tubing packed with 60/80 mesh Unibeads 1S 
followed by a 61-cm (2-ft) length of 3.2-mm (\1/8\-in.) OD stainless 
steel tubing packed with 60/80 mesh Carbosieve G. The Carbosieve and 
Unibeads columns must be baked separately at 200 [deg]C (390 [deg]F) 
with carrier gas flowing through them for 24 hours before initial use.
    6.3.1.4 Sample Injection System. A single 10-port GC sample 
injection valve or a group of valves with sufficient ports fitted with a 
sample loop properly sized to interface with the NMO analyzer (1-cc loop 
recommended).
    6.3.1.5 FID. An FID meeting the following specifications is 
required:
    6.3.1.5.1 Linearity. A linear response (5 
percent) over the operating range as demonstrated by the procedures 
established in Section 10.1.2.3.
    6.3.1.5.2 Range. A full scale range of 10 to 50,000 ppm 
CH4. Signal attenuators shall be available to produce a 
minimum signal response of 10 percent of full scale.
    6.3.1.6 Data Recording System. Analog strip chart recorder or 
digital integration system compatible with the FID for permanently 
recording the analytical results.
    6.3.2 Barometer. Mercury, aneroid, or other barometer capable of 
measuring atmospheric pressure to within 1 mm Hg.
    6.3.3 Temperature Sensor. Capable of measuring the laboratory 
temperature within 1 [deg]C (2 [deg]F).
    6.3.4 Vacuum Pump. Capable of evacuating to an absolute pressure of 
10 mm Hg.

                       7.0 Reagents and Standards

    7.1 Sample Collection. The following reagents are required for 
sample collection:
    7.1.1 Dry Ice. Solid CO2, crushed.
    7.1.2 Coarse Quartz Wool. 8 to 15 um.
    7.1.3 Filters. Glass fiber filters, without organic binder.
    7.2 NMO Analysis. The following gases are required for NMO analysis:
    7.2.1 Carrier Gases. Helium (He) and oxygen (O2) 
containing less than 1 ppm CO2 and less than 0.1 ppm 
hydrocarbon.
    7.2.2 Fuel Gas. Hydrogen (H2), at least 99.999 percent 
pure.
    7.2.3 Combustion Gas. Either air (less than 0.1 ppm total 
hydrocarbon content) or O2 (purity 99.99 percent or greater), 
as required by the detector.
    7.3 Condensate Analysis. The following are required for condensate 
analysis:
    7.3.1 Gases. Containing less than 1 ppm carbon.
    7.3.1.1 Air.
    7.3.1.2 Oxygen.
    7.3.2 Liquids. To conform to the specifications established by the 
Committee on Analytical Reagents of the American Chemical Society.
    7.3.2.1 Hexane.
    7.3.2.2 Decane.
    7.4 Calibration. For all calibration gases, the manufacturer must 
recommend a maximum shelf life for each cylinder (i.e., the length of 
time the gas concentration is not expected to change more than 5 percent from its certified value). The date of gas 
cylinder preparation, certified organic concentration, and recommended 
maximum shelf life must be affixed to each cylinder before shipment from 
the gas manufacturer to the buyer. The following calibration gases are 
required:
    7.4.1 Oxidation Catalyst Efficiency Check Calibration Gas. Gas 
mixture standard with nominal concentration of 1 percent methane in air.
    7.4.2 FID Linearity and NMO Calibration Gases. Three gas mixture 
standards with nominal propane concentrations of 20 ppm, 200 ppm, and 
3000 ppm, in air.

[[Page 500]]

    7.4.3 CO2 Calibration Gases. Three gas mixture standards 
with nominal CO2 concentrations of 50 ppm, 500 ppm, and 1 
percent, in air.

    Note: Total NMO less than 1 ppm required for 1 percent mixture.

    7.4.4 NMO Analyzer System Check Calibration Gases. Four calibration 
gases are needed as follows:
    7.4.4.1 Propane Mixture. Gas mixture standard containing (nominal) 
50 ppm CO, 50 ppm CH4, 1 percent CO2, and 20 ppm 
C3H8, prepared in air.
    7.4.4.2 Hexane. Gas mixture standard containing (nominal) 50 ppm 
hexane in air.
    7.4.4.3 Toluene. Gas mixture standard containing (nominal) 20 ppm 
toluene in air.
    7.4.4.4 Methanol. Gas mixture standard containing (nominal) 100 ppm 
methanol in air.
    7.5 Quality Assurance Audit Samples.
    7.5.1 It is recommended, but not required, that a performance audit 
sample be analyzed in conjunction with the field samples. The audit 
sample should be in a suitable sample matrix at a concentration similar 
to the actual field samples.
    7.5.2 When making compliance determinations, and upon availability, 
audit samples may be obtained from the appropriate EPA Regional Office 
or from the responsible enforcement authority and analyzed in 
conjunction with the field samples.

    Note: The responsible enforcement authority should be notified at 
least 30 days prior to the test date to allow sufficient time for sample 
delivery.

       8.0 Sample Collection, Preservation, Transport, and Storage

    8.1 Sampling Equipment Preparation.
    8.1.1 Condensate Trap Cleaning. Before its initial use and after 
each use, a condensate trap should be thoroughly cleaned and checked to 
ensure that it is not contaminated. Both cleaning and checking can be 
accomplished by installing the trap in the condensate recovery system 
and treating it as if it were a sample. The trap should be heated as 
described in Section 11.1.3. A trap may be considered clean when the 
CO2 concentration in its effluent gas drops below 10 ppm. 
This check is optional for traps that most recently have been used to 
collect samples which were then recovered according to the procedure in 
Section 11.1.3.
    8.1.2 Sample Tank Evacuation and Leak-Check. Evacuate the sample 
tank to 10 mm Hg absolute pressure or less. Then close the sample tank 
valve, and allow the tank to sit for 60 minutes. The tank is acceptable 
if a change in tank vacuum of less than 1 mm Hg is noted. The evacuation 
and leak-check may be conducted either in the laboratory or the field.
    8.1.3 Sampling Train Assembly. Just before assembly, measure the 
tank vacuum using a mercury manometer. Record this vacuum, the ambient 
temperature, and the barometric pressure at this time. Close the sample 
tank valve and assemble the sampling system as shown in Figure 25-1. 
Immerse the condensate trap body in dry ice at least 30 minutes before 
commencing sampling to improve collection efficiency. The point where 
the inlet tube joins the trap body should be 2.5 to 5 cm (1 to 2 in.) 
above the top of the dry ice.
    8.1.4 Pretest Leak-Check. A pretest leak-check is required. 
Calculate or measure the approximate volume of the sampling train from 
the probe tip to the sample tank valve. After assembling the sampling 
train, plug the probe tip, and make certain that the sample tank valve 
is closed. Turn on the vacuum pump, and evacuate the sampling system 
from the probe tip to the sample tank valve to an absolute pressure of 
10 mm Hg or less. Close the purge valve, turn off the pump, wait a 
minimum period of 10 minutes, and recheck the indicated vacuum. 
Calculate the maximum allowable pressure change based on a leak rate of 
1 percent of the sampling rate using Equation 25-1, Section 12.2. If the 
measured pressure change exceeds the allowable, correct the problem and 
repeat the leak-check before beginning sampling.
    8.2 Sample Collection.
    8.2.1 Unplug the probe tip, and place the probe into the stack such 
that the probe is perpendicular to the duct or stack axis; locate the 
probe tip at a single preselected point of average velocity facing away 
from the direction of gas flow. For stacks having a negative static 
pressure, seal the sample port sufficiently to prevent air in-leakage 
around the probe. Set the probe temperature controller to 129 [deg]C 
(265 [deg]F) and the filter temperature controller to 121 [deg]C (250 
[deg]F). Allow the probe and filter to heat for about 30 minutes before 
purging the sample train.
    8.2.2 Close the sample valve, open the purge valve, and start the 
vacuum pump. Set the flow rate between 60 and 100 cm3/min 
(0.13 and 0.21 ft3/hr), and purge the train with stack gas 
for at least 10 minutes.
    8.2.3 When the temperatures at the exit ends of the probe and filter 
are within the corresponding specified ranges, check the dry ice level 
around the condensate trap, and add dry ice if necessary. Record the 
clock time. To begin sampling, close the purge valve and stop the pump. 
Open the sample valve and the sample tank valve. Using the flow control 
valve, set the flow through the sample train to the proper rate. Adjust 
the flow rate as necessary to maintain a constant rate (10 percent) throughout the duration of the sampling 
period. Record the sample tank vacuum and flowmeter setting at 5-minute 
intervals. (See Figure 25-8.) Select a total sample time greater than or 
equal to

[[Page 501]]

the minimum sampling time specified in the applicable subpart of the 
regulations; end the sampling when this time period is reached or when a 
constant flow rate can no longer be maintained because of reduced sample 
tank vacuum.

    Note: If sampling had to be stopped before obtaining the minimum 
sampling time (specified in the applicable subpart) because a constant 
flow rate could not be maintained, proceed as follows: After closing the 
sample tank valve, remove the used sample tank from the sampling train 
(without disconnecting other portions of the sampling train). Take 
another evacuated and leak-checked sample tank, measure and record the 
tank vacuum, and attach the new tank to the sampling train. After the 
new tank is attached to the sample train, proceed with the sampling 
until the required minimum sampling time has been exceeded.

    8.3 Sample Recovery. After sampling is completed, close the flow 
control valve, and record the final tank vacuum; then record the tank 
temperature and barometric pressure. Close the sample tank valve, and 
disconnect the sample tank from the sample system. Disconnect the 
condensate trap at the inlet to the rate meter, and tightly seal both 
ends of the condensate trap. Do not include the probe from the stack to 
the filter as part of the condensate sample.
    8.4 Sample Storage and Transport. Keep the trap packed in dry ice 
until the samples are returned to the laboratory for analysis. Ensure 
that run numbers are identified on the condensate trap and the sample 
tank(s).

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1.1........................  Initial            Ensure acceptable
                                 performance        condensate recovery
                                 check of           efficiency.
                                 condensate
                                 recovery
                                 apparatus.
10.1.2, 10.2..................  NMO analyzer       Ensure precision of
                                 initial and        analytical results.
                                 daily
                                 performance
                                 checks.
11.3..........................  Audit Sample       Evaluate analytical
                                 Analyses.          technique and
                                                    instrument
                                                    calibration.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    Note: Maintain a record of performance of each item.

    10.1 Initial Performance Checks.
    10.1.1 Condensate Recovery Apparatus. Perform these tests before the 
system is first placed in operation, after any shutdown of 6 months or 
more, and after any major modification of the system, or at the 
frequency recommended by the manufacturer.
    10.1.1.1 Carrier Gas and Auxiliary O2 Blank Check. 
Analyze each new tank of carrier gas or auxiliary O2 with the 
NMO analyzer to check for contamination. Treat the gas cylinders as 
noncondensible gas samples, and analyze according to the procedure in 
Section 11.2.3. Add together any measured CH4, CO, 
CO2, or NMO. The total concentration must be less than 5 ppm.
    10.1.1.2 Oxidation Catalyst Efficiency Check.
    10.1.1.2.1 With a clean condensate trap installed in the recovery 
system or a \1/8\ stainless steel connector tube, replace the 
carrier gas cylinder with the high level methane standard gas cylinder 
(Section 7.4.1). Set the four-port valve to the recovery position, and 
attach an ICV to the recovery system. With the sample recovery valve in 
vent position and the flow-control and ICV valves fully open, evacuate 
the manometer or gauge, the connecting tubing, and the ICV to 10 mm Hg 
absolute pressure. Close the flow-control and vacuum pump valves.
    10.1.1.2.2 After the NDIR response has stabilized, switch the sample 
recovery valve from vent to collect. When the manometer or pressure 
gauge begins to register a slight positive pressure, open the flow-
control valve. Keep the flow adjusted such that the pressure in the 
system is maintained within 10 percent of atmospheric pressure. Continue 
collecting the sample in a normal manner until the ICV is filled to a 
nominal gauge pressure of 300 mm Hg. Close the ICV valve, and remove the 
ICV from the system. Place the sample recovery valve in the vent 
position, and return the recovery system to its normal carrier gas and 
normal operating conditions. Analyze the ICV for CO2 using 
the NMO analyzer; the catalyst efficiency is acceptable if the 
CO2 concentration is within 2 percent of the methane standard 
concentration.
    10.1.1.3 System Performance Check. Construct a liquid sample 
injection unit similar in design to the unit shown in Figure 25-7. 
Insert this unit into the condensate recovery and conditioning system in 
place of a condensate trap, and set the carrier gas and auxiliary 
O2 flow rates to normal operating levels. Attach an evacuated 
ICV to the system, and switch from system vent to collect. With the 
carrier gas routed through the injection unit and the oxidation 
catalyst, inject a liquid sample (see Sections 10.1.1.3.1 to 10.1.1.3.4) 
into the injection port. Operate the trap recovery system as described 
in Section 11.1.3. Measure the final ICV pressure, and then analyze the 
vessel to determine the CO2

