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ABSTRACT

 Global cloud cover conditions are commonly required for analyzing
satellite data of relatively coarse spatial resolution such as the Nimbus 7
Earth Radiation Budget (ERB) measurements or the Earth Radiation Budget
Experiment (ERBE) broadband scanner data. Cloud information is reqqired so
that measured broadband radiance at the satellite can be converted to an

estimate of radiative flux at the top of the earth’s atmosphere. The

" present paper discusses the application of a maximum likelihood estimation

(MLE) technique to the problem of cloud cover determination for coarse
resolution broadband satellite data. The technique uses empirical models
for the angular dependence of radiance and is tested against simulated
satellite observations. When used to determine cloud conditions for the
inversion of satéllite measured radiances to fluxes, the MLE approach shows
substantial improvements over both a lambertian earth éssumption and the
clear/clou& threshold used in the inversion of Nimbus 3 and Nimbus 7 ERB
scanner data. ‘The MLE methodology will be uséd:in the 6p§rationa1

processing of the ERBE scanner data.



1. INTRODUCTION

The earth radiation budgef has been estimated from satellite
measurements since the launch of the Explorer 7 spacecraft in 1959 (House et
al., 1986). The first measurements were made using instruments with a field
of view encompassing the entire earth visible from the satellite. The
attempt to obtain smaller spatial scale regional data began with the use of

‘scannihg ra&iometers on the TIROS satellites and was followed by Nimbus 2,
ﬁimbus 3, Nimbus 6, Nimbus 7, and most recently the Earth Radiation Budget
Experiment (ERBE). The smaller spatial field of view, however, necessitates
a limited angular coverage for each scanner observation. In this case the
direct measurement is radiance, while the desired measurement is radiative
flux at the top of the atmosphere. Derivation of radiative flux using the
scanner radiance observations then requires the use of angular dependence
models (ADM's) to correct for the anisotropy of the radiation fields. To a
large extent, the instantaneous accuracy of the estimated earth radiation
budget.is limited by the uncertainty in applying the ADM’s (see Arking and
Levine, 1967; Ruff et al., 1968; Raschke et al., 1973; Taylor and Stowe,
1984).

There are two major causes of variability in ADM’'s: change in
geographic surface type (ocean, land, etc.) and change in cloud cover
conditions (variable cloed cover and cloud 3-dimensional geometry). While
surface conditions can in general be handled using a static geographic map,
cloud conditions require dynamic identification of the scene being viewed in
order to achieve accurate flux estimates.

The Nimbus 3 (N3) experiment (Raschke et al., 1973) ma&e the first

attempt to correct for the anisotropic character of the radiation emitted or



reflected by the earth/atmosphere system. The N3 data were classified as
viewing either ocean, land/cloud, or snow for shortwave correction.

Longwave correction used two models, one for polar data (poleward of 70°
latitude) and one for non-polar data. The five scene‘types selected were a
result of limited data available to describe ADM’s and of limited ability to
distinguish clear from cloudy scenes. _

As a result of the experience with the N3 data, the Nimbus 7 Earth
Radiation Budget (N7-ERB) broadband scanner employed a bi-axial scan pattern
which allowed the collection of data for é complete range of viewing zenith
angle and viewing azimuth angles. These data were used to develop more
complete ADM's over a wide range of scene types. Taylor and Stowe (1984)
developed new ADM's using the N7-ERB data to construct bidirectional models
for a range of uniform surface types; clear ocean, land, snow, ice and four
altitude levels of overcast cloud. In order to derive these models, the ﬁ7-
ERB shortwave and longwave radiances were sorted into each of the scene
types. Surface.type claSsifiéation was derived by navigation of the data
and»subsequent comparison with a geographic map. Cloud cover was determined
initially using the N7 TemperatureiHumidity Infrared Radiometer (THIR) data.
- Four of these AD&'S for ocean, land, cloud, aﬁd snow/ice were usea in
éperational processing. of the N7-ERB scanner data to produce broadband flux
éstimates (Jacobowitz et al., 1984). Cloud idgntification was performéd for
~each ERB scanner- field of view by setting thresholds to distinguish clear
from cloud for both shortwave and longwave radiance. The thresholds were
constant for all.latitudes equatorward of-67.5‘ latitude and were-
independent of solar zenith angle, viewing zenith angle, and viewing azimuth
angle. As shown by Arking and Vemury (1984) and Vemury et al. (1984), the

simple threshold cloud/clear classification gives derived scanner shortwave |



reflected albedos which are larger than corresponding wide field of view
shortwave albedos by several percent albedo. The primary cause of the
discrepancy appears to be a substantial increase in the threshold determined
cloud cover as satellite viewing zenith angle increases (Vemury et al.,

1984) . |

A second concern is the use of only one cloud ADM derived using uniform
overcast cloud conditions. Since directional refyectance patterns are a
strong function of cloud geometry (Davies, 1984), it is likely that multi-
level cloud systems or partial cloud cover conditions will give different
ADM’'s than either clear or uniform overcast conditions. Davies' results
also suggest that partial cloud cover directional patterns are not simply a
linear combination of clear and overcast patterns.

In view of these concerns, the Earth Radiation Budget Experiment (ERBE)
has chosen a bispectral cloud identification algorithm that uses b:oadband
shortwave and longwave radiances simultaneously to select one of four cloud
conditions (Smith et al., 1986). These four types are clear (0% - 5% cloud
cover), partly-cloudy (5% - 50% cloud cover), mostly-cloudy (50% - 95% cloud
cover), and overcast (95% - 100% cloud cover). A set of ADM's for each of
thése cloud conditions ha; been developed using the methodology described in
Taylér and Stowe (1984)»from N7-ERB data. Cloudridentification for these
new ADM's was imprbved over the earlier work by the incorporation of both
THIR and TOMS data from the N7 satelliﬁe (Stowe-et al., 1985). The TOMS
measurement of solar reflected energy impréves.identificatiqn of low ievel
clouds with small contrast in the thermal infrared THIR data.

