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ABSTRACT 

2 

b Global cloud cover conditions are commonly required for analyzing 

satellite data of relatively coarse spatial resolution such as the Nimbus 7 

Earth Radiation Budget (ERB) measurements or the Earth Radiation Budget 

Experiment (ERBE) broadband scanner data. Cloud information is required so 

that measured broadband radiance at the satellite can be converted to an 

estimate of radiative flux at the top of the earth’s atmosphere. 

present paper discusses the application of a maximum likelihood estimation 

The 

(MLE) technique to the problem of cloud cover determination for coarse 

resolution broadband satellite data. 

for the angular dependence of radiance and is tested against simulated 

satellite observations. When used to determine cloud conditions for the 

inversion of satellite measured radiances to fluxes, the MLE approach shows 

The technique uses empirical models 

substantial improvements over both a lambertian earth assumption and the 

clear/cloud threshold used in the inversion of Nimbus 3 and Nimbus 7 ERB 

scanner data. The MLE methodology will be used in the operational 

processing of the ERBE scanner data. 

V 
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1. INTRODUCTION 

The earth radiation budget has been estimated from satellite 

measurements since the launch of the Explorer 7 spacecraft in 1959 (House et 

al., 1986). 

of view encompassing the entire earth visible from the satellite. The 

attempt to obtain smaller spatial scale regional data began with the use of 

The first measurements were made using instruments with a field 

- 
scanning radiometers on the TIROS satellites and was followed by Nimbus 2, 

Nimbus 3, Nimbus 6 ,  Nimbus 7, and most recently the Earth Radiation Budget 

Experiment (ERBE). The smaller spatial field of view, however, necessitates 

a limited angular coverage for each scanner observation. In this case the 

direct measurement is radiance, while the desired measurement is radiative 

flux at the top of the atmosphere. Derivation of radiative flux using the 

scanner radiance observations then requires the use of angular dependence 

models (ADM's) to correct for the anisotropy of the radiation fields. To a 

large extent, the instantaneous accuracy of the estimated earth radiation 

budget is limited by the uncertainty in applying the ADM's (see Arking and 

Levine, 1967; Ruff et al., 1968; Raschke et al., 1973; Taylor and Stowe, 

1984). 

There are two major causes of variability in ADM's: change in 

geographic surface type (ocean, land, etc.) and change in cloud cover 

conditions (variable cloud cover and cloud 3-dimensional geometry). While 

surface conditions can in general be handled using a static geographic map, 

0 cloud conditions require dynamic identification of the scene being viewed in 

order to achieve accurate flux estimates. 
* 

The Nimbus 3 (N3) experiment (Raschke et al., 1973) made the first 

attempt to correct for the anisotropic character of the radiation emitted or 
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reflected by the earth/atmosphere system. 

viewing either ocean, land/cloud, or snow for shortwave correction. 

Longwave correction used two models, one for polar data (poleward of 70" 

latitude) and one for non-polar data. 

result of limited data available to describe ADM's and of limited ability to 

distinguish clear from cloudy scenes. 

The N3 data were classified as 

The five scene types selected were a 

As a result of the experience with the N3 data, the Nimbus 7 Earth 

Radiation Budget (N7-EM) broadband scanner employed a bi-axial scan pattern 

which allowed the collection of data for a complete range of viewing zenith 

angle and viewing azimuth angles. 

complete ADM's over a wide range of scene types. 

developed new ADM's using the N7-ERB data to construct bidirectional models 

for a range of uniform surface types; clear ocean, land, snow, ice and four 

altitude levels of overcast cloud. In order to derive these models, the N7- 

ERB shortwave and longwave radiances were sorted into each of the scene 

These data were used to develop more 

Taylor and Stowe ( 1 9 8 4 )  

types. 

and subsequent comparison with a geographic map. Cloud cover was determined 

initially using the N7 Temperature-Humidity Infrared Radiometer (THIR) data. 

Four of these ADM's for ocean, land, cloud, and snow/ice were used in 

operational processing of the N7-ERB scanner data to produce broadband flux 

estimates (Jacobowitz et al., 1984). Cloud identification was performed for 

each ERB scanner field of view by setting thresholds to distinguish clear 

Surface type classification was derived by navigation of the data 

from cloud for both shortwave and longwave radiance. The thresholds were 

constant for all-latitudes equatorward of 67.5" latitude and were 

independent of solar zenith angle, viewing zenith angle, and viewing azimuth 

angle. As shown by Arking and Vemury ( 1 9 8 4 )  and Vemury et al. ( 1 9 8 4 ) ,  the 

simple threshold cloudjciear classification gives derived scanner shortwave 
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reflected albedos which are larger than corresponding wide field of view 

shortwave albedos by several percent albedo. 

discrepancy appears to be a substantial increase in the threshold determined 

cloud cover as satellite viewing zenith angle increases (Vemury et al., 

The primary cause of the 

1984). 

A second concern is the use of only one cloud ADM derived using uniform 

overcast cloud conditions. Since directional reflectance patterns are a 

strong function of cloud geometry (Davies, 1984), it is likely that multi- 

level cloud systems or partial cloud cover conditions will give different 

ADM's than either clear or uniform overcast conditions. Davies' results 

also suggest that partial cloud cover directional patterns are not simply a 

linear combination of clear and overcast patterns. 