[[Page 502]]

concentration. For each injection, calculate the percent recovery 
according to Section 12.7. Calculate the relative standard deviation for 
each set of triplicate injections according to Section 12.8. The 
performance test is acceptable if the average percent recovery is 100 
5 percent and the relative standard deviation is 
less than 2 percent for each set of triplicate injections.
    10.1.1.3.1 50 [mu]l hexane.
    10.1.1.3.2 10 [mu]l hexane.
    10.1.1.3.3 50 [mu]l decane.
    10.1.1.3.4 10 [mu]l decane.
    10.1.2 NMO Analyzer. Perform these tests before the system is first 
placed in operation, after any shutdown longer than 6 months, and after 
any major modification of the system.
    10.1.2.1 Oxidation Catalyst Efficiency Check. Turn off or bypass the 
NMO analyzer reduction catalyst. Make triplicate injections of the high 
level methane standard (Section 7.4.1). The oxidation catalyst operation 
is acceptable if the FID response is less than 1 percent of the injected 
methane concentration.
    10.1.2.2 Reduction Catalyst Efficiency Check. With the oxidation 
catalyst unheated or bypassed and the heated reduction catalyst 
bypassed, make triplicate injections of the high level methane standard 
(Section 7.4.1). Repeat this procedure with both catalysts operative. 
The reduction catalyst operation is acceptable if the responses under 
both conditions agree within 5 percent of their average.
    10.1.2.3 NMO Analyzer Linearity Check Calibration. While operating 
both the oxidation and reduction catalysts, conduct a linearity check of 
the analyzer using the propane standards specified in Section 7.4.2. 
Make triplicate injections of each calibration gas. For each gas (i.e., 
each set of triplicate injections), calculate the average response 
factor (area/ppm C) for each gas, as well as and the relative standard 
deviation (according to Section 12.8). Then calculate the overall mean 
of the response factor values. The instrument linearity is acceptable if 
the average response factor of each calibration gas is within 2.5 
percent of the overall mean value and if the relative standard deviation 
gas is less than 2 percent of the overall mean value. Record the overall 
mean of the propane response factor values as the NMO calibration 
response factor (RFNMO). Repeat the linearity check using the 
CO2 standards specified in Section 7.4.3. Make triplicate 
injections of each gas, and then calculate the average response factor 
(area/ppm C) for each gas, as well as the overall mean of the response 
factor values. Record the overall mean of the response factor values as 
the CO2 calibration response factor (RFCO2). The 
RFCO2 must be within 10 percent of the RFNMO.
    10.1.2.4 System Performance Check. Check the column separation and 
overall performance of the analyzer by making triplicate injections of 
the calibration gases listed in Section 7.4.4. The analyzer performance 
is acceptable if the measured NMO value for each gas (average of 
triplicate injections) is within 5 percent of the expected value.
    10.2 NMO Analyzer Daily Calibration. The following calibration 
procedures shall be performed before and immediately after the analysis 
of each set of samples, or on a daily basis, whichever is more 
stringent:
    10.2.1 CO2 Response Factor. Inject triplicate samples of 
the high level CO2 calibration gas (Section 7.4.3), and 
calculate the average response factor. The system operation is adequate 
if the calculated response factor is within 5 percent of the 
RFCO2 calculated during the initial performance test (Section 
10.1.2.3). Use the daily response factor (DRFCO2) for 
analyzer calibration and the calculation of measured CO2 
concentrations in the ICV samples.
    10.2.2 NMO Response Factors. Inject triplicate samples of the mixed 
propane calibration cylinder gas (Section 7.4.4.1), and calculate the 
average NMO response factor. The system operation is adequate if the 
calculated response factor is within 10 percent of the RFNMO 
calculated during the initial performance test (Section 10.1.2.4). Use 
the daily response factor (DRFNMO) for analyzer calibration 
and calculation of NMO concentrations in the sample tanks.
    10.3 Sample Tank and ICV Volume. The volume of the gas sampling 
tanks used must be determined. Determine the tank and ICV volumes by 
weighing them empty and then filled with deionized distilled water; 
weigh to the nearest 5 g, and record the results. Alternatively, measure 
the volume of water used to fill them to the nearest 5 ml.

                        11.0 Analytical Procedure

    11.1 Condensate Recovery. See Figure 25-9. Set the carrier gas flow 
rate, and heat the catalyst to its operating temperature to condition 
the apparatus.
    11.1.1 Daily Performance Checks. Each day before analyzing any 
samples, perform the following tests:
    11.1.1.1 Leak-Check. With the carrier gas inlets and the sample 
recovery valve closed, install a clean condensate trap in the system, 
and evacuate the system to 10 mm Hg absolute pressure or less. Monitor 
the system pressure for 10 minutes. The system is acceptable if the 
pressure change is less than 2 mm Hg.
    11.1.1.2 System Background Test. Adjust the carrier gas and 
auxiliary oxygen flow rate to their normal values of 100 cc/min and 150 
cc/min, respectively, with the sample recovery valve in vent position. 
Using a 10-ml syringe, withdraw a sample from the system effluent 
through the syringe port. Inject this

[[Page 503]]

sample into the NMO analyzer, and measure the CO2 content. 
The system background is acceptable if the CO2 concentration 
is less than 10 ppm.
    11.1.1.3 Oxidation Catalyst Efficiency Check. Conduct a catalyst 
efficiency test as specified in Section 10.1.1.2. If the criterion of 
this test cannot be met, make the necessary repairs to the system before 
proceeding.
    11.1.2 Condensate Trap CO2 Purge and Sample Tank 
Pressurization.
    11.1.2.1 After sampling is completed, the condensate trap will 
contain condensed water and organics and a small volume of sampled gas. 
This gas from the stack may contain a significant amount of 
CO2 which must be removed from the condensate trap before the 
sample is recovered. This is accomplished by purging the condensate trap 
with zero air and collecting the purged gas in the original sample tank.
    11.1.2.2 Begin with the sample tank and condensate trap from the 
test run to be analyzed. Set the four-port valve of the condensate 
recovery system in the CO2 purge position as shown in Figure 
25-9. With the sample tank valve closed, attach the sample tank to the 
sample recovery system. With the sample recovery valve in the vent 
position and the flow control valve fully open, evacuate the manometer 
or pressure gauge to the vacuum of the sample tank. Next, close the 
vacuum pump valve, open the sample tank valve, and record the tank 
pressure.
    11.1.2.3 Attach the dry ice-cooled condensate trap to the recovery 
system, and initiate the purge by switching the sample recovery valve 
from vent to collect position. Adjust the flow control valve to maintain 
atmospheric pressure in the recovery system. Continue the purge until 
the CO2 concentration of the trap effluent is less than 5 
ppm. CO2 concentration in the trap effluent should be 
measured by extracting syringe samples from the recovery system and 
analyzing the samples with the NMO analyzer. This procedure should be 
used only after the NDIR response has reached a minimum level. Using a 
10-ml syringe, extract a sample from the syringe port prior to the NDIR, 
and inject this sample into the NMO analyzer.
    11.1.2.4 After the completion of the CO2 purge, use the 
carrier gas bypass valve to pressurize the sample tank to approximately 
1,060 mm Hg absolute pressure with zero air.
    11.1.3 Recovery of the Condensate Trap Sample (See Figure 25-10).
    11.1.3.1 Attach the ICV to the sample recovery system. With the 
sample recovery valve in a closed position, between vent and collect, 
and the flow control and ICV valves fully open, evacuate the manometer 
or gauge, the connecting tubing, and the ICV to 10 mm Hg absolute 
pressure. Close the flow-control and vacuum pump valves.
    11.1.3.2 Begin auxiliary oxygen flow to the oxidation catalyst at a 
rate of 150 cc/min, then switch the four-way valve to the trap recovery 
position and the sample recovery valve to collect position. The system 
should now be set up to operate as indicated in Figure 25-10. After the 
manometer or pressure gauge begins to register a slight positive 
pressure, open the flow control valve. Adjust the flow-control valve to 
maintain atmospheric pressure in the system within 10 percent.
    11.1.3.3 Remove the condensate trap from the dry ice, and allow it 
to warm to ambient temperature while monitoring the NDIR response. If, 
after 5 minutes, the CO2 concentration of the catalyst 
effluent is below 10,000 ppm, discontinue the auxiliary oxygen flow to 
the oxidation catalyst. Begin heating the trap by placing it in a 
furnace preheated to 200 [deg]C (390 [deg]F). Once heating has begun, 
carefully monitor the NDIR response to ensure that the catalyst effluent 
concentration does not exceed 50,000 ppm. Whenever the CO2 
concentration exceeds 50,000 ppm, supply auxiliary oxygen to the 
catalyst at the rate of 150 cc/min. Begin heating the tubing that 
connected the heated sample box to the condensate trap only after the 
CO2 concentration falls below 10,000 ppm. This tubing may be 
heated in the same oven as the condensate trap or with an auxiliary heat 
source such as a heat gun. Heating temperature must not exceed 200 
[deg]C (390 [deg]F). If a heat gun is used, heat the tubing slowly along 
its entire length from the upstream end to the downstream end, and 
repeat the pattern for a total of three times. Continue the recovery 
until the CO2 concentration drops to less than 10 ppm as 
determined by syringe injection as described under the condensate trap 
CO2 purge procedure (Section 11.1.2).
    11.1.3.4 After the sample recovery is completed, use the carrier gas 
bypass valve to pressurize the ICV to approximately 1060 mm Hg absolute 
pressure with zero air.
    11.2 Analysis. Once the initial performance test of the NMO analyzer 
has been successfully completed (see Section 10.1.2) and the daily 
CO2 and NMO response factors have been determined (see 
Section 10.2), proceed with sample analysis as follows:
    11.2.1 Operating Conditions. The carrier gas flow rate is 29.5 cc/
min He and 2.2 cc/min O2. The column oven is heated to 85 
[deg]C (185 [deg]F). The order of elution for the sample from the column 
is CO, CH4, CO2, and NMO.
    11.2.2 Analysis of Recovered Condensate Sample. Purge the sample 
loop with sample, and then inject the sample. Under the specified 
operating conditions, the CO2 in the sample will elute in 
approximately 100 seconds. As soon as the detector response returns to 
baseline following the CO2 peak, switch the carrier gas flow 
to backflush, and raise the column oven temperature to 195 [deg]C (380 
[deg]F) as rapidly as possible. A rate of 30 [deg]C/

[[Page 504]]

min (90 [deg]F) has been shown to be adequate. Record the value obtained 
for the condensible organic material (Ccm) measured as 
CO2 and any measured NMO. Return the column oven temperature 
to 85 [deg]C (185 [deg]F) in preparation for the next analysis. Analyze 
each sample in triplicate, and report the average Ccm.
    11.2.3 Analysis of Sample Tank. Perform the analysis as described in 
Section 11.2.2, but record only the value measured for NMO 
(Ctm).
    11.3 Audit Sample Analysis.
    11.3.1 When the method is used to analyze samples to demonstrate 
compliance with a source emission regulation, an audit sample, if 
available, must be analyzed.
    11.3.2 Concurrently analyze the audit sample and the compliance 
samples in the same manner to evaluate the technique of the analyst and 
the standards preparation.
    11.3.3 The same analyst, analytical reagents, and analytical system 
must be used for the compliance samples and the audit sample. If this 
condition is met, duplicate auditing of subsequent compliance analyses 
for the same enforcement agency within a 30-day period is waived. An 
audit sample set may not be used to validate different sets of 
compliance samples under the jurisdiction of separate enforcement 
agencies, unless prior arrangements have been made with both enforcement 
agencies.
    11.4 Audit Sample Results.
    11.4.1 Calculate the audit sample concentrations and submit results 
using the instructions provided with the audit samples.
    11.4.2 Report the results of the audit samples and the compliance 
determination samples along with their identification numbers, and the 
analyst's name to the responsible enforcement authority. Include this 
information with reports of any subsequent compliance analyses for the 
same enforcement authority during the 30-day period.
    11.4.3 The concentrations of the audit samples obtained by the 
analyst must agree within 20 percent of the actual concentration. If the 
20-percent specification is not met, reanalyze the compliance and audit 
samples, and include initial and reanalysis values in the test report.
    11.4.4 Failure to meet the 20-percent specification may require 
retests until the audit problems are resolved. However, if the audit 
results do not affect the compliance or noncompliance status of the 
affected facility, the Administrator may waive the reanalysis 
requirement, further audits, or retests and accept the results of the 
compliance test. While steps are being taken to resolve audit analysis 
problems, the Administrator may also choose to use the data to determine 
the compliance or noncompliance status of the affected facility.