Note that these cloud classes are based on cloud cover and not cléud
height. There are two primary reasons for this selection. First, broadband

radiances with 30 km or larger fields of view are inadequate to determine



both cloud cover and cloud height categories simultaneously. Second, the
primary purpose of the cloud identification is to select ADM’'s to correct
radiance to flux. The largest corrections occur for shortwave ADM’s as
opposed to longwave ADM’s or limb darkening models. These shortwave ADM's
are dominated by changes in cloud cover (Davies, 1984) as opposed to cloud
height, and the 3-dimensional broken cloud directional patterns discussed by
Davies (1984) are implicitly included. Shortwave ADM’'s are also expected to
vary with changes in cloud optical depth, and tﬁese effects are also
included implicitly in the empirical ADM's. The ADM for each cloud cover
category is then a composite for a range of cloud cover of all cloud height
and cloud optical depths observed in the N7-ERB data set.

The ERBE will use a statistical appfoach to replace the constant
thresholds used in previous radiation budget studies to distinguish clear
-frém'cloudy conditions. The approach taken is the use of a maximum
likelihood estimator (MLE). Thé a priori data for this mefhod are provided
by the N7-ERB biaxial scanner and include both the ADM’s and second order
statistical moments. The ADM’'s and the statistics both are functions of
viewing zenith angle, viewing azimuth angle (rélatiﬁe to the solar plane),
and solar zenith angle. In the most general solution, a priori clear-sky
regional fluxés are also used in the MLE algorithm.

Section 2 formulates the MLE algorithm, sectionA3 relates the algorithm
to simpler threshold methods, section 4 presents an error analysis using
simulated radiances, section 5 discusses the error analysis results, and.

section 6 gives summary conclusions.



2. Formulation of the Maximum Likelihood Estimator

The relation between flux M in Wm-2 and radiance £ in Wm-zsr-1 is given

by the angular dependence model (ADM) definition

R(0,6,0) = m L(0,6,00) M- (1a)

where R is the ADM value, § is the viewing zenith angle of outgoing radiance
L, 00 is the solar zenith angle, and ¢ is the viewing azimuth angle of L
relative to the sun (see Smith et al., 1986, for further description of the
angle definitions). Forward scatter is given by ¢ = 0. A subscript "sw" is
used to denote shortwave radiation at wavelengths less than Sum (i.e.
reflected solar radiation), and a subscript "lw" is used to denote longwave
radiation at wavelengths greater than 5um. Thus, the shortwave ADM or
bidirectional model is denoted as st and, from the definition given in (la)

has the normalization property
2 =/2

n'lj IRSW(0,¢,0O) cosd sind df dp = 1 (1)

¢=0 6=0
Similarly, the longwave ADM is Ry and has normalization

n/2

2 I le(o,g) cosf sind 44 - 1 v (1c)
=0

A

where £ is colatitude. It follows from (la) that an estimate of flux M at

the top of the atmosphere (TOA) is given by



M =xn £ R (2)

where £ is the measured radiance from satellite altitude. R varies,
however, with both geographic surface type and cloud cover condition.
Geographic surface type is determined using an a priori map. The purpose of
the MLE algorithm is to classify cloudiness into one of four broad
categories; clear, partly cloudy, mostly cloudy, or overcast. This scene
identification selects the appropriate.ADM used to convert a satellite

A

measured radiance to an estimate of flux M at the TOA.

2.1 Algorithm definition.

The MLE algorithm requires a priori training data. In essence, it
calculates from a priori data the expected satellite measurements for each
of the four cloud cover conditions and identifies the one which is most
likely in a statistical sense. Suppose the t&o broadband measurements are
given by zsw and zlw' From the mgasurement location on ﬁhe ear;h, the
geographic surface type can be determined; and from a priori data, the mean
clear-sky 1ongwavé flux Miir and the mean clear-sky overhead sun albedo

clr

ag of the viewed area can be determined. Thus, if the viewed area was

clear, then the expected mean longwave measurement would be

clr -1 elr - clr -
L =- R (6,6 M (3a)
1w 1w 1w .

and the expected mean shortwave measurement would be

clr -1 clr clr clr
L - R (,6,8 ) E cosf & (6 ) a (3b)
sSW sSW 0 0 0 sw O 0



where EO is the solar constant corrected to the earth-sun distance

appropriate for the day of the observation, and 6:$r(00) is the model
representing the change in clear-sky albedo with solar zenith angle such

.clr clr _.clx clr
that a (00) - a, st (00) and st

(00- 0) = 1. Moreover, there will be
variation about these mean values which is modeled as a bivariate normal
distribution. If we consider a small element AlswAﬂl about the

measurements, then the probability (or likelihood) that the pair of measured

radiances were of a clear area is

Pr(f_,, £, are clr] = Pr[f_, zlwl clr] Pr(clr] (4a)

where
-(Q/2) '
pri2_ .8y | elr] =~ __° Aoy 2y (4b)
on clr clr 1 - ( clr)2 1/2
Psw »alw b _
and
clr clr 2 clr clr clr clr
Q = _ 1 _ tw " Lew | -2 pC]'r fgw " Low [P - Ly
1- ¢ clr)2 aclr oclr aclr
P SW - . sw lw
zclr_ Lclr 2 .
+ 1w 1w (4c)
clr -

1w



The probability that the given surface type is clear Pr[clr], the standard

. . clr . . .
deviations azir, 1w * and the shortwave-longwave correlation coefficient

pC1r have been defined from N7 data. The same procedure is followed to

calculate Pr for partly cloudy, mostly cloudy, and overcast conditions.

Finally, the cloud condition with the greatest probability of occurrence
(i.e. the largest value of Pr) is chosen.

Figure 1 presents typical quantities for the four cloud conditions.

The center points mark the mean (nominal) radiances, and the equiprobability
ellipses illustrate the distribution. Note that partly cloudy scenes can
exhibit the same shortwave and longwave radiances as mostly cloudy scenes.
This is also true of the other scene types. The overlap is expected in view
of the large variation in cloud‘optical depth and cloud height within each
cloud cover type. The actual measurements are shown in Figure 1 by an "x."
It is obvious that the MLE would identify this measurement pair as viewing a
mostly cloudy area.