In view of these concerns, the Earth Radiation Budget Experiment (ERBE) 

has chosen a bispectral cloud identification algorithm that uses broadband 

shortwave and longwave radiances simultaneously to select one of four cloud 

conditions (Smith et al., 1986). These four types are clear (0% - 5% cloud 
cover), partly-cloudy (5% - 50% cloud cover), mostly-cloudy (50% - 95% cloud 
cover), and overcast (95% - 100% cloud cover). A set of ADM's for each of 

these cloud conditions has been developed using the methodology described in 

Taylor and Stowe (1984) from N7-ERB data. Cloud identification for these 

new ADM's was improved over the earlier work by the incorporation of both 

THIR and TOMS data from the N7 satellite (Stowe et al., 1985). The TOMS 

measurement of solar reflected energy improves identification of low level 

clouds with small contrast in the thermal infrared THIR data. 

Note that these cloud classes are based on cloud cover and not cloud 

height. There are two primary reasons for this selection. First, broadband 

radiances with 30 km or larger fields of view are inadequate to determine 
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both cloud cover and cloud height categories simultaneously. Second, the 

primary purpose of the cloud identification is to select ADM's to correct 

radiance to flux. The largest corrections occur for shortwave ADM's as 

opposed to 'Longwave ADM's or limb darkening models. These shortwave ADM's 

are dominated by changes in cloud cover (Davies, 1984) as opposed to cloud 

height, and the 3-dimensional broken cloud directional patterns discussed by 

Davies (1984) are implicitly included. Shortwave ADM's are also expected to 

vary with changes in cloud optical depth, and these effects are also 

included implicitly in the empirical ADM's. 

category is then a composite for a range of cloud cover of all cloud height 

and cloud optical depths observed in the N7-ERB data set. 

The ADM for each cloud cover 

The ERBE will use a statistical approach to replace the constant 

thresholds used in previous radiation budget studies to distinguish clear 

from cloudy conditions. The approach taken is the use of a maximum 

likelihood estimator (MLE). 

by the N7-ERB biaxial scanner and include both the ADM's and second order 

statistical moments. The ADM's and the statistics both are functions of 

The a priori data for this method are provided 

viewing zenith angle, viewing azimuth angle (relative to the solar plane), 

and solar zenith.angle. In the most general solution, a priori clear-sky 

regional fluxes are also used in the MLE algorithm. 

Section 2 formulates the MLE algorithm, section 3 relates the algorithm 

to simpler threshold methods, section 4 presents an error analysis using 

simulated radiances, section 5 discusses the error analysis results, and 

section 6 gives summary conclusions. 
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2. Formulation of the Maximum Likelihood Estimator 

The relation between flux M in Wm-2 and radiance R in Wm-2sr-1 is given 

by the angular dependence model (ADM) definition 

where R is the ADM value, t9 is the viewing zenith angle of outgoing radiance 

L, 8 is the solar zenith angle, and 4 is the viewing azimuth angle of L 

relative to the sun (see Smith et al., 1986, for further description of the 

angle definitions). Forward scatter is given by d - 0. A subscript l'sw" is 

used to denote shortwave radiation at wavelengths less than 5pm (i.e. 

reflected solar radiation), and a subscript "1w" is used to denote longwave 

radiation at wavelengths greater than 5pm. Thus, the shortwave ADM or 

bidirectional model is denoted as Rsw and, from the definition given in (la) 

has the normalization property 

0 

A -1 fr j/2 Rsw(O,~,B0) cos8 sin0 d8 dd - 1 (Ib) 
4-0 8-0 

Similarly, the longwave ADM is Rlw and has normalization 

X/2 
2 I Rlw(8,<) cost9 sin8 d8 - 1 

e-o 

A 

where < is colatitude. It follows from (la) that an estimate of flux M at 

the top of the atmosphere (TOA) is given by 
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A -1 M - A R R  

where R is the measured radiance from satellite altitude. R varies, 

however, with both geographic surface type and cloud cover condition. 

Geographic surface type is determined using an a priori map. 

the MLE algorithm is to classify cloudiness into one of four broad 

categories; clear, partly cloudy, mostly cloudy, or overcast. This scene 

The purpose of 

identification selects the appropriate ADM used to convert a satellite 

measured radiance to an estimate of flux M at the TOA. 
A 

2.1 Algorithm - definition. 

The MLE algorithm requires a priori training data. In essence, it 

calculates from a priori data the expected satellite measurements for each 

of the four cloud cover conditions and identifies the one which is most 

likely in a statistical sense. Suppose the two broadband measurements are 

given by Rsw and llw. 

geographic surface type can be determined; and from a priori data, the mean 

clear-sky longwave flux Mlw clr and the mean clear-sky overhead sun albedo 
clr 
a. of the viewed area can be determined. Thus, if the viewed area was 

clear, then the expected mean longwave measurement would be 

From the measurement location on the earth, the 

clr . clr -1 L = A R ( 6 , c )  M 
clr 

lw lw lw 

and the expected mean shortwave measurement would be 

clr clr clr clr 

sw sw 0 0  o s w o  0 
L = A-' R ( O , q 5 , f l  ) E cos6 S ( 6  ) a 
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where Eo is the solar constant corrected to the earth-sun distance 

appropriate for the day of the observation, and Ssw ( B o )  is the model clr 

representing the change in clear-sky albedo with solar zenith angle such 

that ac1'(B0) = a. Sc1'(B0) sw and Ssw clr ( B o -  0) - 1. Moreover, there will be 

variation about these mean values which is modeled as a bivariate normal 

distribution. 

measurements, then the probability (or likelihood) that the pair of measured 

If we consider a small element ARswARlw about the 

radiances were of a clear area is 

where 

and 

+ . 
c 
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The probability that the iven surface type i clear Pr[clr], the standard 

'lr oclr and the shortwave-longwave correlation coefficient sw ' lw ' deviations 4 

pclr have been defined from N7 data, The same procedure is followed to 

calculate Pr for partly cloudy, mostly cloudy, and overcast conditions. 