                   12.0 Data Analysis and Calculations

    Carry out the calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculations. All equations are written using absolute pressure; 
absolute pressures are determined by adding the measured barometric 
pressure to the measured gauge or manometer pressure.
    12.1 Nomenclature.

C=TGNMO concentration of the effluent, ppm C equivalent.
Cc=Calculated condensible organic (condensate trap) 
concentration of the effluent, ppm C equivalent.
Ccm=Measured concentration (NMO analyzer) for the condensate 
trap ICV, ppm CO2.
Ct=Calculated noncondensible organic concentration (sample 
tank) of the effluent, ppm C equivalent.
Ctm=Measured concentration (NMO analyzer) for the sample 
tank, ppm NMO.
F=Sampling flow rate, cc/min.
L=Volume of liquid injected, [mu]l.
M=Molecular weight of the liquid injected, g/g-mole.
Mc=TGNMO mass concentration of the effluent, mg C/dsm\3\.
N=Carbon number of the liquid compound injected (N=12 for decane, N=6 
for hexane).
n=Number of data points.
Pf=Final pressure of the intermediate collection vessel, mm 
Hg absolute.
Pb=Barometric pressure, cm Hg.
Pti=Gas sample tank pressure before sampling, mm Hg absolute.
Pt=Gas sample tank pressure after sampling, but before 
pressurizing, mm Hg absolute.
Ptf=Final gas sample tank pressure after pressurizing, mm Hg 
absolute.
q=Total number of analyzer injections of intermediate collection vessel 
during analysis (where k=injection number, 1 * * * q).
r=Total number of analyzer injections of sample tank during analysis 
(where j=injection number, 1 * * * r).
r=Density of liquid injected, g/cc.
Tf=Final temperature of intermediate collection vessel, 
[deg]K.
Tti=Sample tank temperature before sampling, [deg]K.
Tt=Sample tank temperature at completion of sampling, [deg]K.
Ttf=Sample tank temperature after pressurizing, [deg]K.
V=Sample tank volume, m\3\.
Vt=Sample train volume, cc.
Vv=Intermediate collection vessel volume, m\3\.
Vs=Gas volume sampled, dsm\3\.
xi=Individual measurements.
x=Mean value.
[Delta]P=Allowable pressure change, cm Hg.
[Theta]=Leak-check period, min.


[[Page 505]]


    12.2 Allowable Pressure Change. For the pretest leak-check, 
calculate the allowable pressure change using Equation 25-1:
[GRAPHIC] [TIFF OMITTED] TR17OC00.364

    12.3 Sample Volume. For each test run, calculate the gas volume 
sampled using Equation 25-2:
[GRAPHIC] [TIFF OMITTED] TR17OC00.365

    12.4 Noncondensible Organics. For each sample tank, determine the 
concentration of nonmethane organics (ppm C) using Equation 25-3:
[GRAPHIC] [TIFF OMITTED] TR17OC00.366

    12.5 Condensible Organics. For each condensate trap determine the 
concentration of organics (ppm C) using Equation 25-4:
[GRAPHIC] [TIFF OMITTED] TR17OC00.367

    12.6 TGNMO Mass Concentration. Determine the TGNMO mass 
concentration as carbon for each test run, using Equation 25-5:
[GRAPHIC] [TIFF OMITTED] TR17OC00.368

    12.7 Percent Recovery. Calculate the percent recovery for the liquid 
injections to the condensate recovery and conditioning system using 
Equation 25-6:
[GRAPHIC] [TIFF OMITTED] TR17OC00.369

where K=1.604 ([deg]K)(g-mole)(%)/(mm Hg)(ml)(m\3\)(ppm).

    12.8 Relative Standard Deviation. Use Equation 25-7 to calculate the 
relative standard deviation (RSD) of percent recovery and analyzer 
linearity.
[GRAPHIC] [TIFF OMITTED] TR17OC00.370

                         13.0 Method Performance

    13.1 Range. The minimum detectable limit of the method has been 
determined to be 50 parts per million by volume (ppm). No upper limit 
has been established.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Salo, A.E., S. Witz, and R.D. MacPhee. Determination of Solvent 
Vapor Concentrations by Total Combustion Analysis: A Comparison of 
Infrared with Flame Ionization Detectors. Paper No. 75-33.2. (Presented 
at the 68th Annual Meeting of the Air Pollution Control Association. 
Boston, MA. June 15-20, 1975.) 14 p.
    2. Salo, A.E., W.L. Oaks, and R.D. MacPhee. Measuring the Organic 
Carbon Content of Source Emissions for Air Pollution Control. Paper No. 
74-190. (Presented at the 67th Annual Meeting of the Air Pollution

[[Page 506]]

Control Association. Denver, CO. June 9-13, 1974.) 25 p.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data
[GRAPHIC] [TIFF OMITTED] TR17OC00.371


[[Page 507]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.372


[[Page 508]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.373


[[Page 509]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.374


[[Page 510]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.375


[[Page 511]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.376


[[Page 512]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.377


[[Page 513]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.378


[[Page 514]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.379


[[Page 515]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.380

Method 25A--Determination of Total Gaseous Organic Concentration Using a 
                        Flame Ionization Analyzer

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
            Analyte                  CAS No.           Sensitivity
------------------------------------------------------------------------
Total Organic Compounds........             N/A  < 2% of span.
------------------------------------------------------------------------


[[Page 516]]

    1.2 Applicability. This method is applicable for the determination 
of total gaseous organic concentration of vapors consisting primarily of 
alkanes, alkenes, and/or arenes (aromatic hydrocarbons). The 
concentration is expressed in terms of propane (or other appropriate 
organic calibration gas) or in terms of carbon.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted from the source through a heated 
sample line and glass fiber filter to a flame ionization analyzer (FIA). 
Results are reported as volume concentration equivalents of the 
calibration gas or as carbon equivalents.

                             3.0 Definitions

    3.1 Calibration drift means the difference in the measurement system 
response to a mid-level calibration gas before and after a stated period 
of operation during which no unscheduled maintenance, repair, or 
adjustment took place.
    3.2 Calibration error means the difference between the gas 
concentration indicated by the measurement system and the know 
concentration of the calibration gas.
    3.3 Calibration gas means a known concentration of a gas in an 
appropriate diluent gas.
    3.4 Measurement system means the total equipment required for the 
determination of the gas concentration. The system consists of the 
following major subsystems:
    3.4.1 Sample interface means that portion of a system used for one 
or more of the following: sample acquisition, sample transportation, 
sample conditioning, or protection of the analyzer(s) from the effects 
of the stack effluent.
    3.4.2 Organic analyzer means that portion of the measurement system 
that senses the gas to be measured and generates an output proportional 
to its concentration.
    3.5 Response time means the time interval from a step change in 
pollutant concentration at the inlet to the emission measurement system 
to the time at which 95 percent of the corresponding final value is 
reached as displayed on the recorder.
    3.6 Span Value means the upper limit of a gas concentration 
measurement range that is specified for affected source categories in 
the applicable part of the regulations. The span value is established in 
the applicable regulation and is usually 1.5 to 2.5 times the applicable 
emission limit. If no span value is provided, use a span value 
equivalent to 1.5 to 2.5 times the expected concentration. For 
convenience, the span value should correspond to 100 percent of the 
recorder scale.
    3.7 Zero drift means the difference in the measurement system 
response to a zero level calibration gas before or after a stated period 
of operation during which no unscheduled maintenance, repair, or 
adjustment took place.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method. The analyzer users manual should 
be consulted for specific precautions to be taken with regard to the 
analytical procedure.
    5.2 Explosive Atmosphere. This method is often applied in highly 
explosive areas. Caution and care should be exercised in choice of 
equipment and installation.

                       6.0 Equipment and Supplies

    6.1 Measurement System. Any measurement system for total organic 
concentration that meets the specifications of this method. A schematic 
of an acceptable measurement system is shown in Figure 25A-1. All 
sampling components leading to the analyzer shall be heated = 
110 [deg]C (220 [deg]F) throughout the sampling period, unless safety 
reasons are cited (Section 5.2) The essential components of the 
measurement system are described below:
    6.1.1 Organic Concentration Analyzer. A flame ionization analyzer 
(FIA) capable of meeting or exceeding the specifications of this method. 
The flame ionization detector block shall be heated 120 
[deg]C (250 [deg]F).
    6.1.2 Sample Probe. Stainless steel, or equivalent, three-hole rake 
type. Sample holes shall be 4 mm (0.16-in.) in diameter or smaller and 
located at 16.7, 50, and 83.3 percent of the equivalent stack diameter. 
Alternatively, a single opening probe may be used so that a gas sample 
is collected from the centrally located 10 percent area of the stack 
cross-section.
    6.1.3 Heated Sample Line. Stainless steel or Teflon'' tubing to 
transport the sample gas to the analyzer. The sample line should be 
heated (=110 [deg]C) to prevent any condensation.
    6.1.4 Calibration Valve Assembly. A three-way valve assembly to 
direct the zero and calibration gases to the analyzers is recommended. 
Other methods, such as quick-connect lines, to route calibration gas to 
the analyzers are applicable.
    6.1.5 Particulate Filter. An in-stack or an out-of-stack glass fiber 
filter is recommended if exhaust gas particulate loading

[[Page 517]]

is significant. An out-of-stack filter should be heated to prevent any 
condensation.
    6.1.6 Recorder. A strip-chart recorder, analog computer, or digital 
recorder for recording measurement data. The minimum data recording 
requirement is one measurement value per minute.