The conceptual‘drawihg in Figure 1 can be compared to a bispectral
histogram of the actual N7-ERB radiances as given in Figufe 2 for a single
viewing condition. The obseryations given in the histogram are for N7
écaﬁner observations with solﬁr zenith angles 53.i°-60.0°, viewing zenith
angles 0°-15° and viewing azimuth angles 0°-180°. Each of the shortwave and
longwave radiance pairs has beenvassigned a cloud copdition based on
auxiliary data from the THIR and TOMS instruments on the N7 satellite.

These instruments have much smaller fields of view than the N7-ERB
instrument and narrower spectral coverage, allowing more accurate cloud
detefmination. A description of the cloud retrieval algorithm using THIR
and TOMS data can Be found in Stowe et al. (1985). Figure 2 demonstrates

that the radiance distributions are roughly Gaussian in appearance and that

10




there is substantial overlap in oﬁserved radiances as a function of cloud
cover condition. Since two cloud conditions can exhibit the same
measurements, the cloud conditioﬁ cannot be defined deterministically, but
must be defined statistically. |

~ A problem arises with further consideration of the results given in
Figure 2. Since the Nimbus 7 satellite has a sun-synchronous orbit with an
equator crossing time near local noon, observations with a solar zenith
aﬁgle near 56; will be taken in middle and high latitudes. The tropics will
ne?er be observed with a 56° solar zenith angle. This sampling limitation
causes two difficulties. First, it is necessary to assume that the
shortwave ADM's of all scene types are independent of latitude. Second, the
longwave radiances given in Figure 2 would not be representative of tropical
clear and cloudy emission. This second problem is alleviated by determining
the longwave ADM'’s separately for each latitude zone. In general, longwave
and shortwave ADM's might vary on a regional basis. The N7 orbit, however,
limits the number of ADM’s which can be developed. Shortwave ADM's are
developed for 10 solar zenith ranges (every 0.10 in cosine of the solar
zenith), and longwave ADM's are developed for 10 latitude zones (every 18°
latitude). Longwave ADM's are further divided into four seasons of the year
(Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, and Sep-Oct-Nov).

The.discussien above would treat a clear geographic surface:type as
having the same ehortwave ADM and the same albedo independent of its
locaeion on the globe. Similarly, e clear geographic surface type would
have the same longwave ADM and the same longwave flux independent of
longitude within a single 18° latitude zone. An improvement to the MLE can
be made by recognizing that geographic location provides information about

expected clear-sky shortwave and longwave fluxes. For example, desert
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albedo may vary from 20% to 40% over different regions of the earth. 1If a
single global desert albedo is used, brighter deserts will be perceived as
having systematically higher cloud cover than darker desert regions.

Similar arguments can be made concerning clear land albedo and longwave
flux. Note that even though the N7-ERB sampling is insufficient to provide
regional ADM's, regional clear-sky shortwave albedo and longwave flux can be
estimated. Therefore, an additional set of desired a priori.data are the
nominal clear-sky longwave flux and ﬁhe nominal clear-sky overhead-sun
albedo values for all 2-1/2° regions over tﬂe earth. In order to utilize
this clear-sky flux information in the MLE analysis, it is necessary to
adjust the global partly cloudy, mostly cloudy, and overcast a priori fluxes
to be consistent with the modified regional clear-sky fluxes.

For a given geographic scene type, let the global overhead-sun albedos

for each cloud condition be denoted églr, égc, égc, égv and the zonal mean
longwave fluxes as ﬁiér, ﬁgs, ﬁTS,-ﬁ?:. Now the partly cloudy overhead-sun

albedo for a giveh region agc is given by

aP® - 3Pe +0.75 [ aglr_- aclr ] (5a)
Tﬁé>globa1 quaﬁtity égc.is adjusted to a regional quantity agc by adding 75%
of the difference between the clear-sky regional albedo and the clear-skj
global albedo. The 75% accounts for the fact that the partly cloudy scene
is approximately 75% clear. The cloudy portion of the scene is assumed to
be independent of the underlying surface alBedo.' This assumption is made in
the absence of information concerning the behavior of broken clouds over
variable reflectance backgrounds. Similarly, the mostly cloudy regional

albedo is given by



mc -mc clr -clr
a, = 3, + 0.25 [ az - aj ] (5b)

and the overcast regional albedo by

sV | (5¢)

For variations within a latitude zone of regional clear-sky longwave
flux, the conceptual model is that surface temperature changes regionally,
but that the atmospheric temperature lapse rate and cloud height are
constant. In this case, the difference between clear-sky and cloudy fluxes

is approximately independent of changing clear-sky flux and

pec _ gpc . [ yelr. gelr’

M Mw ¥ | Mw Miw i (6a)
me -me [ clr -clr ] : '

Mo = Mgt | M- Mg ] (6b)
ov - OV - elr -clr |

le = le + | le ) le i (6c)

.whefg Mgs is the regional lgngﬁave partly cloudy flux and ﬁgg is the zomal
1ongwa§e partly cloudy flgx. Recall from (1) that while the shortwave ADM's
are global in extentband vary with solar zenith angle, the longwave ADM'é
~are independent of solar zenith angle but are defined for each of 10

latitude . zones.
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2.2 General example case

2.2.1 Description

Figure 3 gives an example of application of the MLE algorithm. The
viewed area is ocean at the equator (0-18N latitude) during the northern
hemisphere spring season (March-ApriI-May). The clear sky conditions are

clr 2

clr elr_ 1.51, and M; "= 297.1 Wm “. The viewing geometry is 39°

az = 0.076., )
< § < 51°, 53.1 < 00 < 60, and 60° < ¢ < 90°. Vaiues for the different
cloud conditions are given in Table 1. The lines drawn in Figure 3 show the
decision boundaries between the four cloud conditions. At one point two of
these boundaries intersect to form a triple point. The "+" characters mark
the mean expected shortwave and longwave radiance for each cloud condition.
NoteAthat the majority of earth observations should fall along the lines
joining'the mean radiance points for the four cloud conditions. Except for
the clear scene type, the boundaries along this line are appfoximately at
the midpoints, but the boundaries are not perpendicular to the line. The
slope of the boundary along the mean line is set by the ratio of the
shortwave and 1ongwéve radiance standard deviations. An examination of
Table 1 shows that the shortwave radiance standard deviations are much
larger than.the iongwave radiance standard deviations. Further, the
decision boundary between the clear and partly cloudy cbndition is very
close to the mean clear radiance. This boundary is strongly affected by the
large difference in a priori probability, that is Pr{clr] = 0.05 and Pr[pci
= 0.46. The relatively large a priori partly cloudy probability forces the
decision boundary toward the mean clear radiance. It appears that on
average, clear radiances as identified by the MLE will have larger longwave

radiances and smaller shortwave radiances than the N7 a priori data.