Finally, the cloud condition with the greatest probability of occurrence 

(i.e. the largest value of Pr) is chosen. 

Figure 1 presents typical quantities for the four cloud conditions. 

The center points mark the mean (nominal) radiances, and the equiprobability 

ellipses illustrate the distribution. Note that partly cloudy scenes can 

exhibit the same shortwave and longwave radiances as mostly cloudy scenes. 

This is also true of the other scene types. 

of the large variation in cloud optical depth and cloud height within each 

cloud cover type. 

It is obvious that the MLE would identify this measurement pair as viewing a 

mostly cloudy area. 

The overlap is expected in view 

The actual measurements are shown in Figure 1 by an "x." 

The conceptual drawing in Figure 1 can be compared to a bispectral 

histogram of the actual N7-ERl3 radiances as given in Figure 2 for a single 

viewing condition. 

scanner observations with solar zenith angles 53.1"-60.0", viewing zenith 

The observations given in the histogram are for N7 

angles 0"-15" and viewing azimuth angles 0"-180". Each of the shortwave and 

longwave radiance pairs has been assigned a cloud condition based on 

auxiliary data from the THIR and TOMS instruments on the N7 satellite. 

These instruments have much smaller fields of view than the N7-ERB 

II instrument and narrowe'r spectral coverage, allowing more accurate cloud 

determination. 

and TOMS data can be found in Stowe et al. (1985). 

that the radiance distributions are roughly Gaussian in appearance and that 

A description of the cloud retrieval algorithm using THIR 

Figure 2 demonstrates 
L 
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there is substantial overlap in observed radiances as a function of cloud 

cover condition. Since two cloud conditions can exhibit the same 

measurements, the cloud condition cannot be defined deterministically, but 

must be defined statistically. 

A problem arises with further consideration of the results given in 

Figure 2. 

equator crossing time near local noon, observat2ons with a solar zenith 

Since the Nimbus 7 satellite has a sun-synchronous orbit with an 

i 11 
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angle near 56" will be taken in middle and high latitudes. The tropics will 

never be observed with a 56" solar zenith angle. 

causes two difficulties. 

This sampling limitation 

First, it is necessary to assume that the 

shortwave ADM's of all scene types are independent of latitude. Second, the 

longwave radiances given in Figure 2 would not be representative of tropical 

clear and cloudy emission. 

the longwave ADM's separately for each latitude zone. 

and shortwave ADM's might vary on a regional basis. The N7 orbit, however, . 

This second problem is alleviated by determining 

In general, longwave 

limits the number of ADM's which can be developed. Shortwave ADM's are 

developed for 10 solar zenith ranges (every 0.10 in cosine of the solar 

zenith), and longwave ADM's are developed for 10 latitude zones (every 18" 

latitude). 

(Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, and Sep-Oct-Nov). 

Longwave ADM's are further divided into four seasons of the year 

The discussion above would treat a clear geographic surface type as 

having the same shortwave ADM and the same albedo independent of its 

location on the globe. 

have the same longwave ADM and the same longwave flux independent of 

longitude within a single 18" latitude zone. An improvement to the MLE can 

Similarly, a clear geographic surface type would 

be made by recognizing that geographic location provides information about 

expected clear-sky shortwave and longwave fluxes. For example, desert 
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albedo may vary from 20 to 40% over different regions of the earth. If a 

single global desert albedo is used, brighter deserts will be perceived as 

having systematically higher cloud cover than darker desert regions. 

Similar arguments can be made concerning clear land albedo and longwave 

flux. 

regional ADM's, regional clear-sky shortwave albedo and longwave flux can be 

estimated. Therefore, an additional set of desired a priori data are the 

nominal clear-sky longwave flux and the nominal clear-sky overhead-sun 

albedo values for all 2-1/2O regions over the earth. In order to utilize 

this clear-sky flux information in the MLE analysis, it is necessary to 

adjust the global partly cloudy, mostly cloudy, and overcast a priori fluxes 

to be consistent with the modified regional clear-sky fluxes. 

Note that even though the N7-ERB sampling is insufficient to provide 

For a given geographic scene type, let the global overhead-sun albedos 

, a. , a. , a. -clr -pc -mc -ov for each cloud condition be denoted a 

longwave fluxes as Mlw , 

albedo for a given region a:' is given by 

and the zonal mean 0 
-clr fipc -mc -ov . Now the partly cloudy overhead-sun lw' Mlw Mlw 

clr apc - -pc + 0.75 [ a. 0 aO 

The global quantity i:c is adjusted to a regional quantity apc by adding 75% 

of the difference between the clear-sky regional albedo and the clear-sky 

global albedo. 

is approximately 75% clear. 

0 

The 75% accounts for the fact that the partly cloudy scene 

The cloudy portion of the scene is assumed to 

. be independent of the underlying surface albedo. This assumption is made in 

the absence of information concerning the behavior of broken clouds over 

variable reflectance backgrounds. Similarly, the mostly cloudy regional 

albedo is given by 
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- a. -clr 1 + 0.25 [ -mc 
aO amc = 

0 

and the overcast regional albedo by 

For variations within a latitude zone of regional clear-sky longwave 

flux, the conceptual model is that surface temperature changes regionally, 

but that the atmospheric temperature lapse rate and cloud height are 

constant. 

is approximately independent of changing clear-sky flux and 

In this case, the difference between clear-sky and cloudy fluxes 

MTz = fipc + [ M:F- Mlw 
lw -clr 1 

where M T Z  is the regional longwave partly cloudy flux and fiyz is the zonal 

longwave partly cloudy flux. Recall from (1) that while the shortwave ADM's 

are global in extent and vary with solar zenith angle, the longwave ADM's 

are independent of solar zenith angle but are defined for each of 10 

latitude zones. 