                       7.0 Reagents and Standards

    7.1 Calibration Gases. The calibration gases for the gas analyzer 
shall be propane in air or propane in nitrogen. Alternatively, organic 
compounds other than propane can be used; the appropriate corrections 
for response factor must be made. Calibration gases shall be prepared in 
accordance with the procedure listed in Citation 2 of Section 16. 
Additionally, the manufacturer of the cylinder should provide a 
recommended shelf life for each calibration gas cylinder over which the 
concentration does not change more than 2 percent 
from the certified value. For calibration gas values not generally 
available (i.e., organics between 1 and 10 percent by volume), 
alternative methods for preparing calibration gas mixtures, such as 
dilution systems (Test Method 205, 40 CFR Part 51, Appendix M), may be 
used with prior approval of the Administrator.
    7.1.1 Fuel. A 40 percent H2/60 percent N2 gas 
mixture is recommended to avoid an oxygen synergism effect that 
reportedly occurs when oxygen concentration varies significantly from a 
mean value.
    7.1.2 Zero Gas. High purity air with less than 0.1 part per million 
by volume (ppmv) of organic material (propane or carbon equivalent) or 
less than 0.1 percent of the span value, whichever is greater.
    7.1.3 Low-level Calibration Gas. An organic calibration gas with a 
concentration equivalent to 25 to 35 percent of the applicable span 
value.
    7.1.4 Mid-level Calibration Gas. An organic calibration gas with a 
concentration equivalent to 45 to 55 percent of the applicable span 
value.
    7.1.5 High-level Calibration Gas. An organic calibration gas with a 
concentration equivalent to 80 to 90 percent of the applicable span 
value.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Selection of Sampling Site. The location of the sampling site is 
generally specified by the applicable regulation or purpose of the test 
(i.e., exhaust stack, inlet line, etc.). The sample port shall be 
located to meet the testing requirements of Method 1.
    8.2 Location of Sample Probe. Install the sample probe so that the 
probe is centrally located in the stack, pipe, or duct and is sealed 
tightly at the stack port connection.
    8.3 Measurement System Preparation. Prior to the emission test, 
assemble the measurement system by following the manufacturer's written 
instructions for preparing sample interface and the organic analyzer. 
Make the system operable (Section 10.1).
    8.4 Calibration Error Test. Immediately prior to the test series 
(within 2 hours of the start of the test), introduce zero gas and high-
level calibration gas at the calibration valve assembly. Adjust the 
analyzer output to the appropriate levels, if necessary. Calculate the 
predicted response for the low-level and mid-level gases based on a 
linear response line between the zero and high-level response. Then 
introduce low-level and mid-level calibration gases successively to the 
measurement system. Record the analyzer responses for low-level and mid-
level calibration gases and determine the differences between the 
measurement system responses and the predicted responses. These 
differences must be less than 5 percent of the respective calibration 
gas value. If not, the measurement system is not acceptable and must be 
replaced or repaired prior to testing. No adjustments to the measurement 
system shall be conducted after the calibration and before the drift 
check (Section 8.6.2). If adjustments are necessary before the 
completion of the test series, perform the drift checks prior to the 
required adjustments and repeat the calibration following the 
adjustments. If multiple electronic ranges are to be used, each 
additional range must be checked with a mid-level calibration gas to 
verify the multiplication factor.
    8.5 Response Time Test. Introduce zero gas into the measurement 
system at the calibration valve assembly. When the system output has 
stabilized, switch quickly to the high-level calibration gas. Record the 
time from the concentration change to the measurement system response 
equivalent to 95 percent of the step change. Repeat the test three times 
and average the results.
    8.6 Emission Measurement Test Procedure.
    8.6.1 Organic Measurement. Begin sampling at the start of the test 
period, recording time and any required process information as 
appropriate. In particulate, note on the recording chart, periods of 
process interruption or cyclic operation.
    8.6.2 Drift Determination. Immediately following the completion of 
the test period and hourly during the test period, reintroduce the zero 
and mid-level calibration gases, one at a time, to the measurement 
system at the calibration valve assembly. (Make no adjustments to the 
measurement system until both the zero and calibration drift checks are 
made.) Record the analyzer response. If the drift values exceed the 
specified limits, invalidate the test results preceding the check and 
repeat the test following corrections to the measurement system. 
Alternatively, recalibrate the test measurement system as in Section 8.4 
and

[[Page 518]]

report the results using both sets of calibration data (i.e., data 
determined prior to the test period and data determined following the 
test period).

    Note: Note on the recording chart periods of process interruption or 
cyclic operation.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
        Method section               measure               Effect
------------------------------------------------------------------------
8.4...........................  Zero and           Ensures that bias
                                 calibration        introduced by drift
                                 drift tests.       in the measurement
                                                    system output during
                                                    the run is no
                                                    greater than 3
                                                    percent of span.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 FIA equipment can be calibrated for almost any range of total 
organic concentrations. For high concentrations of organics ( 
1.0 percent by volume as propane), modifications to most commonly 
available analyzers are necessary. One accepted method of equipment 
modification is to decrease the size of the sample to the analyzer 
through the use of a smaller diameter sample capillary. Direct and 
continuous measurement of organic concentration is a necessary 
consideration when determining any modification design.

                        11.0 Analytical Procedure

    The sample collection and analysis are concurrent for this method 
(see Section 8.0).

                   12.0 Calculations and Data Analysis

    12.1 Determine the average organic concentration in terms of ppmv as 
propane or other calibration gas. The average shall be determined by 
integration of the output recording over the period specified in the 
applicable regulation. If results are required in terms of ppmv as 
carbon, adjust measured concentrations using Equation 25A-1.
[GRAPHIC] [TIFF OMITTED] TR17OC00.381

Where:

Cc=Organic concentration as carbon, ppmv.
Cmeas=Organic concentration as measured, ppmv.
K=Carbon equivalent correction factor.
    =2 for ethane.
    =3 for propane.
    =4 for butane.
    =Appropriate response factor for other organic calibration gases.

                         13.0 Method Performance

    13.1 Measurement System Performance Specifications.
    13.1.1 Zero Drift. Less than 3 percent of the 
span value.
    13.1.2 Calibration Drift. Less than 3 percent 
of span value.
    13.1.3 Calibration Error. Less than 5 percent 
of the calibration gas value.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Measurement of Volatile Organic Compounds--Guideline Series. U.S. 
Environmental Protection Agency. Research Triangle Park, NC. Publication 
No. EPA-450/2-78-041. June 1978. p. 46-54.
    2. EPA Traceability Protocol for Assay and Certification of Gaseous 
Calibration Standards. U.S. Environmental Protection Agency, Quality 
Assurance and Technical Support Division. Research Triangle Park, N.C. 
September 1993.
    3. Gasoline Vapor Emission Laboratory Evaluation--Part 2. U.S. 
Environmental Protection Agency, Office of Air Quality Planning and 
Standards. Research Triangle Park, NC. EMB Report No. 75-GAS-6. August 
1975.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 519]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.382

Method 25B--Determination of Total Gaseous Organic Concentration Using a 
                     Nondispersive Infrared Analyzer

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test methods: Method 1, Method 6C, and Method 25A.

                        1.0 Scope and Application

    1.1 Analytes.

[[Page 520]]



------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Total Organic Compounds...........             N/A  < 2% of span.
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of total gaseous organic concentration of vapors consisting primarily of 
alkanes. Other organic materials may be measured using the general 
procedure in this method, the appropriate calibration gas, and an 
analyzer set to the appropriate absorption band.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    A gas sample is extracted from the source through a heated sample 
line, if necessary, and glass fiber filter to a nondispersive infrared 
analyzer (NDIR). Results are reported as volume concentration 
equivalents of the calibration gas or as carbon equivalents.

                             3.0 Definitions

    Same as Method 25A, Section 3.0.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method. The analyzer users manual should 
be consulted for specific precautions to be taken with regard to the 
analytical procedure.
    5.2 Explosive Atmosphere. This method is often applied in highly 
explosive areas. Caution and care should be exercised in choice of 
equipment and installation.

                       6.0 Equipment and Supplies

    Same as Method 25A, Section 6.0, with the exception of the 
following:
    6.1 Organic Concentration Analyzer. A nondispersive infrared 
analyzer designed to measure alkane organics and capable of meeting or 
exceeding the specifications in this method.

                       7.0 Reagents and Standards

    Same as Method 25A, Section 7.1. No fuel gas is required for an 
NDIR.

       8.0 Sample Collection, Preservation, Storage, and Transport

    Same as Method 25A, Section 8.0.

                           9.0 Quality Control

    Same as Method 25A, Section 9.0.

                  10.0 Calibration and Standardization

    Same as Method 25A, Section 10.0.

                        11.0 Analytical Procedure

    The sample collection and analysis are concurrent for this method 
(see Section 8.0).

                   12.0 Calculations and Data Analysis

    Same as Method 25A, Section 12.0.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 25A, Section 16.0.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

  Method 25C--Determination of Nonmethane Organic Compounds (NMOC) in 
                             Landfill Gases

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should also have a thorough knowledge of EPA 
Method 25.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
                  Analyte                              CAS No.
------------------------------------------------------------------------
Nonmethane organic compounds (NMOC).......  No CAS number assigned.
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable to the sampling and 
measurement of NMOC as carbon in landfill gases (LFG).
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A sample probe that has been perforated at one end is driven or 
augured to a depth of 0.9 m (3 ft) below the bottom of the landfill 
cover. A sample of the landfill gas is extracted with an evacuated 
cylinder. The NMOC content of the gas is determined by

[[Page 521]]

injecting a portion of the gas into a gas chromatographic column to 
separate the NMOC from carbon monoxide (CO), carbon dioxide 
(CO2), and methane (CH4); the NMOC are oxidized to 
CO2, reduced to CH4, and measured by a flame 
ionization detector (FID). In this manner, the variable response of the 
FID associated with different types of organics is eliminated.

                       3.0 Definitions. [Reserved]

                      4.0 Interferences. [Reserved]

                               5.0 Safety

    5.1 Since this method is complex, only experienced personnel should 
perform this test. LFG contains methane, therefore explosive mixtures 
may exist on or near the landfill. It is advisable to take appropriate 
safety precautions when testing landfills, such as refraining from 
smoking and installing explosion-proof equipment.

                       6.0 Equipment and Supplies

    6.1 Sample Probe. Stainless steel, with the bottom third perforated. 
The sample probe must be capped at the bottom and must have a threaded 
cap with a sampling attachment at the top. The sample probe must be long 
enough to go through and extend no less than 0.9 m (3 ft) below the 
landfill cover. If the sample probe is to be driven into the landfill, 
the bottom cap should be designed to facilitate driving the probe into 
the landfill.
    6.2 Sampling Train.
    6.2.1 Rotameter with Flow Control Valve. Capable of measuring a 
sample flow rate of 100 10 ml/min. The control 
valve must be made of stainless steel.
    6.2.2 Sampling Valve. Stainless steel.
    6.2.3 Pressure Gauge. U-tube mercury manometer, or equivalent, 
capable of measuring pressure to within 1 mm Hg (0.5 in H2O) 
in the range of 0 to 1,100 mm Hg (0 to 590 in H2O).
    6.2.4 Sample Tank. Stainless steel or aluminum cylinder, equipped 
with a stainless steel sample tank valve.
    6.3 Vacuum Pump. Capable of evacuating to an absolute pressure of 10 
mm Hg (5.4 in H2O).
    6.4 Purging Pump. Portable, explosion proof, and suitable for 
sampling NMOC.
    6.5 Pilot Probe Procedure. The following are needed only if the 
tester chooses to use the procedure described in Section 8.2.1.
    6.5.1 Pilot Probe. Tubing of sufficient strength to withstand being 
driven into the landfill by a post driver and an outside diameter of at 
least 6 mm (0.25 in.) smaller than the sample probe. The pilot probe 
shall be capped on both ends and long enough to go through the landfill 
cover and extend no less than 0.9 m (3 ft) into the landfill.
    6.5.2 Post Driver and Compressor. Capable of driving the pilot probe 
and the sampling probe into the landfill. The Kitty Hawk portable post 
driver has been found to be acceptable.
    6.6 Auger Procedure. The following are needed only if the tester 
chooses to use the procedure described in Section 8.2.2.
    6.6.1 Auger. Capable of drilling through the landfill cover and to a 
depth of no less than 0.9 m (3 ft) into the landfill.
    6.6.2 Pea Gravel.
    6.6.3 Bentonite.
    6.7 NMOC Analyzer, Barometer, Thermometer, and Syringes. Same as in 
Sections 6.3.1, 6.3.2, 6.33, and 6.2.10, respectively, of Method 25.

                       7.0 Reagents and Standards

    7.1 NMOC Analysis. Same as in Method 25, Section 7.2.
    7.2 Calibration. Same as in Method 25, Section 7.4, except omit 
Section 7.4.3.
    7.3 Quality Assurance Audit Samples.
    7.3.1 It is recommended, but not required, that a performance audit 
sample be analyzed in conjunction with the field samples. The audit 
sample should be in a suitable sample matrix at a concentration similar 
to the actual field samples.
    7.3.2 When making compliance determinations, and upon availability, 
audit samples may be obtained from the appropriate EPA Regional Office 
or from the responsible enforcement authority and analyzed in 
conjunction with the field samples.