2.2.2 Refinements

Further examination of the upper left corner of Figure 3 shows that it
is possible for scenes which are warmer (large longwave radiance) and darker
(small shortwave radiance) than clear-sky conditions to be classified as
partly cloudy. This result can be seen by examining (4) and the radiance
standard deviations in Table 1. Probability density decreases linearly with

an increase in the product o but decreases exponentially with an

o
sw 1w’

increase in the product [(lsw-st)/asw] [(Blw-Llw)/alw]. Thus, observations

2 which are several standard deviations away from the expected mean

sw’zlw
radiances for either cloud type will be identified as the cloud type with
the largest standard deviation.

This artifact is caused by the fact that the radiance distributions of
clear and ﬁartly cloudy écenes cannot be perfectly modeled as Gaussian.
Even though this artifact will not occur often, it can be eliminated by
application of thresholds beyond which clouds are not allowed to be chosen
as the scene type. The dashed line in Figure 3 shows the clear-sky

thresholds used in the MLE processing. Whenever both Esw< Lglr and £, >

w 1w

clr . . . .
Liw the viewed area is defined as clear. Moreover, any radiance

clr clr clr clr
- 205

observations for which gsw< st or £1w> L1w + 201w are classified

- as clear.

There are two other restrictions on the MLE that improve the results.
First, if the calculated probability of the most likely cloud condition is
extrémely small, then the validity of the measured radiances or the validity
of the a priori data should be questioned; One way to implement this
decision is to circularize the bivariate normal distribution of the

identified scene type and require that the measurement be within N standard

15
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deviations from the mean values. The scene identification of measured

radiances £ _, £ is rejected if d > N, where
swW 1w

a= [%sw Lsw - 2p 2ow Low |[f1w Liw + [P v | . (7

a
swW swW 1w 1w

Second, the identified scene should be_questioned when the measured
radi&nces have viewing angles in the forward scattering specular region. At
this point the discrete ADM cannot accurately resolve the angular structure
of reflectance, and large errors can result. This second restriction on the
MLE is accomplished by setting a maximum shortwave anisotropic value of R*
and rejecting observations with R > R*. A value of R~ 2 is suggested, so
that the scene identification is rejected when the ekpected shortwave
radiance is twice that which would occur for a Lambertian reflector.

The MLE algofithm has been formulated as a bispectral algorithm using
simultaneously measured shortwave and longwave radiances. ' For observations
at night, however, the cloud condi ion must be identified using oﬁly
-longwave radiances. Similafly, if a longwave radiance is not available
during the déy (i.é. data dropout), then the cloud condition must be
identified using only shortwave radiances. These cases are easily handled
by eliminating the appropriate vafiéble in the bivariate normal distribution

(4). This change reduces the MLE to a L-dimensibnal method. -
3. Relationship of MLE to Simple Threshold Algorithms

The MLE algorithm can be simplified in several steps until the method

becomes equivalent to simpler radiance threshold methods commonly employed



in the detection of cloud cover. The steps to this simplification are
instructive and are given in the discussion below. Results are given for

the same example case presented in Figure 3.

3.1 Equal scene probability, Pr[k] = 0.25

Figure 4a gives the MLE scene selection boundaries for the case where
the a priori scene probabilities Pr{k], k = clr, pc, mc, ov, are all set to
0.25. In this case the clear scene selection area in radiance space is
increased, while that of partly cloudy is decreased relative to the general

case.

3.2 Zero correlation, p = 0, and Pr{k] = 0.25

The effect of setting the correlation coefficient to zero in (4) is -
shown iﬁ Figure 4b. Along the line of mean radiances where most of the
measurements will occur, the decision boundaries éhanged very little. The
reason for this can be seen by examiningvthe general form of the

equiprobability ellipse given by

I 3 ) I 1 A

For simplicity we have assumed mean zero. The principle axes (x',y') of the

<

ellipse are rotated from the xy axes by an angle & given by [Liebelt, 1967,

p. 92]

20 0_p -
1 -1 X V "Xy
¢ = 5 tan [ 5 2 } _ (9)
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and the principle variances are given by

2 2 2 . 2 .. 2
Ogr = Oy COS ® + 2pXy axay sin ® cos & + ay sin"® (10a)
03, = ai sin2§ + 2pxy axoy sin ® cos & + 05 c052® (10b)

If we set pxy equal to zero, then ¢ = 0° and the ellipse is aligned with the
xy axes with principle variance of ai and 03. These quantities have beep
determined from Table 1 for the general example problem and are given in
Table 2. When the ratio USW/UIW is large, the angle of rotation is small.
In addition, the ratio of principle standard deviations shows that the
shapes of the ellipses are not drastically altered. Thus, it is not
surprising that the decision boundaries moved little when correlation was

neglected.

3.3 Equal variances;;gk - d? = o for all k, p = 0, Pr[k] = 0.25
SW—— Tw— .
Now let us further simplify the MLE algorithm by setting the shortwave
and longwave standard deviations to a constant ¢ for all four cloud

conditions. In this case, the probability function (4) reduces to

k

‘ ' 2 2

1 1

'Pr[zsw’-zlwl k] = 2 SFPU L2 [[zsw- st] + [zsw- st) ]} Aguthyy (D
2no 20 , .