. 
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2.2 General example case 

2.2.1 Description 

Figure 3 gives an example of application of the MLE algorithm. The 

viewed area is ocean at the equator (0-18N latitude) during the northern 

hemisphere spring season (March-April-May). The clear sky conditions are 

'lr= 0.076 , 6 'lr= 1.51, and Mlw 'lr= 297.1 Wm-*. The viewing geometry is 39" aO 
I B I 51", 53.1 I B o  I 60, and 60" I 4 I 90". 

cloud conditions are given in Table 1. The lines drawn in Figure 3 show the 

decision boundaries between the four cloud conditions. At one point two of 

these boundaries intersect to form a triple point. The "+" characters mark 

the mean expected shortwave and longwave radiance for each cloud condition. 

Note that the majority of earth observations should fall along the lines 

joining the mean radiance points for the four cloud conditions. 

Values for the different 

Except for 

the clear scene type, the boundaries along this line are approximately at 

the midpoints, but the boundaries are not perpendicular to the line. The 

slope of the boundary along the mean line is set by the ratio of the 

shortwave and longwave radiance standard deviations. An examination of 

Table 1 shows that the shortwave radiance standard deviations are much 

larger than the longwave radiance standard deviations. Further, the 

decision boundary between the clear and partly cloudy condition is very 

close to the mean clear radiance. This boundary is strongly affected by the 

large difference in a priori probability, that is Pr[clr] - 0.05 and Pr[pc] 
= 0.46. The relatively large a priori partly cloudy probability forces the 

decision boundary toward the mean clear radiance. 

average, clear radiances as identified by the MLE will have larger longwave 

radiances and smaller shortwave radiances than the N7 a priori data. 

It appears that on 
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2 . 2 . 2  Refinements 

Further examination of the upper left corner of Figure 3 shows that it 

is possible for scenes which are warmer (large longwave radiance) and darker 

(small shortwave radiance) than clear-sky conditions to be classified as 

partly cloudy. This result can be seen by examining (4) and the radiance 

standard deviations in Table 1. 

an increase in the product u u 

Probability density decreases linearly with 

but decreases exponentially with an sw lw’ 

increase in the product [ (Rsw-Lsw)/~sw] [ (Rlw-Llw)/alw] . Thus, observations 

which are several standard deviations away from the expected mean 

radiances for either cloud type will be identified as the cloud type with 
lsw, llw 

the largest standard deviation. 

This artifact is caused by the fact that the radiance distributions of 

clear and partly cloudy scenes cannot be perfectly modeled as Gaussian. 

Even though this artifact will not occur often, it can be eliminated by 

application of thresholds beyond which clouds are not allowed to be chosen 

as the scene type. The dashed line in Figure 3 shows the clear-sky 

thresholds used in the MLE processing. 

Llw 

Whenever both Rsw< L s y  and Rlw > 
clr the viewed area is defined as clear. Moreover, any radiance 

> Lyg+ 20:: are classified c l r  clr observations for which Rsw< Lsw - 2asw or Rlw 
as clear. 

There are two other restrictions on the MLE that improve the results. 

First, if the calculated probability of the most likely cloud condition is 

extremely small, then the validity of the measured radiances or the validity 

of the a priori data should be questioned. 

decision is to circularize the bivariate normal distribution of the 

identified scene type and require that the measurement be within N standard 

One way to implement this 
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deviations from the mean values. The scene identification of measured 

. 

radiance s 

d -  

Rlw is rejected if d > N, where 
RS", 

["..; "SW ] 2 - 2 p  pw; Lsw][Ilw; "1.1 + [Plw; "'.]2. (7) 

sw sw lw lw 

Second, the identified scene should be questioned when the measured 

radiances have viewing angles in the forward scattering specular region. 

this point the discrete ADM cannot accurately resolve the angular structure 

of reflectance, and large errors can result. This second restriction on the 

MLE is accomplished by setting a maximum shortwave anisotropic value of R 

and rejecting observations with R > R . 

At 

* 
* * 

A value of R - 2 is suggested, so 

that the scene identification is rejected when the expected shortwave 

radiance is twice that which would occur for a Lambertian reflector. 

The MLE algorithm has been formulated as a bispectral algorithm using 

simultaneously measured shortwave and longwave radiances. 

at night, however, the cloud condition must be identified.using only 

For observations 

longwave radiances. Similarly, if a longwave radiance is not available 

during the day (i.e. data dropout), then the cloud condition must be 

identified using only shortwave radiances. 

by eliminating the appropriate variable in the bivariate normal distribution 

( 4 ) .  This change reduces the MLE to a 1-dimensional method. 

These cases are easily handled 

3. Relationship of MLE to Shple Threshold Algorithms 

The MLE algorithm can be simplified in several steps until the method 

Secomes equivalent to simpler radiance threshold methods commonly emplcyed 
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in the detection of cloud cover. The steps 

instructive and are given in the discussion 

the same example case presented in Figure 3 

3 . 1 '  Eaual scene probabilitv. Prlkl = 0.25 

to this simplification are 

below. Results are given for 

Figure 4a gives the MLE scene selection boundaries for the case where 

the a priori scene probabilities Pr[k], k - clr, pc, mc, ov, are all set to 
0.25. In this case the clear scene selection area in radiance space is 

increased, while that of partly cloudy is decreased relative to the general 

case. 