    Note: The responsible enforcement authority should be notified at 
least 30 days prior to the test date to allow sufficient time for sample 
delivery.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Sample Tank Evacuation and Leak-Check. Conduct the sample tank 
evacuation and leak-check either in the laboratory or the field. Connect 
the pressure gauge and sampling valve to the sample tank. Evacuate the 
sample tank to 10 mm Hg (5.4 in H2O) absolute pressure or 
less. Close the sampling valve, and allow the tank to sit for 30 
minutes. The tank is acceptable if no change more than 2 mm is noted. Include the results of the leak-check in 
the test report.
    8.2 Sample Probe Installation. The tester may use the procedure in 
Section 8.2.1 or 8.2.2.
    8.2.1 Pilot Probe Procedure. Use the post driver to drive the pilot 
probe at least 0.9 m (3 ft) below the landfill cover. Alternative 
procedures to drive the probe into the landfill may be used subject to 
the approval of the Administrator's designated representative.
    8.2.1.1 Remove the pilot probe and drive the sample probe into the 
hole left by the

[[Page 522]]

pilot probe. The sample probe shall extend at least 0.9 m (3 ft) below 
the landfill cover and shall protrude about 0.3 m (1 ft) above the 
landfill cover. Seal around the sampling probe with bentonite and cap 
the sampling probe with the sampling probe cap.
    8.2.2 Auger Procedure. Use an auger to drill a hole to at least 0.9 
m (3 ft) below the landfill cover. Place the sample probe in the hole 
and backfill with pea gravel to a level 0.6 m (2 ft) from the surface. 
The sample probe shall protrude at least 0.3 m (1 ft) above the landfill 
cover. Seal the remaining area around the probe with bentonite. Allow 24 
hours for the landfill gases to equilibrate inside the augured probe 
before sampling.
    8.3 Sample Train Assembly. Just before assembling the sample train, 
measure the sample tank vacuum using the pressure gauge. Record the 
vacuum, the ambient temperature, and the barometric pressure at this 
time. Assemble the sampling probe purging system as shown in Figure 25C-
1.
    8.4 Sampling Procedure. Open the sampling valve and use the purge 
pump and the flow control valve to evacuate at least two sample probe 
volumes from the system at a flow rate of 500 ml/min or less. Close the 
sampling valve and replace the purge pump with the sample tank apparatus 
as shown in Figure 25C-2. Open the sampling valve and the sample tank 
valve and, using the flow control valve, sample at a flow rate of 500 
ml/min or less until either a constant flow rate can no longer be 
maintained because of reduced sample tank vacuum or the appropriate 
composite volume is attained. Disconnect the sampling tank apparatus and 
pressurize the sample cylinder to approximately 1,060 mm Hg (567 in. 
H2O) absolute pressure with helium, and record the final 
pressure. Alternatively, the sample tank may be pressurized in the lab.
    8.4.1 The following restrictions apply to compositing samples from 
different probe sites into a single cylinder: (1) Individual composite 
samples per cylinder must be of equal volume; this must be verified by 
recording the flow rate, sampling time, vacuum readings, or other 
appropriate volume measuring data, (2) individual composite samples must 
have a minimum volume of 1 liter unless data is provided showing smaller 
volumes can be accurately measured, and (3) composite samples must not 
be collected using the final cylinder vacuum as it diminishes to ambient 
pressure.
    8.4.2 Use Method 3C to determine the percent N2 in each 
cylinder. The presence of N2 indicates either infiltration of 
ambient air into the landfill gas sample or an inappropriate testing 
site has been chosen where anaerobic decomposition has not begun. The 
landfill gas sample is acceptable if the concentration of N2 
is less than 20 percent. Alternatively, Method 3C may be used to 
determine the oxygen content of each cylinder as an air infiltration 
test. With this option, the oxygen content of each cylinder must be less 
than 5 percent.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.4.1.........................  Verify that        Ensures that ambient
                                 landfill gas       air was not drawn
                                 sample contains    into the landfill
                                 less than 20       gas sample.
                                 percent N2 or 5
                                 percent O2.
10.1, 10.2....................  NMOC analyzer      Ensures precision of
                                 initial and        analytical results.
                                 daily
                                 performance
                                 checks.
11.1.4........................  Audit Sample       Evaluate analytical
                                 Analyses.          technique and
                                                    instrument
                                                    calibration.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    Note: Maintain a record of performance of each item.

    10.1 Initial NMOC Analyzer Performance Test. Same as in Method 25, 
Section 10.1, except omit the linearity checks for CO2 
standards.
    10.2 NMOC Analyzer Daily Calibration.
    10.2.1 NMOC Response Factors. Same as in Method 25, Section 10.2.2.
    10.3 Sample Tank Volume. The volume of the gas sampling tanks must 
be determined. Determine the tank volumes by weighing them empty and 
then filled with deionized water; weigh to the nearest 5 g, and record 
the results. Alternatively, measure the volume of water used to fill 
them to the nearest 5 ml.

                       11.0 Analytical Procedures

    11.1 The oxidation, reduction, and measurement of NMOC's is similar 
to Method 25. Before putting the NMOC analyzer into routine operation, 
conduct an initial performance test. Start the analyzer, and perform all 
the necessary functions in order to put the analyzer into proper working 
order. Conduct the performance test according to the procedures 
established in Section 10.1. Once the performance test has been 
successfully completed and the NMOC calibration response factor has been 
determined, proceed with sample analysis as follows:

[[Page 523]]

    11.1.1 Daily Operations and Calibration Checks. Before and 
immediately after the analysis of each set of samples or on a daily 
basis (whichever occurs first), conduct a calibration test according to 
the procedures established in Section 10.2. If the criteria of the daily 
calibration test cannot be met, repeat the NMOC analyzer performance 
test (Section 10.1) before proceeding.
    11.1.2 Operating Conditions. Same as in Method 25, Section 11.2.1.
    11.1.3 Analysis of Sample Tank. Purge the sample loop with sample, 
and then inject the sample. Under the specified operating conditions, 
the CO2 in the sample will elute in approximately 100 
seconds. As soon as the detector response returns to baseline following 
the CO2 peak, switch the carrier gas flow to backflush, and 
raise the column oven temperature to 195 [deg]C (383 [deg]F) as rapidly 
as possible. A rate of 30 [deg]C/min (54 [deg]F/min) has been shown to 
be adequate. Record the value obtained for any measured NMOC. Return the 
column oven temperature to 85 [deg]C (185 [deg]F) in preparation for the 
next analysis. Analyze each sample in triplicate, and report the average 
as Ctm.
    11.2 Audit Sample Analysis. When the method is used to analyze 
samples to demonstrate compliance with a source emission regulation, an 
audit sample, if available, must be analyzed.
    11.2.1 Concurrently analyze the audit sample and the compliance 
samples in the same manner to evaluate the technique of the analyst and 
the standards preparation.
    11.2.2 The same analyst, analytical reagents, and analytical system 
must be used for the compliance samples and the audit sample. If this 
condition is met, duplicate auditing of subsequent compliance analyses 
for the same enforcement agency within a 30-day period is waived. An 
audit sample set may not be used to validate different sets of 
compliance samples under the jurisdiction of separate enforcement 
agencies, unless prior arrangements have been made with both enforcement 
agencies.
    11.3 Audit Sample Results.
    11.3.1 Calculate the audit sample concentrations and submit results 
using the instructions provided with the audit samples.
    11.3.2 Report the results of the audit samples and the compliance 
determination samples along with their identification numbers, and the 
analyst's name to the responsible enforcement authority. Include this 
information with reports of any subsequent compliance analyses for the 
same enforcement authority during the 30-day period.
    11.3.3 The concentrations of the audit samples obtained by the 
analyst must agree within 20 percent of the actual concentration. If the 
20-percent specification is not met, reanalyze the compliance and audit 
samples, and include initial and reanalysis values in the test report.
    11.3.4 Failure to meet the 20-percent specification may require 
retests until the audit problems are resolved. However, if the audit 
results do not affect the compliance or noncompliance status of the 
affected facility, the Administrator may waive the reanalysis 
requirement, further audits, or retests and accept the results of the 
compliance test. While steps are being taken to resolve audit analysis 
problems, the Administrator may also choose to use the data to determine 
the compliance or noncompliance status of the affected facility.

                   12.0 Data Analysis and Calculations

    Note: All equations are written using absolute pressure; absolute 
pressures are determined by adding the measured barometric pressure to 
the measured gauge or manometer pressure.

    12.1 Nomenclature.

Bw=Moisture content in the sample, fraction.
CN2=Measured N2 concentration, fraction.
Ct=Calculated NMOC concentration, ppmv C equivalent.
Ctm=Measured NMOC concentration, ppmv C equivalent.
Pb=Barometric pressure, mm Hg.
Pt=Gas sample tank pressure after sampling, but before 
pressurizing, mm Hg absolute.
Ptf=Final gas sample tank pressure after pressurizing, mm Hg 
absolute.
Pti=Gas sample tank pressure after evacuation, mm Hg 
absolute.
Pw=Vapor pressure of H2O (from Table 25C-1), mm 
Hg.
r=Total number of analyzer injections of sample tank during analysis 
(where j=injection number, 1 * * * r).
Tt=Sample tank temperature at completion of sampling, [deg]K.
Tti=Sample tank temperature before sampling, [deg]K.
Ttf=Sample tank temperature after pressurizing, [deg]K.

    12.2 Water Correction. Use Table 25C-1 (Section 17.0), the LFG 
temperature, and barometric pressure at the sampling site to calculate 
Bw.
[GRAPHIC] [TIFF OMITTED] TR17OC00.383

    12.3 NMOC Concentration. Use the following equation to calculate the 
concentration of NMOC for each sample tank.

[[Page 524]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.384

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Salo, Albert E., Samuel Witz, and Robert D. MacPhee. 
Determination of Solvent Vapor Concentrations by Total Combustion 
Analysis: A Comparison of Infrared with Flame Ionization Detectors. 
Paper No. 75-33.2. (Presented at the 68th Annual Meeting of the Air 
Pollution Control Association. Boston, Massachusetts. June 15-20, 1975.) 
14 p.
    2. Salo, Albert E., William L. Oaks, and Robert D. MacPhee. 
Measuring the Organic Carbon Content of Source Emissions for Air 
Pollution Control. Paper No. 74-190. (Presented at the 67th Annual 
Meeting of the Air Pollution Control Association. Denver, Colorado. June 
9-13, 1974.) 25 p.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 525]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.385


                    Table 25C-1--Moisture Correction
------------------------------------------------------------------------
                                        Vapor                    Vapor
                                       Pressure  Temperature,   Pressure
         Temperature, [deg]C           of H2O,      [deg]C      of H2O,
                                        mm Hg                    mm Hg
------------------------------------------------------------------------
4...................................        6.1           18        15.5
6...................................        7.0           20        17.5
8...................................        8.0           22        19.8
10..................................        9.2           24        22.4
12..................................       10.5           26        25.2
14..................................       12.0           28        28.3
16..................................       13.6           30        31.8
------------------------------------------------------------------------


[[Page 526]]

Method 25D--Determination of the Volatile Organic Concentration of Waste 
                                 Samples

    Note: Performance of this method should not be attempted by persons 
unfamiliar with the operation of a flame ionization detector (FID) or an 
electrolytic conductivity detector (ELCD) because knowledge beyond the 
scope of this presentation is required.

                        1.0 Scope and Application

    1.1 Analyte. Volatile Organic Compounds. No CAS No. assigned.
    1.2 Applicability. This method is applicable for determining the 
volatile organic (VO) concentration of a waste sample.

                          2.0 Summary of Method

    2.1 Principle. A sample of waste is obtained at a point which is 
most representative of the unexposed waste (where the waste has had 
minimum opportunity to volatilize to the atmosphere). The sample is 
suspended in an organic/aqueous matrix, then heated and purged with 
nitrogen for 30 min. in order to separate certain organic compounds. 
Part of the sample is analyzed for carbon concentration, as methane, 
with an FID, and part of the sample is analyzed for chlorine 
concentration, as chloride, with an ELCD. The VO concentration is the 
sum of the carbon and chlorine content of the sample.

                             3.0 Definitions

    3.1 Well-mixed in the context of this method refers to turbulent 
flow which results in multiple-phase waste in effect behaving as single-
phase waste due to good mixing.

                      4.0 Interferences. [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    Note: Mention of trade names or specific products does not 
constitute endorsement by the Environmental Protection Agency.