In this case maximizing the probability simplifies to minimizing simple
distance in radiance space. Any radiance observation pair is classified as

the cloud condition k which minimizes the distance

18
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between the a priori and measured fadiances. Figure 4c gives the results of
this simplification. Each decision boundary is simply the perpendicular
biséctor of a line drawn between two adjacent a priori mean radiance points.
For measurements occurring along this line, the scene selection will be
similar to the other cases considered. The net iﬁpact of this change on

derived fluxes will be discussed in section 4.

_—————-——I-—s.w

3.4 One dimensional limit, o >> A 0, Pr(k] = 0.25

In the limit as the shortwave standard deviation becomes large compafed
to the longwave standard deviation, the decision boundaries become
horizontal lines and the scene identification is one dimensional. 1In this
case there is little information content in the shortwave radiance
measurement, resulting in use of the longwave radiance only. The decision
boundaries are shown in Figure 4d and are typical of the case for scene
identification for nighttime observations. The analogous case for

91 >> g is shown in Figure 4e.
\Y swW

3.5 MLE simplified to N7-ERB scene identification algbrithm

Having examined the simplific&tions of an MLE approach for cloud
identification in sections 3.1 to 3,4, we can derive a set of simplifying
conditions for which the MLE reducés to the N7 MATRIX cloud identification
algorithm described by Jacobowitz et al (1982). The N7 MATRIX algorithm was
’used in the operational processing of the N7-ERB broadband data. The

following conditions would simplify the MLE to the N7 algorithm:




1. Consider only clear and overcast cloud conditions.
clr ov clr ov
2. Assume %w = 1w 1w and Ocw = ew = Zsu-
3. Assume asw>> O
4, The averagé of clear and overcast mean longwave is 78.2 Wm-zsr-l, i.e.
clr ov
( Llw + L1W y/2 = 78.2
5. Mean longwave radiances for clear and overcast cloud conditions do not

vary with viewing zenith, measurement location on the earth, or time of

year.

A final test is applied by the N7 MATRIX algorithm which is not used in the
MLE approach. If the scene is selected as clear and the Lambertian albedo A
calculated using the shortwave radiance measurement (i.e. A =« st/Eocosﬁo)
is greater thania limit A ___, then the measurement is rejected. Alax for
ocean background is 0.15 and Aax for land background is 0.50. The N7 scene
identification algorithm result is shown in'Figure 5 for comparison with the
simplified versions-of the MLE giﬁen in-Figure; 4a through 4e. Note that
the rejection of data occurs for a subétantial portion of the radiance space
diagrams. The rejection area for the N7 MATRIX scene algorithm includes
radiance values which the MLE algorithm would idenfify as,partiy clou&y,
mosﬁiy cloudy.ana overcasf, depending on the particular radiance values.

The N7 data used to construct the statistics and ADM’s for the MLE indicateg
tha; a significant pertion of radiance data for this viewing éondition will
be rejected by the N7 MATRIX algorithm. We will return to this discrepancy
and its impact on derived fluxes in section 4; This discrepancy points out
the difficulty in applying global thresholds to classify scene types. At
middle or high latitudes (lower longwave radiances), the region of rejected

adiances would be outside the range of typical observations.

H
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The Nimbus 3 scene selection algorithm (Raschke et al., 1973), was
similar to the N7 MATRIX algorithm discussed above with a few differences:
clouds and land are treated as the same scene type; and Amaxis set to 0.10;
the data rejected by the N7 MATRIX algorithm is classified as the cloud/land
model (i.e. data with higher Lambertian albedo than A,y and higher longwave

radiance than 78.2 Wm-zsr-l).

3.6 Variation of mean radiances with viewing angle.

Given the large variations in bidirectional reflectance found from the
N7 data, we expect that the scene selection boundaries shown in Figure 3
would be strongly dependent on the viewing zenith angle, viewing azimuth
angle, and solar zenith angle. Figure 6a gives an example of the variation
of the mean radiances for all four cloud conditions over a wide range of
viewing zenith angles at a fixed viewing azimuth angle (60°-90°) and fixed
solar zenith angle (53°-60°). Figure 6b gives the same plot for an azimuth
angle of 0-9 degrees (i.e. forward scattering). While small changes are-
found in Figure 6a, large differences aré found in Figure 6b. Clearly,
scene identification will vary with changing viewing zenith angle,
eépeciélly for observations in the solar plane. Since this variation is a
result of the anisotropy of‘the radiation reflected or emitted from the
scene, correction of méasured radiances to fluxes is also variable for theA

above viewing conditions.

3.7 Variation of mean radiances with latitude and season.

Figures 3 through 4e gave the MLE scene selection results for the case
of tropical (0-18N latitude zone) conditions over an ocean background during

spring (March-April-May). What happens for observations taken at higher
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latitudes? In this case, the expected longwave radiance will decrease for
clear-sky conditions and may decrease or increase for overcast conditions.
Figure 7 gives the variation of each of the four cloud scene types for the
latitude zones from the equator to 72N latitude during the spring season
(March-April-May) and for the same viewing angle conditions shown in Figure
3. Recall from section 2.1 that shortwave radiance values are independent
of latitude. Figure 7 clearly shows large variations in the expected
longwave radiance with latitude, consistent with thé decrease in surface
temperature from equator to pole. Since the latitudinal longwave radiance
variation is much larger than the standard deviation of longwave radiance
for clear-sky within a single latitude zone (approx. 3-5 W/mz/sr for ocean
and 4-8 W/mz/sr'for land), scene identification using an MLE approach should
include the variation of longwave radiances with latitude. A similar
argumeﬁt would apply to seasonal temperature variations at middle and high

latitudes. The MLE used to process ERBE data includes all of ﬁhese effects.
4. Data Simulation

There are various modeling assumptions and error sources that affect
the accuracy of the MLE algorithm. By simulating the satellite measured

radiances, £ andAl

sw 1y Some of these assumptions can be evaluated.