3 . 2  Zero correlation. D - 0. and Prlkl = 0.25 

The effect of setting the correlation coefficient to zero in ( 4 )  is 

shown in Figure 4b. Along the line of mean radiances where most of the 

measurements will occur, the decision boundaries changed very little. The 

reason for this can be seen by examining the general form of the 

equiprobability ellipse given by 

For simplicity we have assumed mean zero. The principle axes (x',y') of the 

ellipse are rotated from the xy axes by an angle 9 given by [Liebelt, 1967, 

P. 921 
2 a  4 p -1 

9 = -  2 tan [ o; :o,,] 

X 

(9) 
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and the principle variances are given by 

(loa) 
2 u u sin Q cos Q + u2 sin Q 

2 2 
X' X 2pxy x y Y u - u2 cos O + 

u u sin Q cos Q 2 2 
Y' X 2pxy x y u = u2 sin o + 

If we set p equal to zero, then (9 - 0" and the ell pse is aligned with the 
xy axes with principle variance of u2 and o2 

determined from Table 1 for the general example problem and are given in 

Table 2. 

In addition, the ratio of principle standard deviations shows that the 

shapes of the ellipses are not drastically altered. 

surprising that the decision boundaries moved little when correlation was 

neglected. 

XY 
These quantities have been 

X Y' 

When the ratio usw/ulw is large, the angle of rotation is small. 

Thus, it is not 

3 . 3  Equal variances, uk - u? = d for all k. D - 0, Prrkl - 0.25 
Now let us further simplify the MLE algorithm by setting the shortwave 

and longwave standard deviations to a constant u for all four cloud 

conditions. In this case, the probability function ( 4 )  reduces to 

In this case maximizing the probability simplifies to minimizing simple 

distance in radiance space. Any radiance observation pair is classified as 

the cloud condition k which minimizes the distance 
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d - [  (a sw -LkI2+(a sw sw -Lk) sw ] 

between the a priori and measured radiances. 

this simplification. 

bisector of a line drawn between two adjacent a priori mean radiance points. 

Figure 4c gives the results of 

Each decision boundary is simply the perpendicular 

For measurements occurring along this line, the scene selection will be 

similar to the other cases considered. 

derived fluxes will be discussed in section 4. 

The net impact of this change on 

3.4 One dimensional limit. 0 >> o- . P - 0. Prlkl - 0.25 
I W  

In the limit as the shortwave standard deviation becomes large compared 

to the longwave standard deviation, the decision boundaries become 

horizontal lines and the scene identification is one dimensional. In this 

. 

case there is little information content in the shortwave radiance 

measurement, resulting in use of the longwave radiance only. 

boundaries are shown in Figure 4d and are typical of the case for scene 

identification for nighttime observations. The analogous case for 

ulw>> osw is shown in Figure 4e. 

The decision 

3.5 MLE simplified to N7-ERB scene identification alporithm - 

Having examined the simplifications of an MLE approach for cloud 

identification in sections 3.1 to 3.4, we can derive a set of simplifying 

conditions for which the MLE reduces to the N7 MATRIX cloud identification 

algorithm described by Jacobowitz et a1 (1982) .  The N7 MATRIX algorithm was 

used in the operational processing of the N7-ERB broadband data. 

following conditions would simplify the MLE to the N7 algorithm: 

The 
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2. 

3 .  

4 .  

5. 

Consider only clear and overcast cloud conditions. 

‘lr= uoV- Q and csw lw lw lw Assume u 

Assume usw>> alw. 

The average of clear and overcast mean longwave is 78.2 Wm-2sr 

( LE:+ L Z  )/2 - 78.2 
Mean longwave radiances for clear and overcast cloud conditions do not 

clr a uov il 0 
sw sw - 

-1 , i.e. 

vary with viewing zenith, measurement location on the earth, or time of 

year. 

A final test is applied by the N7 MATRIX algorithm which is not used in the 

MLE approach. If the scene is selected as clear and the Lambertian albedo A 

calculated using the shortwave radiance measurement (i.e. A = R Lsw/EO~~~BO) 

is greater than a limit Amax, then the measurement is rejected. 

ocean background is 0.15 and Amax for land background is 0 . 5 0 .  The N7 scene 

identification algorithm result is shown in Figure 5 for comparison with the 

simplified versions of the MLE given in Figures 4a through 4e. 

the rejection of data occurs for a substantial portion of the radiance space 

diagrams. The rejection area for the N7 MATRIX scene algorithm includes 

radiance values which the MLE algorithm would identify as partly cloudy, 

mostly cloudy and overcast, depending on the particular radiance values. 