    6.1 Sampling. The following equipment is required:
    6.1.1 Sampling Tube. Flexible Teflon, 0.25 in. ID (6.35 mm).
    6.1.2 Sample Container. Borosilicate glass, 40-mL, and a Teflon-
lined screw cap capable of forming an air tight seal.
    6.1.3 Cooling Coil. Fabricated from 0.25 in (6.35 mm). ID 304 
stainless steel tubing with a thermocouple at the coil outlet.
    6.2 Analysis. The following equipment is required.
    6.2.1 Purging Apparatus. For separating the VO from the waste 
sample. A schematic of the system is shown in Figure 25D-1. The purging 
apparatus consists of the following major components.
    6.2.1.1 Purging Flask. A glass container to hold the sample while it 
is heated and purged with dry nitrogen. The cap of the purging flask is 
equipped with three fittings: one for a purging lance (fitting with the 
7 Ace-thread), one for the Teflon exit tubing (side fitting, 
also a 7 Ace-thread), and a third (a 50-mm Ace-thread) to 
attach the base of the purging flask as shown in Figure 25D-2. The base 
of the purging flask is a 50-mm ID (2 in) cylindrical glass tube. One 
end of the tube is open while the other end is sealed. Exact dimensions 
are shown in Figure 25D-2.
    6.2.1.2 Purging Lance. Glass tube, 6-mm OD (0.2 in) by 30 cm (12 in) 
long. The purging end of the tube is fitted with a four-arm bubbler with 
each tip drawn to an opening 1 mm (0.04 in) in diameter. Details and 
exact dimensions are shown in Figure 25D-2.
    6.2.1.3 Coalescing Filter. Porous fritted disc incorporated into a 
container with the same dimensions as the purging flask. The details of 
the design are shown in Figure 25D-3.
    6.2.1.4 Constant Temperature Chamber. A forced draft oven capable of 
maintaining a uniform temperature around the purging flask and 
coalescing filter of 75 2 [deg]C (167 3.6 [deg]F).
    6.2.1.5 Three-way Valve. Manually operated, stainless steel. To 
introduce calibration gas into system.
    6.2.1.6 Flow Controllers. Two, adjustable. One capable of 
maintaining a purge gas flow rate of 6 0.06 L/min 
(0.2 0.002 ft3/min) The other capable 
of maintaining a calibration gas flow rate of 1-100 mL/min (0.00004-
0.004 ft3/min).
    6.2.1.7 Rotameter. For monitoring the air flow through the purging 
system (0-10 L/min)(0-0.4 ft3/min).
    6.2.1.8 Sample Splitters. Two heated flow restrictors (placed inside 
oven or heated to 120 10 [deg]C (248 18 [deg]F) ). At a purge rate of 6 L/min (0.2 
ft3/min), one will supply a constant flow to the first 
detector (the rest of the flow will be directed to the second sample 
splitter). The second splitter will split the analytical flow between 
the second detector and the flow restrictor. The approximate flow to the 
FID will be 40 mL/min (0.0014 ft3/min) and to the ELCD will 
be 15 mL/min (0.0005 ft3/min), but the exact flow must be 
adjusted to be compatible with the individual detector and to meet its 
linearity requirement. The two sample splitters will

[[Page 527]]

be connected to each other by 1/8[foot] OD (3.175 mm) stainless steel 
tubing.
    6.2.1.9 Flow Restrictor. Stainless steel tubing, 1/8[foot] OD (3.175 
mm), connecting the second sample splitter to the ice bath. Length is 
determined by the resulting pressure in the purging flask (as measured 
by the pressure gauge). The resulting pressure from the use of the flow 
restrictor shall be 6-7 psig.
    6.2.1.10 Filter Flask. With one-hole stopper. Used to hold ice bath. 
Excess purge gas is vented through the flask to prevent condensation in 
the flowmeter and to trap volatile organic compounds.
    6.2.1.11 Four-way Valve. Manually operated, stainless steel. Placed 
inside oven, used to bypass purging flask.
    6.2.1.12 On/Off Valves. Two, stainless steel. One heat resistant up 
to 130 [deg]C (266 [deg]F) and placed between oven and ELCD. The other a 
toggle valve used to control purge gas flow.
    6.2.1.13 Pressure Gauge. Range 0-40 psi. To monitor pressure in 
purging flask and coalescing filter.
    6.2.1.14 Sample Lines. Teflon, 1/4[foot] OD (6.35 mm), used inside 
the oven to carry purge gas to and from purging chamber and to and from 
coalescing filter to four-way valve. Also used to carry sample from 
four-way valve to first sample splitter.
    6.2.1.15 Detector Tubing. Stainless steel, 1/8[foot] OD (3.175 mm), 
heated to 120 10 [deg]C (248 18 [deg]F) . Used to carry sample gas from each sample 
splitter to a detector. Each piece of tubing must be wrapped with heat 
tape and insulating tape in order to insure that no cold spots exist. 
The tubing leading to the ELCD will also contain a heat-resistant on-off 
valve (Section 6.2.1.12) which shall also be wrapped with heat-tape and 
insulation.
    6.2.2 Volatile Organic Measurement System. Consisting of an FID to 
measure the carbon concentration of the sample and an ELCD to measure 
the chlorine concentration.
    6.2.2.1 FID. A heated FID meeting the following specifications is 
required.
    6.2.2.1.1 Linearity. A linear response ( 5 
percent) over the operating range as demonstrated by the procedures 
established in Section 10.1.1.
    6.2.2.1.2 Range. A full scale range of 50 pg carbon/sec to 50 [mu]g 
carbon/sec. Signal attenuators shall be available to produce a minimum 
signal response of 10 percent of full scale.
    6.2.2.1.3 Data Recording System. A digital integration system 
compatible with the FID for permanently recording the output of the 
detector. The recorder shall have the capability to start and stop 
integration at points selected by the operator or it shall be capable of 
the ``integration by slices'' technique (this technique involves 
breaking down the chromatogram into smaller increments, integrating the 
area under the curve for each portion, subtracting the background for 
each portion, and then adding all of the areas together for the final 
area count).
    6.2.2.2 ELCD. An ELCD meeting the following specifications is 
required. 1-propanol must be used as the electrolyte. The electrolyte 
flow through the conductivity cell shall be 1 to 2 mL/min (0.00004 to 
0.00007 ft\3\/min).

    Note: A \1/4\-in. ID (6.35 mm) quartz reactor tube is strongly 
recommended to reduce carbon buildup and the resulting detector 
maintenance.

    6.2.2.2.1 Linearity. A linear response ( 10 
percent) over the response range as demonstrated by the procedures in 
Section 10.1.2.
    6.2.2.2.2 Range. A full scale range of 5.0 pg/sec to 500 ng/sec 
chloride. Signal attenuators shall be available to produce a minimum 
signal response of 10 percent of full scale.
    6.2.2.2.3 Data Recording System. A digital integration system 
compatible with the output voltage range of the ELCD. The recorder must 
have the capability to start and stop integration at points selected by 
the operator or it shall be capable of performing the ``integration by 
slices'' technique.

                       7.0 Reagents and Standards

    7.1 Sampling.
    7.1.1 Polyethylene Glycol (PEG). Ninety-eight percent pure with an 
average molecular weight of 400. Before using the PEG, remove any 
organic compounds that might be detected as volatile organics by heating 
it to 120 [deg]C (248 [deg]F) and purging it with nitrogen at a flow 
rate of 1 to 2 L/min (0.04 to 0.07 ft\3\/min) for 2 hours. The cleaned 
PEG must be stored under a 1 to 2 L/min (0.04 to 0.07 ft\3\/min) 
nitrogen purge until use. The purge apparatus is shown in Figure 25D-4.
    7.2 Analysis.
    7.2.1 Sample Separation. The following are required for the sample 
purging step.
    7.2.1.1 PEG. Same as Section 7.1.1.
    7.2.1.2 Purge Gas. Zero grade nitrogen (N2), containing 
less than 1 ppm carbon.
    7.2.2 Volatile Organics Measurement. The following are required for 
measuring the VO concentration.
    7.2.2.1 Hydrogen (H2). Zero grade H2, 99.999 
percent pure.
    7.2.2.2 Combustion Gas. Zero grade air or oxygen as required by the 
FID.
    7.2.2.3 Calibration Gas. Pressurized gas cylinder containing 10 
percent propane and 1 percent 1,1-dichloroethylene by volume in 
nitrogen.
    7.2.2.4 Water. Deionized distilled water that conforms to American 
Society for Testing and Materials Specification D 1193-74, Type 3, is 
required for analysis. At the option of the analyst, the 
KMnO4 test for oxidizable organic matter may be omitted when 
high concentrations are not expected to be present.

[[Page 528]]

    7.2.2.5 1-Propanol. ACS grade or better. Electrolyte Solution. For 
use in the ELCD.
    7.3 Quality Assurance Audit Samples.
    7.3.1 It is recommended, but not required, that a performance audit 
sample be analyzed in conjunction with the field samples. The audit 
sample should be in a suitable sample matrix at a concentration similar 
to the actual field samples.
    7.3.2 When making compliance determinations, and upon availability, 
audit samples may be obtained from the appropriate EPA regional Office 
or from the responsible enforcement authority and analyzed in 
conjunction with the field samples.

    Note: The responsible enforcement authority should be notified at 
least 30 days prior to the test date to allow sufficient time for sample 
delivery.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Sampling.
    8.1.1 Sampling Plan Design and Development. Use the procedures in 
chapter nine of Reference 1 in Section 16 as guidance in developing a 
sampling plan.
    8.1.2 Single Phase or Well-mixed Waste.
    8.1.2.1 Install a sampling tap to obtain the sample at a point which 
is most representative of the unexposed waste (where the waste has had 
minimum opportunity to volatilize to the atmosphere). Assemble the 
sampling apparatus as shown in Figure 25D-5.
    8.1.2.2 Prepare the sampling containers as follows: Pour 30 mL of 
clean PEG into the container. PEG will reduce but not eliminate the loss 
of organics during sample collection. Weigh the sample container with 
the screw cap, the PEG, and any labels to the nearest 0.01 g and record 
the weight (mst). Store the containers in an ice bath until 1 
hour before sampling (PEG will solidify at ice bath temperatures; allow 
the containers to reach room temperature before sampling).
    8.1.2.3 Begin sampling by purging the sample lines and cooling coil 
with at least four volumes of waste. Collect the purged material in a 
separate container and dispose of it properly.
    8.1.2.4 After purging, stop the sample flow and direct the sampling 
tube to a preweighed sample container, prepared as described in Section 
8.1.2.2. Keep the tip of the tube below the surface of the PEG during 
sampling to minimize contact with the atmosphere. Sample at a flow rate 
such that the temperature of the waste is less than 10 [deg]C (50 
[deg]F). Fill the sample container and immediately cap it (within 5 
seconds) so that a minimum headspace exists in the container. Store 
immediately in a cooler and cover with ice.
    8.1.3 Multiple-phase Waste. Collect a 10 g sample of each phase of 
waste generated using the procedures described in Section 8.1.2 or 
8.1.5. Each phase of the waste shall be analyzed as a separate sample. 
Calculate the weighted average VO concentration of the waste using 
Equation 25D-13 (Section 12.14).
    8.1.4 Solid waste. Add approximately 10 g of the solid waste to a 
container prepared in the manner described in Section 8.1.2.2, 
minimizing headspace. Cap and chill immediately.
    8.1.5 Alternative to Tap Installation. If tap installation is 
impractical or impossible, fill a large, clean, empty container by 
submerging the container into the waste below the surface of the waste. 
Immediately fill a container prepared in the manner described in Section 
8.1.2.2 with approximately 10 g of the waste collected in the large 
container. Minimize headspace, cap and chill immediately.
    8.1.6 Alternative sampling techniques may be used upon the approval 
of the Administrator.
    8.2 Sample Recovery.
    8.2.1 Assemble the purging apparatus as shown in Figures 25D-1 and 
25D-2. The oven shall be heated to 75 2 [deg]C 
(167 3.6 [deg]F). The sampling lines leading from 
the oven to the detectors shall be heated to 120 10 [deg]C (248 18 [deg]F) with no 
cold spots. The flame ionization detector shall be operated with a 
heated block. Adjust the purging lance so that it reaches the bottom of 
the chamber.
    8.2.2 Remove the sample container from the cooler, and wipe the 
exterior of the container to remove any extraneous ice, water, or other 
debris. Reweigh the sample container to the nearest 0.01 g, and record 
the weight (msf). Pour the contents of the sample container 
into the purging flask, rinse the sample container three times with a 
total of 20 mL of PEG (since the sample container originally held 30 mL 
of PEG, the total volume of PEG added to the purging flask will be 50 
mL), transferring the rinsings to the purging flask after each rinse. 
Cap purging flask between rinses. The total volume of PEG in the purging 
flask shall be 50 mL. Add 50 mL of water to the purging flask.