Specifically, the general example case and_the’simplified example cases
discuésed in section 3 will be simulated. Errors to be considered include
_ both errors in idenfification of the séehe type, and more importantly the
resulting errors in derived shortwave and longwave flux.

The MLE solution for the general example problem is given in Figure 3.

The concept used to perform the simulation experiment is to consider a set
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of measurement radiance pairs (E:W, z{w) which span the 2-dimensional
radiance space shown in Fig. 3. The radiance space is sampled at discrete
points i,j to minimize the computation required. The interval between

2sr'l. This value is chosen to be much

radiance points is chosen as 1 Wm’
less than one standard deviation in radiance for any cloud condition, but
.sufficiently large to minimize computational expense. For any pair of
measurements (liw , l{w) in radiance space, we can then identify the cloud
condition K(i,j) as either clear, partly cloudy, mostly cloudy, or overcast.
K is a cloud index taking on values 1 through 4 and specifies the ADM to be

used for inverting the data. The resulting shortwave flux estimate at the

TOA is from (2)

A'i-. 21
MY - T ey » (13)
v K(i,})
R )
sSwW

.where for a given i and j (i.e. shortwave and longwave radiance
measurements), the MLE will determine a single value of K (i.e. scene type)
as most likely. Next, compare this estimated flux with the true flux. For
the purpose of simulation, we assume the distribution of measurements (i.e.
Figure 2) can be exactly represented by four bivariate normal distributions
with the parameters given in Table 1. In addition, the probability of
occurrence of each cloud condition k is represented exactly by Pr{k] and the
R values are true. Thus, the true mean flux at a point (Biw, I{W) will be a
combination of the fluxes for each of the four scene types. Knowing the
probability of occurrence of each scene type, the true mean shortwave flux

for the point (i,j) in radiance space is given by



4
ij  ij
1] E;; i Mo
M_o 4 (l4a)
X ol
w.
k=1 ¥
| 0 i, 0k
where from (2) Msw(k) T zsw/ st, and from (4)
wié = Pr[ z;w, z{wl k | Pr{k] (14b)

The flux error Aii is then the difference ﬁii - ﬁii between the estimated
flux and the true flux. Note that the true flux Mii is a statistical
ensemble of all four cloud conditions which can occur for a given radiance
measurement pair (Biw, z%w)’ while the estimated flux ﬁii is determined
using the ADM appropriate only for the single cloud condition selected by
the MLE.

Let us consider a grid pf points (liw, £{w) where i=1,2f...Nsw and
j-1,2,...N1w that cover the measureﬁent space of Figure 3. At each
combinétion of (i,j) the flux error is simulated. Finally, é weighted
average of the flux errors over all pointé (i,j) is determined. The weight

at each point Q(i,j) is according to its probability of occurrence. The

mean error for all possible radiance observations is then given by

NN, -
sw 1w
A = 2 2 atd ald. (15)
swW i-l j’l sSwW

and the standard deviation of the flux error &sw is given by
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N N
swW 1w 2
2 _ ij [ .13 _ =
st 2:: Z:: 0 [ Asw Asw ] (16)
i=1 j=1
where
4
atd - X Wl (17)

k=1

and the summation of ﬂij over all i,j is equal to 1.0. The range of i,j
used in the simulation covers only 99% of the expected radiance range so
that a final normalization is necessary to adjust the sum of Qij to 1.0.

The flux error derived above is the minimum error which the MLE
methodology would produce given input data with the same statistics as the a
priori data set. Note from (2) that if R:w is the same for all scene types,
then any cloud condition identified by the MLE would yield the correct flux.
Also, if the four cloud types were sufficiently unique to avoid overlap in
radiance space, then the MLE would always identify the correct scene and get
zero error. Therefore, the simulation of the example problem determines
flux errors which would result from the overlap between scene types -and the
associated chénge in anisotropy.

Table 3 gives results from simulations for all methodologies considered
in section 3. Satellite viewing conditions are the same as those used for
Figures 3 and 4. Given in Table 3 are both the fraction of simulated
satellite observations classified as each of the four cloud-conditions, and
the errors in estimated shortwave and longwave fluxes af the TOA.

Simulation of the general example gave cloud condition percentages that were

very close to the a priori values. The shortwave flux estimate is biased by
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1 Wm-2 and the standard deviation of the error is 5.6 Wm-z. The longwave
flux estimates are very good, with mean zero and a standard deviation of 0.1
Wm-z. This later result is expected in view of the small changes in R?w for
the four cloud conditions. Further discussion of this result is given in
section 6. The use of equal scene a priori probabilities (section 3.1)
affect the clear and partly cloudy frequencies but have little effect on
flux errors. Also the effect of eliminating correlation (section 3.2) is
small. The equal standard deviations case (section 3.3) increases the
shortwave flux errors but has little effect on the longwave fluxes. When
the scene is identified using only the longwave radiances, large increases
in shortwave error are found. When the scene is identified using only the
shortwave radiances, the standard deviation of shortwave error increases
substantially. The N7 scene identification algorithm caused large errors in
both shortwave and longwave fluxes. The longwave bias error results from
the region of rejected radiance observations which rejects many of the large
longwave flux observations and thereby biases the mean longwave flux
estimate too lowf The shortwave error is a combination of this effect and
the ﬁse of only ;.clear and overcast shortwéve anisotropic model. If the
radiances in the N7 fejected areatére classified as'oﬁgrcast, thgn As -

w
-4.9 Wm-z and Alw= 0.4 Wm-z, Finally, the result of applying Lambertian

anisotropic modeis (i.e. R =~ 1.0, or ﬁ = nl) gives errors an order of
magnitude.larger than tﬁe other methods. |

Although the simulations are presented for only one sampling condition,
other conditions have been-simulated. The errors shown are neither the
largest nor the smallest of those found for other viewing conditions.

" Unfortunately, there is no single meaningful error which can be quoted.