The N7 data used to construct the statistics and ADM‘s for the MLE indicates 

that a significant portion of radiance data for this viewing condition will 

be rejected by the N7 MATRIX algorithm. We will return to this discrepancy 

and its impact on derived fluxes in section 4 .  This discrepancy points out 

the difficulty in applying global thresholds to classify scene types. 

middle or high latitudes (lower longwave radiances), the region of rejected 

for Amax 

, 

Note that 

At 

Y ^  Ladlances would be outside the range of t y p l c d  observations. 
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The Nimbus 3 scene selection algorithm (Raschke et al., 1973), was 

similar to the N7 MATRIX algorithm discussed above with a few differences: 

clouds and land are treated as the same scene type; and Amaxis set to 0.10; 

the data rejected by the N7 MATRIX algorithm is classified as the cloud/land 

model (i.e. data with higher Lambertian albedo than Amax and higher longwave 

radiance than 78.2 Wm sr ) .  
- 2  -1 

3.6 Variation of mean radiances with viewing angle. 

Given the large variations in bidirectional reflectance found from the 

N7 data, we expect that the scene selection boundaries shown in Figure 3 

would be strongly dependent on the viewing zenith angle, viewing azimuth 

angle, and solar zenith angle. 

of the mean radiances for all four cloud conditions over a wide range of 

viewing zenith angles at a fixed viewing azimuth angle (60"-90") and fixed 

solar zenith angle (53"-60"). Figure 6b gives the same plot for an azimuth 

angle of 0-9 degrees (i.e. forward scattering). While small changes are 

found in Figure 6a, large differences are found in Figure 6b. 

scene identification will vary with changing viewing zenith angle, 

especially for observations in the solar plane. Since this variation is a 

Figure 6a gives an example of the variation 

Clearly, 

result of the anisotropy of the radiation reflected or emitted from the 

scene, correction of measured radiances to fluxes is also variable for the 

above viewing conditions. 

3.7 Variation of mean radiances with latitude and season. 

Figures 3 through 4e gave the MLE scene selection results for the case 

of tropical (0-18N latitude zone) conditions over an ocean background during 

spring (March-April-May). What happens for observations taken at higher 
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latitudes? In this case, the expected longwave radiance will decrease for 

clear-sky conditions and may decrease or increase for overcast conditions. 

Figure 7 gives the variation of each of the four cloud scene types for the 

latitude zones from the equator to 72N latitude during the spring season 

(March-April-May) and for the same viewing angle conditions shown in Figure 

3 .  Recall from section 2.1 that shortwave radiance values are independent 

of latitude. Figure 7 clearly shows large variations in the expected 

longwave radiance with latitude, consistent with the decrease in surface 

temperature from equator to pole. 

variation is much larger than the standard deviation of longwave radiance 

for clear-sky within a single latitude zone (approx. 3-5 W/m /sr for ocean 

and 4-8 W/m /sr for land), scene identification using an MLE approach should 

include the variation of longwave radiances with latitude. A similar 

argument would apply to seasonal temperature variations at middle and high 

Since the latitudinal longwave radiance 

2 

2 

latitudes. The MLE used to process ERBE data includes all of these effects. 

4. Data Simulation 

There are various modeling assumptions and error sources that affect 

the accuracy of the MLE algorithm. By simulating the satellite measured 

radiances, Rsw and Rlw, some of these assumptions can be evaluated. 

Specifically, the general example case and the simplified example cases 

discussed in section 3 will be simulated. Errors to be considered include 

both errors in identification of the scene type, and more importantly the 

resulting errors in derived shortwave and longwave flux. 

The MLE solution for the general example problem is given in Figure 3. 

The concept used to perform the simulation experiment is to consider a set 
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i 
sw’ lw of measurement radiance pairs (1 

radiance space shown in Fig. 3 .  

points i,j to minimize the computation required. The interval between 

radiance points is chosen as 1 W m-*sr-’. 

less than one standard deviation in radiance for any cloud condition, but 

sufficiently large to minimize computational expense. 

measurements (Isw , 1’ ) in radiance space, we can then identify the cloud 

condition K(i,j) as either clear, partly cloudy, mostly cloudy, or overcast. 

K is a cloud index taking on values 1 through 4 and specifies the ADM to be 

used for inverting the data. 

TOA is from (2) 

lJ ) which span the 2-dimensional 

The radiance space is sampled at discrete 

This value is chosen to be much 

For any pair of 
i 

lw 

The resulting shortwave flux estimate at the 

where for a given i and j (i.e. shortwave and longwave radiance 

measurements), the MLE will determine a single value of K (i.e. scene type) 

as most likely. Next, compare this estimated flux with the true flux. For 

the purpose of simulation, we assume the distribution of measurements (i.e. 

Figure 2) can be exactly represented by four bivariate normal distributions 

with the parameters given in Table 1. 

occurrence of each cloud condition k is represented exactly by Pr[k] and the 
i R values are true. Thus, the true mean flux at a point (1 Piw) will be a sw’ 

combination of the fluxes for each of the four scene types. 

probability of occurrence of each scene type, the true mean shortwave flux 

for the point (i,j) in radiance space is given by 

In addition, the probability of 

Knowing the 
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where from (2 )  M:(k) = A 1:J RSW, and from (4) 

. I  ^ij .. 
The flux error A’’ is then the difference Msw - MIJ between the estimated 

flux and the true flux. 

ensemble of all four cloud conditions which can occur for a given radiance 

measurement pair (1  

using the ADM appropriate only for the single cloud condition selected by 

the MLE. 

sw sw .. 
Note that the true flux ft;; is a statistical 

h a .  i 
sw’ lw lJ ) ,  while the estimated flux Mi: is determined 

i 
sw’ lw .Nsw and 1’ ) where i=1,2,. . Let us consider a grid of points (1 

j-1,2, . . .  Nlw that cover the measurement space of Figure 3 .  

combination of (i,j) the flux error is simulated. 