                           9.0 Quality Control

    9.1 Quality Control Samples. If audit samples are not available, 
prepare and analyze the two types of quality control samples (QCS) 
listed in Sections 9.4.1 and 9.4.2. Before placing the system in 
operation, after a shutdown of greater than six months, and after any 
major modifications, analyze each QCS in triplicate. For each detector, 
calculate the percent recovery by dividing measured concentration by 
theoretical concentration and multiplying by 100. Determine the mean 
percent recovery for each detector for each QCS triplicate analysis. The 
RSD for any triplicate analysis shall be <=10 percent. For QCS 1 
(methylene chloride), the percent recovery shall be =90 
percent for carbon as methane, and =55 percent for chlorine

[[Page 529]]

as chloride. For QCS 2 (1,3-dichloro-2-propanol), the percent recovery 
shall be <=15 percent for carbon as methane, and <=6 percent for 
chlorine as chloride. If the analytical system does not meet the above-
mentioned criteria for both detectors, check the system parameters 
(temperature, system pressure, purge rate, etc.), correct the problem, 
and repeat the triplicate analysis of each QCS.
    9.1.1 QCS 1, Methylene Chloride. Prepare a stock solution by 
weighing, to the nearest 0.1 mg, 55 [mu]L of HPLC grade methylene 
chloride in a tared 5 mL volumetric flask. Record the weight in 
milligrams, dilute to 5 mL with cleaned PEG, and inject 100 [mu]L of the 
stock solution into a sample prepared as a water blank (50 mL of cleaned 
PEG and 60 mL of water in the purging flask). Analyze the QCS according 
to the procedures described in Sections 10.2 and 10.3, excluding Section 
10.2.2. To calculate the theoretical carbon concentration (in mg) in QCS 
1, multiply mg of methylene chloride in the stock solution by 3.777 x 
10-3. To calculate the theoretical chlorine concentration (in 
mg) in QCS 1, multiply mg of methylene chloride in the stock solution by 
1.670 x 10-2.
    9.1.2 QCS 2, 1,3-dichloro-2-propanol. Prepare a stock solution by 
weighing, to the nearest 0.1 mg, 60 [mu]L of high purity grade 1,3-
dichloro-2-propanol in a tared 5 mL volumetric flask. Record the weight 
in milligrams, dilute to 5 mL with cleaned PEG, and inject 100 [mu]L of 
the stock solution into a sample prepared as a water blank (50 mL of 
cleaned PEG and 60 mL of water in the purging flask). Analyze the QCS 
according to the procedures described in Sections 10.2 and 10.3, 
excluding Section 10.2.2. To calculate the theoretical carbon 
concentration (in mg) in QCS 2, multiply mg of 1,3-dichloro-2-propanol 
in the stock solution by 7.461 x 10-3. To calculate the 
theoretical chlorine concentration (in mg) in QCS 2, multiply mg of 1,3-
dichloro-2-propanol in the stock solution by 1.099 x 10-2.
    9.1.3 Routine QCS Analysis. For each set of compliance samples (in 
this context, set is per facility, per compliance test), analyze one QCS 
1 and one QCS 2 sample. The percent recovery for each sample for each 
detector shall be 13 percent of the mean recovery 
established for the most recent set of QCS triplicate analysis (Section 
9.4). If the sample does not meet this criteria, check the system 
components and analyze another QCS 1 and 2 until a single set of QCS 
meet the 13 percent criteria.

                  10.0 Calibration and Standardization

    10.1 Initial Performance Check of Purging System. Before placing the 
system in operation, after a shutdown of greater than six months, after 
any major modifications, and at least once per month during continuous 
operation, conduct the linearity checks described in Sections 10.1.1 and 
10.1.2. Install calibration gas at the three-way calibration gas valve. 
See Figure 25D-1.
    10.1.1 Linearity Check Procedure. Using the calibration standard 
described in Section 7.2.2.3 and by varying the injection time, it is 
possible to calibrate at multiple concentration levels. Use Equation 
25D-3 to calculate three sets of calibration gas flow rates and run 
times needed to introduce a total mass of carbon, as methane, 
(mc) of 1, 5, and 10 mg into the system (low, medium and high 
FID calibration, respectively). Use Equation 25D-4 to calculate three 
sets of calibration gas flow rates and run times needed to introduce a 
total chloride mass (mch) of 1, 5, and 10 mg into the system 
(low, medium and high ELCD calibration, respectively). With the system 
operating in standby mode, allow the FID and the ELCD to establish a 
stable baseline. Set the secondary pressure regulator of the calibration 
gas cylinder to the same pressure as the purge gas cylinder and set the 
proper flow rate with the calibration flow controller (see Figure 25D-
1). The calibration gas flow rate can be measured with a flowmeter 
attached to the vent position of the calibration gas valve. Set the 
four-way bypass valve to standby position so that the calibration gas 
flows through the coalescing filter only. Inject the calibration gas by 
turning the calibration gas valve from vent position to inject position. 
Continue the calibration gas flow for the appropriate period of time 
before switching the calibration valve to vent position. Continue 
recording the response of the FID and the ELCD for 5 min after switching 
off calibration gas flow. Make triplicate injections of all six levels 
of calibration.
    10.1.2 Linearity Criteria. Calculate the average response factor 
(Equations 25D-5 and 25D-6) and the relative standard deviation (RSD) 
(Equation 25D-10) at each level of the calibration curve for both 
detectors. Calculate the overall mean of the three response factor 
averages for each detector. The FID linearity is acceptable if each 
response factor is within 5 percent of the overall mean and if the RSD 
for each set of triplicate injections is less than 5 percent. The ELCD 
linearity is acceptable if each response factor is within 10 percent of 
the overall mean and if the RSD for each set of triplicate injections is 
less than 10 percent. Record the overall mean value of the response 
factors for the FID and the ELCD. If the calibration for either the FID 
or the ELCD does not meet the criteria, correct the detector/system 
problem and repeat Sections 10.1.1 and 10.1.2.
    10.2 Daily Calibrations.
    10.2.1 Daily Linearity Check. Follow the procedures outlined in 
Section 10.1.1 to analyze the medium level calibration for both the FID 
and the ELCD in duplicate at the start of the day. Calculate the 
response factors and the RSDs for each detector. For the

[[Page 530]]

FID, the calibration is acceptable if the average response factor is 
within 5 percent of the overall mean response factor (Section 10.1.2) 
and if the RSD for the duplicate injection is less than 5 percent. For 
the ELCD, the calibration is acceptable if the average response factor 
is within 10 percent of the overall mean response factor (Section 
10.1.2) and if the RSD for the duplicate injection is less than 10 
percent. If the calibration for either the FID or the ELCD does not meet 
the criteria, correct the detector/system problem and repeat Sections 
10.1.1 and 10.1.2.
    10.2.2 Calibration Range Check.
    10.2.2.1 If the waste concentration for either detector falls below 
the range of calibration for that detector, use the procedure outlined 
in Section 10.1.1 to choose two calibration points that bracket the new 
target concentration. Analyze each of these points in triplicate (as 
outlined in Section 10.1.1) and use the criteria in Section 10.1.2 to 
determine the linearity of the detector in this ``mini-calibration'' 
range.
    10.2.2.2 After the initial linearity check of the mini-calibration 
curve, it is only necessary to test one of the points in duplicate for 
the daily calibration check (in addition to the points specified in 
Section 10.2.1). The average daily mini-calibration point should fit the 
linearity criteria specified in Section 10.2.1. If the calibration for 
either the FID or the ELCD does not meet the criteria, correct the 
detector/system problem and repeat the calibration procedure mentioned 
in the first paragraph of Section 10.2.2. A mini-calibration curve for 
waste concentrations above the calibration curve for either detector is 
optional.
    10.3 Analytical Balance. Calibrate against standard weights.

                              11.0 Analysis

    11.1 Sample Analysis.
    11.1.1 Turn on the constant temperature chamber and allow the 
temperature to equilibrate at 75 2 [deg]C (167 
3.6 [deg]F). Turn the four-way valve so that the 
purge gas bypasses the purging flask, the purge gas flowing through the 
coalescing filter and to the detectors (standby mode). Turn on the purge 
gas. Allow both the FID and the ELCD to warm up until a stable baseline 
is achieved on each detector. Pack the filter flask with ice. Replace 
ice after each run and dispose of the waste water properly. When the 
temperature of the oven reaches 75 2 [deg]C (167 
3.6 [deg]F), start both integrators and record 
baseline. After 1 min, turn the four-way valve so that the purge gas 
flows through the purging flask, to the coalescing filter and to the 
sample splitters (purge mode). Continue recording the response of the 
FID and the ELCD. Monitor the readings of the pressure gauge and the 
rotameter. If the readings fall below established setpoints, stop the 
purging, determine the source of the leak, and resolve the problem 
before resuming. Leaks detected during a sampling period invalidate that 
sample.
    11.1.2 As the purging continues, monitor the output of the detectors 
to make certain that the analysis is proceeding correctly and that the 
results are being properly recorded. Every 10 minutes read and record 
the purge flow rate, the pressure and the chamber temperature. Continue 
the purging for 30 minutes.
    11.1.3 For each detector output, integrate over the entire area of 
the peak starting at 1 minute and continuing until the end of the run. 
Subtract the established baseline area from the peak area. Record the 
corrected area of the peak. See Figure 25D-6 for an example integration.
    11.2 Water Blank. A water blank shall be analyzed for each batch of 
cleaned PEG prepared. Transfer about 60 mL of water into the purging 
flask. Add 50 mL of the cleaned PEG to the purging flask. Treat the 
blank as described in Sections 8.2 and 8.3, excluding Section 8.2.2. 
Calculate the concentration of carbon and chlorine in the blank sample 
(assume 10 g of waste as the mass). A VO concentration equivalent to 
<=10 percent of the applicable standard may be subtracted from the 
measured VO concentration of the waste samples. Include all blank 
results and documentation in the test report.
    11.3 Audit Sample Analysis.
    11.3.1 When the method is used to analyze samples to demonstrate 
compliance with a source emission regulation, an audit sample, if 
available, must be analyzed.
    11.3.2 Concurrently analyze the audit sample and the compliance 
samples in the same manner to evaluate the technique of the analyst and 
the standards preparation.
    11.3.3 The same analyst, analytical reagents, and analytical system 
must be used for the compliance samples and the audit sample. If this 
condition is met, duplicate auditing of subsequent compliance analyses 
for the same enforcement agency within a 30-day period is waived. An 
audit sample may not be used to validate different sets of compliance 
samples under the jurisdiction of separate enforcement agencies, unless 
prior arrangements have been made with both enforcement agencies.
    11.4 Audit Sample Results.
    11.4.1 Calculate the audit sample concentrations and submit results 
using the instructions provided with the audit samples.
    11.4.2 Report the results of the audit samples and the compliance 
determination samples along with their identification numbers, and the 
analyst's name to the responsible enforcement authority. Include this 
information with reports of any subsequent compliance analyses for the 
same enforcement authority during the 30-day period.

[[Page 531]]

                   12.0 Data Analysis and Calculations

    12.1 Nomenclature.

Ab=Area under the water blank response curve, counts.
Ac=Area under the calibration response curve, counts.
As=Area under the sample response curve, counts.
C=Concentration of volatile organics in the sample, ppmw.
Cc=Concentration of carbon, as methane, in the calibration 
gas, mg/L.
Cch=Concentration of chloride in the calibration gas, mg/L.
Cj=VO concentration of phase j, ppmw.
DRt=Average daily response factor of the FID, mg 
CH4/counts.
Drth=Average daily response factor of the ELCD, mg 
Cl-/counts.
Fj=Weight fraction of phase j present in the waste.
mc=Mass of carbon, as methane, in a calibration run, mg.
mch=Mass of chloride in a calibration run, mg.
ms=Mass of the waste sample, g.
msc=Mass of carbon, as methane, in the sample, mg.
msf=Mass of sample container and waste sample, g.
msh=Mass of chloride in the sample, mg.
mst=Mass of sample container prior to sampling, g.
mVO=Mass of volatile organics in the sample, mg.
n=Total number of phases present in the waste.
Pp=Percent propane in calibration gas (L/L).
Pvc=Percent 1,1-dichloroethylene in calibration gas (L/L).
Qc=Flow rate of calibration gas, L/min.
tc=Length of time standard gas is delivered to the analyzer, 
min.
W=Weighted average VO concentration, ppmw.