Satellite viewin eometry will var reatly over different regions of the
g 8 y Yy B ¥ g



earth, different times of day, and different satellite orbits. Work is in
progress to derive more general results using N7-ERB data by applying the
MLE algorithm and then comparing to the Sorting into Angular Bins (SAB)

method of Arking and Vemury (1984) over the entire earth for the month of

June 1979,
5. Discussion

Section 4 discussed the magnitude of derived TOA flux errors using an
MLE approach to identify the cloud condition. To a great extent, these
errors represent the ambiguity of the relationship between shortwave and
longwave radiance and the scene types to be classified. Figures 1 and 2
showed the substantial overlap between adjacent scene types. vathe overlap
did not occur, the flux errors given in Table 3 would have been zero. If
the flux errors are caused by ambiguous cloud type selection, then another
strategy to evaluate fluxes would be to utilize an anisotropic factor R for
any given observation which weighted the R value for each scene type by the
probability that the observed radiances came from that scene type. For
example, if the observed radiances fell on the MLE decision boundary between
the clear and partly cloudy scene types, a composite of ‘the two anisotropic
models could be used. While the results are not présented here, this
approach was found téAgive similar flux errors to those for the genefal MLE
approach.l Since discrete scene types'are simpler to implement and

interpret, the general MLE approach was chosen.
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5.1 Shortwave flux errors

If overlap or ambiguity is the major source of error in the theoretical
error analysis results, it would follow that increasing the number of cloud
conditions might eliminate much of the ambiguity. Unfortunately,
substantial overlap of cloud conditions in radiance space is likely to be
inevitable whenever the existence of partial cloud cover in a single
observation is a common occurrence. For shortwave radiance, the ambiguity
is caused by the variability of cloud albedo, cloud fraction, and cloud
bidirectional reflectance. As an example of the‘large variability of cloud
conditions, reconsider the data shown in Table 1. If clouds exhibited
uniform albedo and uniform bidirectional reflectance, then the standard
deviation of sho;twave radiance for a given viewing condition would result
only from the allowed range of cloud cover in the overcast category of 95%
to 100% cloud cover. The standard deviation of shortwave radiance should
then be less than 2% of the mean shortwave radiance. The ratio asw/Lsw from
Table 1 is 25.3% for overcast conditions, much g?eater than 2%. Evidently
most of this variability is caused by fluctuations in cloud albedo and
bidirectiénal reflectance. AThe ratio osw/LSvaor the mostly cloudy
condition is 41.9%, even larger. At first, the largér variability for ﬁhe
mostlyAéloudy cloua conditién would seeﬁ to be caused by the larger
variation in cloud cover allowed in this cloud class (50% - 95%). A uniform
distribution of cloud cover from 50% to 95%, however, would only give a
(0.29)(95-50) = 13% value of dsw/st if albedo and bidirectional reflectance
were held fixed. Instead, it is likely that thé variation of bidirectional
reflectance is dominating the partial cloud cover conditions, especially in
view of the highly variable cloud geometry and cloud optical depth likely to

occur for these conditions. Unfortunately, the number of N7 obsexrvations
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was judged insufficient to produce cloud bidirectional reflectance models
for smaller intervals of cloud cover. A topic for further research is to
establish the amount of decrease in radiance variability which can be
achieved by examining smaller cloud cover intervals and by examining
additional classes of cloud type, such as cloud height, aspect ratio, and.

optical depth.

5.2 Longwave flux errors

The overlap between scene types in longwave radiance is caused by the
variation of cloud height, cloud emissivity, cloud fraction, and cloud
longwave ADM (i.e. limb-darkening). The cloud‘fraction classes currently
defined giﬁe ADM's which vary by only 1% to 2% between the various scene
types. 1In this case, any error in scene selection causes only small errors
in derived TOA longwave flux. The similarity of the longwave ADM’s was not
anticipated. Most cloud models treat clouds as plane-parallel and optically
thick (i.e. black) in the infrared. This conceptual model would predict
that longwave ADM’s should become increasiﬁgly isotropic as cloud cover
increases. ‘In fact, the overcast category has similar limb-darkening to the
clear, pértly cloudy, and mostly cloudy scene types. IhiS’result is
probably-tréceable to two effecﬁs. First, optically thin cirrus cloud is
strongly limb-darkened. Second, broken 3-dimensional cloud fields increase
limb-darkening relative to that of plane-parallel cloud fields (Naber and
‘Weinman, 1984; Duvél and Kandel, 1984). The longWave errors given in the
simulation are likely to substantially underestimate the‘true stanaard
deviation of error in TOA longwave flux. Additional cloud categories for

cloud height and cloud emissivity would be required to more accurately

derive longwave fluxes.
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6. Conclusions

An improved methodology for identifying cloud conditions has been
developed for use in studies of the earth’'s radiation budget. This maximum
likelihood estimation (MLE) methodology has been developed in concert with
new models of the anisotropy of the earth’s outgoing radiation field and
improves the acéuracy of the flux estimates at the toﬁ of the atmosphere
using broadband radiance measurements. For this reason the MLE has been
chosen for use by the Earth Radiation Budget Experiment (ERBE) data
processing system. The MLE is a bispectral identification algorithm that
uses measured shortwave and longwave broadband radiances to identify the
cloud type. This identification depends on the viewing zenith angle, the
viewing azimuth angle, the solar zenith angle, the 2.5° latitude/longitude
region observed, and season. A substantial amount of a priori data is
required, including angular dependence models and their statistics for all
scene types. The geographic scene type (land, ocean, desert, etc.) of each
2.5° region is defined élong with a.mean regional clear-sky overhead sun
albedo. These overhead sun albedoes are corrected to the observation sun
condition using models of albedo variation with solar zenith. These a
priori data are then used to compute an expected mean radiaﬁce from each of
four cloud conditions and a statistical "distance" measure selects the cloud
condition Qith the maximum likelihood. Thus, the MLE identifies fhe
satellite measutement.aé observing either a clear scene, partly cloudy
scene, mostly cloudy scéne, or an overcast scene.

When compared to the use of a lambertian assumption, simulations

indicate that the MLE methodology can reduce bias errors in derived fluxes



31

by more than a factor of 10. The standard deviation of error is reduced by
more than a factor of 5. The methodology gives a factor of 2 to 3
improvement over the simpler threshold methodologies previously employed in
the analysis of Nimbus 3 and Nimbus 7 earth radiation budget data. Since
the simulation error analysis requires assumptions about the statistics of
the earth’s radiation field, further validation of the methodology is
recommended using analysis of the ERBE and N7 data. The simulations provide
initial lower limits on the errors.