At each 

Finally, a weighted 

average of the flux errors over all points (i,j) is determined. The weight 

at each point n(i,j) is according to its probability of occurrence. The 

mean error for all possible radiance observations is then given by 

and the standard deviation of the flux error 6sw is given by 
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Nsw Nlw 
2 E E *ij [ Aij - 1’ - Asw I 

sw i-1 j-1 sw 

where 

4 

and the summation of nij over all i,j is equal to 1.0. The range of i,j 

used in the simulation covers only 99% of the expected radiance range so 

that a final normalization is necessary to adjust the sum of nij to 1.0. 

The flux error derived above is the minimum error which the MLE 

methodology would produce given input data with the same statistics as the a 

priori data set. Note from (2 )  that if Rsw is the same for all scene types, 

then any cloud condition identified by the MLE would yield the correct flux. 

Also, if the four cloud types were sufficiently unique to avoid overlap in 

k 

radiance space, then the MLE would always identify the correct scene and get 

zero error. Therefore, the simulation of the example problem determines 

flux errors which would result from the overlap between scene types .and the 

associated change in anisotropy. 

Table 3 gives results from simulations for all methodologies considered 

in section 3 .  Satellite viewing conditions are the same as those used for 

Figures 3 and 4 .  Given in Table 3 are both the fraction of simulated 

satellite observations classified as each of the four cloud conditions, and 

the errors in estimated shortwave and longwave fluxes at the TOA. 

Simulation of the general example gave cloud condition percentages that were 

very close to the a priori values. The shortwave flux estimate is biased by 
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. 

1 Wm-2 and the standard deviation of the error is 5 . 6  Wm-2. 

flux estimates are very good, with mean zero and a standard deviation of 0.1 

Wm-2. for 

the four cloud conditions. Further discussion of this result is given in 

section 6 .  The use of equal scene a priori probabilities (section 3.1) 

affect the clear and partly cloudy frequencies but have little effect on 

flux errors. Also the effect of eliminating correlation (section 3 . 2 )  is 

small. The equal standard deviations case (section 3 . 3 )  increases the 

shortwave flux errors but has little effect on the longwave fluxes. 

the scene is identified using only the longwave radiances, large increases 

in shortwave error are found. When the scene is identified using only the 

shortwave radiances, the standard deviation of shortwave error increases 

substantially. The N7 scene identification algorithm caused large errors in 

both shortwave and longwave fluxes. 

the region of rejected radiance observations which rejects many of the large 

longwave flux observations and thereby biases the mean longwave flux 

estimate t o o  low. The shortwave error is a combination of this effect and 

The longwave 

This later result is expected in view of the small changes in Rk lw 

When 

The longwave bias error results from 

the use of only a clear and overcast shortwave anisotropic model. If the 

radiances in the N7 rejected area are classified as overcast, then ASw= 
-4.9 Wm-2 and AlW= 0.4 Wm-2. 
anisotropic models (i.e. R - 1.0, or M - ~ 1 )  gives errors an order of 

magnitude larger than the other methods. 

Finally, the result of applying Lambertian 
A 

Although the simulations are presented for only one sampling condition, 

other conditions have been-simulated. The errors shown are neither the 

largest nor the smallest of those found for other viewing conditions. 

Unfortunately, there is no single meaningful error which can be quoted. 

Satellite viewing geometry w l l l  vary greatly over different regions of the 
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earth, different times of day, and different satellite orbits. Work is in 

progress to derive more general results using N7-ERB data by applying the 

MLE algorithm and then comparing to the Sorting into Angular Bins (SAB) 

method of Arking and Vemury (1984) over the entire earth for the month of 

June 1979. 

5 .  Discussion 

Section 4 discussed the magnitude of derived TOA flux errors using an 

MLE approach to identify the cloud condition. To a great extent, these 

errors represent the ambiguity of the relationship between shortwave and 

longwave radiance and the scene types to be classified. Figures 1 and 2 

showed the substantial overlap between adjacent scene types. 

did not occur, the flux errors given in Table 3 would have been zero. If 

the flux errors are caused by ambiguous cloud type selection, then another 

strategy to evaluate fluxes would be to utilize an anisotropic factor R for 

any given observation which weighted the R value for each scene type by the 

probability that the observed radiances came from that scene type. 

example, if the observed radiances fell on the MLE decision boundary between 

the clear and partly cloudy scene types, a composite of the two anisotropic 

models could be used. While the results are not presented here, this 

If the overlap 

For 

approach was found to give similar flux errors to those for the general MLE 

approach. Since discrete scene types are simpler to implement and 

interpret, the general MLE approach was chosen. 
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5.1 Shortwave flux errors 

If overlap or ambiguity is the major source of error in the theoretical 

error analysis results, it would follow that increasing the number of cloud 

conditions might eliminate much of the ambiguity. 

substantial overlap of cloud conditions in radiance space is likely to be 

inevitable whenever the existence of partial cloud cover in a single 

observation is a common occurrence. For shortwave radiance, the ambiguity 

is caused by the variability of cloud albedo, cloud fraction, and cloud 

bidirectional reflectance. 

conditions, reconsider the data shown in Table 1. If clouds exhibited 

uniform albedo and uniform bidirectional reflectance, then the standard 

deviation of shortwave radiance for a given viewing condition would result 

only from the allowed range of cloud cover in the overcast category of 95% 

to 100% cloud cover. The standard deviation of shortwave radiance should 

then be less than 2% of the mean shortwave radiance. 

Table 1 is 25.3% for overcast conditions, much greater than 2%. 