    12.2 Concentration of Carbon, as Methane, in the Calibration Gas.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.386
    
    12.3 Concentration of Chloride in the Calibration Gas.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.387
    
    12.4 Mass of Carbon, as Methane, in a Calibration Run.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.388
    
    12.5 Mass of Chloride in a Calibration Run.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.389
    
    12.6 FID Response Factor, mg/counts.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.390
    
    12.7 ELCD Response Factor, mg/counts.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.391
    
    12.8 Mass of Carbon in the Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.392
    
    12.9 Mass of Chloride in the Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.393
    
    12.10 Mass of Volatile Organics in the Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.394
    
    12.11 Relative Standard Deviation.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.395
    
    12.12 Mass of Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.396
    
    12.13 Concentration of Volatile Organics in Waste.

[[Page 532]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.397

    12.14 Weighted Average VO Concentration of Multi-phase Waste.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.398
    
                   13.0 Method Performance. [Reserved]

                  14.0 Pollution Prevention. [Reserved]

                    15.0 Waste Management. [Reserved]

                             16.0 References

    1. ``Test Methods for Evaluating Solid Waste, Physical/Chemistry 
Methods'', U.S. Environmental Protection Agency. Publication SW-846, 3rd 
Edition, November 1986 as amended by Update I, November 1990.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 533]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.399


[[Page 534]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.400


[[Page 535]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.401


[[Page 536]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.402


[[Page 537]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.403


[[Page 538]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.404

Method 25E--Determination of Vapor Phase Organic Concentration in Waste 
                                 Samples

    Note: Performance of this method should not be attempted by persons 
unfamiliar with the operation of a flame ionization detector (FID) nor 
by those who are unfamiliar with source sampling because knowledge 
beyond the scope of this presentation is required. This method is not 
inclusive with respect to specifications (e.g., reagents and standards) 
and calibration procedures. Some material is incorporated by reference 
from other methods. Therefore, to obtain reliable results, persons using 
this method should have a thorough knowledge of at least the following 
additional test methods: Method 106, part 61, Appendix B, and Method 18, 
part 60, Appendix A.

[[Page 539]]

                        1.0 Scope and Application

    1.1 Applicability. This method is applicable for determining the 
vapor pressure of waste cited by an applicable regulation.
    1.2 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 The headspace vapor of the sample is analyzed for carbon content 
by a headspace analyzer, which uses an FID.

                       3.0 Definitions. [Reserved]

                            4.0 Interferences

    4.1 The analyst shall select the operating parameters best suited to 
the requirements for a particular analysis. The analyst shall produce 
confirming data through an adequate supplemental analytical technique 
and have the data available for review by the Administrator.

                         5.0 Safety. [Reserved]

                       6.0 Equipment and Supplies

    6.1 Sampling. The following equipment is required:
    6.1.1 Sample Containers. Vials, glass, with butyl rubber septa, 
Perkin-Elmer Corporation Numbers 0105-0129 (glass vials), B001-0728 
(gray butyl rubber septum, plug style), 0105-0131 (butyl rubber septa), 
or equivalent. The seal must be made from butyl rubber. Silicone rubber 
seals are not acceptable.
    6.1.2 Vial Sealer. Perkin-Elmer Number 105-0106, or equivalent.
    6.1.3 Gas-Tight Syringe. Perkin-Elmer Number 00230117, or 
equivalent.
    6.1.4 The following equipment is required for sampling.
    6.1.4.1 Tap.
    6.1.4.2 Tubing. Teflon, 0.25-in. ID.

    Note: Mention of trade names or specific products does not 
constitute endorsement by the Environmental Protection Agency.

    6.1.4.3 Cooling Coil. Stainless steel (304), 0.25 in.-ID, equipped 
with a thermocouple at the coil outlet.
    6.2 Analysis. The following equipment is required.
    6.2.1 Balanced Pressure Headspace Sampler. Perkin-Elmer HS-6, HS-
100, or equivalent, equipped with a glass bead column instead of a 
chromatographic column.
    6.2.2 FID. An FID meeting the following specifications is required.
    6.2.2.1 Linearity. A linear response (5 
percent) over the operating range as demonstrated by the procedures 
established in Section 10.2.
    6.2.2.2 Range. A full scale range of 1 to 10,000 parts per million 
(ppm) propane (C3H8). Signal attenuators shall be 
available to produce a minimum signal response of 10 percent of full 
scale.
    6.2.3 Data Recording System. Analog strip chart recorder or digital 
integration system compatible with the FID for permanently recording the 
output of the detector.
    6.2.4 Temperature Sensor. Capable of reading temperatures in the 
range of 30 to 60 [deg]C (86 to 140 [deg]F) with an accuracy of 0.1 [deg]C (0.2 [deg]F).

                       7.0 Reagents and Standards

    7.1 Analysis. The following items are required for analysis.
    7.1.1 Hydrogen (H2). Zero grade hydrogen, as required by 
the FID.
    7.1.2 Carrier Gas. Zero grade nitrogen, containing less than 1 ppm 
carbon (C) and less than 1 ppm carbon dioxide.
    7.1.3 Combustion Gas. Zero grade air or oxygen as required by the 
FID.
    7.2 Calibration and Linearity Check.
    7.2.1 Stock Cylinder Gas Standard. 100 percent propane. The 
manufacturer shall: (a) Certify the gas composition to be accurate to 
3 percent or better (see Section 7.2.1.1); (b) 
recommend a maximum shelf life over which the gas concentration does not 
change by greater than 5 percent from the 
certified value; and (c) affix the date of gas cylinder preparation, 
certified propane concentration, and recommended maximum shelf life to 
the cylinder before shipment to the buyer.
    7.2.1.1 Cylinder Standards Certification. The manufacturer shall 
certify the concentration of the calibration gas in the cylinder by (a) 
directly analyzing the cylinder and (b) calibrating his analytical 
procedure on the day of cylinder analysis. To calibrate his analytical 
procedure, the manufacturer shall use, as a minimum, a three-point 
calibration curve.
    7.2.1.2 Verification of Manufacturer's Calibration Standards. Before 
using, the manufacturer shall verify each calibration standard by (a) 
comparing it to gas mixtures prepared in accordance with the procedure 
described in Section 7.1 of Method 106 of Part 61, Appendix B, or by (b) 
calibrating it against Standard Reference Materials (SRM's) prepared by 
the National Bureau of Standards, if such SRM's are available. The 
agreement between the initially determined concentration value and the 
verification concentration value must be within 5 
percent. The manufacturer must reverify all calibration standards on a 
time interval consistent with the shelf life of the cylinder standards 
sold.

      8.0 Sampling Collection, Preservation, Storage, and Transport

    8.1 Install a sampling tap to obtain a sample at a point which is 
most representative of the unexposed waste (where the waste has had 
minimum opportunity to volatilize to

[[Page 540]]

the atmosphere). Assemble the sampling apparatus as shown in Figure 25E-
1.
    8.2 Begin sampling by purging the sample lines and cooling coil with 
at least four volumes of waste. Collect the purged material in a 
separate container and dispose of it properly.
    8.3 After purging, stop the sample flow and transfer the Teflon 
sampling tube to a sample container. Sample at a flow rate such that the 
temperature of the waste is <10 [deg]C (<50 [deg]F). Fill the sample 
container halfway (5 percent) and cap it within 5 
seconds. Store immediately in a cooler and cover with ice.
    8.4 Alternative sampling techniques may be used upon the approval of 
the Administrator.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.2, 10.3....................  FID calibration    Ensure precision of
                                 and response       analytical results.
                                 check.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    Note: Maintain a record of performance of each item.

    10.1 Use the procedures in Sections 10.2 to calibrate the headspace 
analyzer and FID and check for linearity before the system is first 
placed in operation, after any shutdown longer than 6 months, and after 
any modification of the system.
    10.2 Calibration and Linearity. Use the procedures in Section 10 of 
Method 18 of Part 60, Appendix A, to prepare the standards and calibrate 
the flowmeters, using propane as the standard gas. Fill the calibration 
standard vials halfway (5 percent) with deionized 
water. Purge and fill the airspace with calibration standard. Prepare a 
minimum of three concentrations of calibration standards in triplicate 
at concentrations that will bracket the applicable cutoff. For a cutoff 
of 5.2 kPa (0.75 psi), prepare nominal concentrations of 30,000, 50,000, 
and 70,000 ppm as propane. For a cutoff of 27.6 kPa (4.0 psi), prepare 
nominal concentrations of 200,000, 300,000, and 400,000 ppm as propane.
    10.2.1 Use the procedures in Section 11.3 to measure the FID 
response of each standard. Use a linear regression analysis to calculate 
the values for the slope (k) and the y-intercept (b). Use the procedures 
in Sections 12.3 and 12.2 to test the calibration and the linearity.
    10.3 Daily FID Calibration Check. Check the calibration at the 
beginning and at the end of the daily runs by using the following 
procedures. Prepare 2 calibration standards at the nominal cutoff 
concentration using the procedures in Section 10.2. Place one at the 
beginning and one at the end of the daily run. Measure the FID response 
of the daily calibration standard and use the values for k and b from 
the most recent calibration to calculate the concentration of the daily 
standard. Use an equation similar to 25E-2 to calculate the percent 
difference between the daily standard and Cs. If the 
difference is within 5 percent, then the previous values for k and b can 
be used. Otherwise, use the procedures in Section 10.2 to recalibrate 
the FID.

                       11.0 Analytical Procedures

    11.1 Allow one hour for the headspace vials to equilibrate at the 
temperature specified in the regulation. Allow the FID to warm up until 
a stable baseline is achieved on the detector.
    11.2 Check the calibration of the FID daily using the procedures in 
Section 10.3.
    11.3 Follow the manufacturer's recommended procedures for the normal 
operation of the headspace sampler and FID.
    11.4 Use the procedures in Sections 12.4 and 12.5 to calculate the 
vapor phase organic vapor pressure in the samples.
    11.5 Monitor the output of the detector to make certain that the 
results are being properly recorded.

                   12.0 Data Analysis and Calculations

    12.1 Nomenclature.

A=Measurement of the area under the response curve, counts.
b=y-intercept of the linear regression line.
Ca=Measured vapor phase organic concentration of sample, ppm 
as propane.
Cma=Average measured vapor phase organic concentration of 
standard, ppm as propane.
Cm=Measured vapor phase organic concentration of standard, 
ppm as propane.
Cs=Calculated standard concentration, ppm as propane.
k=Slope of the linear regression line.
Pbar=Atmospheric pressure at analysis conditions, mm Hg (in. 
Hg).
P*=Organic vapor pressure in the sample, kPa (psi).
PD=Percent difference between the average measured vapor phase organic 
concentration (Cm) and the calculated standard concentration 
(Cs).
RSD=Relative standard deviation.
[beta] =1.333 x 10-7 kPa/[(mm Hg)(ppm)], (4.91 x 
10-7 psi/[(in. Hg)(ppm)])


[[Page 541]]


    12.2 Linearity. Use the following equation to calculate the measured 
standard concentration for each standard vial.
[GRAPHIC] [TIFF OMITTED] TR17OC00.405

    12.2.1 Calculate the average measured standard concentration 
(Cma) for each set of triplicate standards and use the 
following equation to calculate PD between Cma and 
Cs. The instrument linearity is acceptable if the PD is 
within five for each standard.
[GRAPHIC] [TIFF OMITTED] TR17OC00.406

    12.3. Relative Standard Deviation (RSD). Use the following equation 
to calculate the RSD for each triplicate set of standards.
[GRAPHIC] [TIFF OMITTED] TR17OC00.407

The calibration is acceptable if the RSD is within five for each 
standard concentration.
    12.4 Concentration of organics in the headspace. Use the following 
equation to calculate the concentration of vapor phase organics in each 
sample.
[GRAPHIC] [TIFF OMITTED] TR17OC00.408

    12.5 Vapor Pressure of Organics in the Headspace Sample. Use the 
following equation to calculate the vapor pressure of organics in the 
sample.
[GRAPHIC] [TIFF OMITTED] TR17OC00.409

                   13.0 Method Performance. [Reserved]

                  14.0 Pollution Prevention. [Reserved]

                    15.0 Waste Management. [Reserved]

                             16.0 References

    1. Salo, Albert E., Samuel Witz, and Robert D. MacPhee. 
``Determination of Solvent Vapor Concentrations by Total Combustion 
Analysis: a Comparison of Infared with Flame Ionization Detectors. Paper 
No. 75-33.2. (Presented at the 68th Annual Meeting of the Air Pollution 
Control Association. Boston, Massachusetts.
    2. Salo, Albert E., William L. Oaks, and Robert D. MacPhee. 
``Measuring the Organic Carbon Content of Source Emissions for Air 
Pollution Control. Paper No. 74-190. (Presented at the 67th Annual 
Meeting of the Air Pollution Control Association. Denver, Colorado. June 
9-13, 1974.) p. 25.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 542]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.412


[36 FR 24877, Dec. 23, 1971]

    Editorial Note: For Federal Register citations affecting part 60, 
appendix A see the List of CFR Sections Affected, which appears in the 
Finding Aids section of the printed volume and on GPO Access.