While the primary purpose of the MLE approach is to select the
appropriate angular dependence model, a crude measure of cloud amount is
generated as a by-product. This produét is potentially useful as an initial
analysis tool for the separate determination of cloudy and clear radiative
properties. Ultimately, howe&er, a more accurate determination of cloud
radiative properties will require the combined analysis of the ERBE and

International Satellite Cloud Climatology Project (ISCCP) data.
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FIGURE CAPTIONS

Figure 1. Conceptual drawing of equiprobability ellipses for each of
the four scene types: clear ocean (clr), partly cloudy ocean (pc), mostly
cloudy ocean (mc), and overcast (ov). Mean radiances for each scene type
are marked by a "+". Example observation is marked by an "x".

Figure 2. Bispectral histogram of the Nimbus 7 ERB broadband radiances
used to construct angular dependence models (ADM's) and statistics used by
the MLE scene identification algorithm. Observations are for solar zenith
angles 53.1°-60.0°, viewing zenith angle 0°-15°, and all viewing azimuth

angles. Observations include all latitude zones.

Figure 3. General example case of MLE scene selection algorithm. Mean
radiances for each scene type are marked by a "+". Solid lines give the
decision boundaries between the different scene types. Observations with
radiances above or to the left of the dashed line are classified as clear
(i.e. very large longwave radiance or very low shortwave radiance). Results
given are for latitude zone 0-18N, solar zenith angles 53.1°-60°, viewing
zenith angle 39°-51°, viewing azimuth angles 60°-90° and season March-April-

May.

Figure 4a. Simplification of the case in Figure 3 assuming equal a

priori probabilities of all scene types.
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Figure 4b. Simplification of the case in Figure 3 assuming zero
correlation coefficient and equal a priori probability for all four ‘scene

types.

Figure 4c. Simplification of the case in Figure 3 assuming equal
radiance variance, zero correlation coefficient and equal a priori

probability for all four scene types.

Figure 4d. Simplification of the case in Figure 3 assuming the variance
of shortwave radiance is much greater than the variance of longwave radiance

and assuming equal a priori probabilities.

Figure 4e. Simplification of the case in Figure 3 assuming the variance
of longwave radiance is much greater than the variance of shortwave radiance

and assuming equal a priori probabilities.

Figure 5. Application of the N7-ERB scene identification algorithm to
the case in Figure 3. The mean radiances used by the MLE are given by a "+"

for reference with the previous figures.

Figure 6a. Variation of mean shortwave and longwave radiances for each
‘scene type as a function.of viewing zenith angle for solar zenith angle

53.1°-60°, viewing azimuth angle 60°-90° and season March-April-May.

Figure 6b. ‘Variation of mean shortwave and longwave radiances for each
scene type as a function of viewing zenith angle for solar zenith angle

53.1°-60°, viewing azimuth angle 0°-9° and season March-April-May.
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Figure 7. Variation of mean shortwave and longwave radiances for each
scene type as a function of latitude for solar zenith angle 53.1°-60°,
viewing zenith angle 39°-51°, viewing azimuth angle 60°-90° and season

March-April-May.
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TABLE 1. Radiance Statistics for the Example in Figure 3

Croud Apriori Shortwave Shortwave Longwave Longwave Correl. Shortwave Longwave
Condition Prob. Radiance Std. Dev. Radiance Std. Dev Coef. Anisotropy Anisotropy
Clear 0.05 16.46 3.6 95.89 3.4 -0.221 0.599 1.014
P. Cloudy 0.46 31.48 12.7 92.33 4.1  -0.366 0.712 1.014
M. Cloudy 0.28 68.77 28.8 79.73 8.5 -0.451 0.872 1.015
Overcast 0.21 109.81 27.8 60.29 15.5 -0.545 0.919 1.011




TABLE 2.

Impact of Correlation Coefficients on the

Radiance Statistics Given in Table 1.

Cloud asw/alw e aéw/asw in/alw
Condition (degrees)

Clear 1.06 -37.0 1.077 0.905
P. Cloudy 3.12 -7.3 1.007 0.923
M. Cloudy 3.37 -8.2 1.009 0.884
Overcast 1.79 -20.7 1.056 0.793
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TABLE 3. Cloud Conditions and TOA Fluxes vs. the NIMBUS 7 Reference Values.
CLOUD CONDITIONS (%) _FLUX ERRORS (W[mz)

METHODOLOGY CLEAR PCLDY MCLDY OVCST A s A 8
sw sw 1w 1w
N7: THIR/TOMS REFERENCE 5.0 46.0 28.0 21.0 N/A N/A N/A N/A
MLE: GENERAL 3.7 51.2 28.0 17.1 1.0 5.6 0.0 0.1
MLE: EQUAL SCENE PROBABILITY 14.9 37.9 27.8 19.4 1.4 6.9 0.0 0.1
MLE: CORR. COEF. = 0 14.7 39.2 26.6 19.5 1.6 7.1 0.0 0.2
MLE: EQUAL STD. DEV. 18.8 37.1 22.4 21.6 2.0 9.8 0.0 0.2
MLE: LONGWAVE ONLY 26.2 27.2 29.2 17.4 7.2 20.5 0.0 0.2
MLE: SHORTWAVE ONLY 16.8 37.8 22.9 22.5 1.1 10.8 0.0 0.2
N7 MATRIX: REJECT NOT USED 36.0 0.0 0.0 31.2 4.415.8 -8.7 0.3
N7 MATRIX: REJECT = CLEAR 68.8 0.0 0.0 31.2 28.6 51.4 0.1 0.3
N7 MATRIX: REJECT = OVCST 36.0 0.0 0.0 64.0 -4.922.0 0.4 0.6
LAMBERTIAN N/A N/A N/A N/A -36.6 37.0 3.5 3.6
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