Unfortunately, 

As an example of the large variability of cloud 

The ratio asw/Lsw from 

Evidently 

most of this variability is caused by fluctuations in cloud albedo and 

bidirectional reflectance. 

condition is 41.9%, even larger. At first, the larger variability for the 

The ratio osw/Lsw for the mostly cloudy 

mostly cloudy cloud condition would seem to be caused by the larger 

variation in cloud cover allowed in this cloud class (50% - 95%). A uniform 

distribution of cloud cover from 50% to 95%, however, would only give a 

(0.29)(95-50) = 13% value of asw/Lsw if albedo and bidirectional reflectance 

were held fixed. Instead, it is likely that the variation of bidirectional 

reflectance is dominating the partial cloud cover conditions, especially in 

.view of the highly variable cloud geometry and cloud optical depth likely to 

occur for these conditions. Ir'nfortunately, the number of N7 observations 



was judged insufficient to produce cloud bidirectional reflectance models 

for smaller intervals of cloud cover. A topic for further research is to 

establish the amount of decrease in radiance variability which can be 

achieved by examining smaller cloud cover intervals and by examining 

additional classes of cloud type, such as cloud height, aspect ratio, and 

optical depth. 

5 . 2  Longwave flux errors 

The overlap between scene types in longwave radiance is caused by the 

variation of cloud height, cloud emissivity, cloud fraction, and cloud 

longwave ADM (i.e. limb-darkening). The cloud fraction classes currently 

defined give ADM‘s which vary by only 1% to 2% between the various scene 

types. In this case, any error in scene selection causes only small errors 

in derived TOA longwave flux. The similarity of the longwave ADM’s was not 

anticipated. Most cloud models treat clouds as plane-parallel and optically 

thick (%.e. black) in the infrared. This conceptual model would predict 

that longwave ADM’s should become increasingly isotropic as cloud cover 

increases. In fact, the overcast category has similar limb-darkening to the 

clear, partly cloudy, and mostly cloudy scene types. This result is 

probably traceable to two effects. First, optically thin cirrus cloud is 

strongly limb-darkened. Second, broken 3-dimensional cloud fields increase 

limb-darkening relative to that of plane-parallel cloud fields (Naber and 

Weinman, 1984; Duvel and Kandel, 1984). The longwave errors given in the 

simulation are likely to substantially underestimate the true standard 

deviation of error in TOA longwave flux. 

cloud height and cloud emissivity would be required to more accurately 

derive lmgwave fluxes. 

Additional cloud categories for . 
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6. Conclusions 

An improved methodology for identifying cloud conditions has been 

developed for use in studies of the earth's radiation budget. 

likelihood estimation (MLE) methodology has been developed in concert with 

new models of the anisotropy of the earth's outgoing radiation field and 

improves the accuracy of the flux estimates at the top of the atmosphere 

using broadband radiance measurements. For this reason the MLE has been 

chosen for use by the Earth Radiation Budget Experiment (ERBE) data 

processing system. 

uses measured shortwave and longwave broadband radiances to identify the 

This maximum 

The MLE is a bispectral identification algorithm that 

cloud type. This identification depends on the viewing zenith angle, the 

viewing azimuth angle, the solar zenith angle, the 2 . 5 "  latitude/longitude 

region observed, and season. A substantial amount of a priori data is 

required, including angular dependence models and their statistics for all 

scene types. The geographic scene type (land, ocean, desert, etc.) of each 

2.5" region is defined along with a mean regional clear-sky overhead sun 

albedo. These overhead sun albedoes are corrected to the observation sun 

condition using models of albedo variation with solar zenith. These a 

priori data are then used to compute an expected mean radiance from each of 

four cloud conditions and a statistical "distance" measure selects the cloud 

condition with the maximum likelihood. Thus, the MLE identifies the 

satellite measurement as observing either a clear scene, partly cloudy 

scene, mostly cloudy scene, or an overcast scene. 

. 

When compared to the use of a lambertian assumption, simulations 

indicate that the MLE iiiethodology can reduce bias errms In derived fluxes 
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by more than a factor of 10. 

more than a factor of 5. 

improvement over the simpler threshold methodologies previously employed in 

the analysis of Nimbus 3 and Nimbus 7 earth radiation budget data, 

The standard deviation of error is reduced by 

The methodology gives a factor of 2 to 3 

Since 

the simulation error analysis requires assumptions about the statistics of 

the earth's radiation field, further validation of the methodology is 

recommended using analysis of the ERBE and N7 data. 

initial lower limits on the errors. 

The simulations provide 

While the primary purpose of the MLE approach is to select the 

appropriate angular dependence model, a crude measure of cloud amount is 

generated as a by-product. 

analysis tool for the separate determination of cloudy and clear radiative 

properties. Ultimately, however, a more accurate determination of cloud 

radiative properties will require the combined analysis of the ERBE and 

International Satellite Cloud Climatology Project (ISCCP) data. 

This product is potentially useful as an initial 
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FIGURE CAPTIONS 

. 

. 

Figure 1. Conceptual drawing of equiprobability ellipses for each of 

the four scene types: clear ocean (clr), partly cloudy ocean (pc), mostly 

cloudy ocean (mc), and overcast (ov). Mean radiances for each scene type 

are marked by a "+". Example observation is marked by an "x". 

Figure 2: 

used to construct angular dependence models (ADM's) and statistics used by 

the MLE scene identification algorithm. Observations are for solar zenith 

angles 53.1"-60.0", viewing zenith angle 0"-15", and all viewing azimuth 

angles. Observations include all latitude zones. 

Bispectral histogram of the Nimbus 7 ERB broadband radiances 

Figure 3 .  General example case of MLE scene selection algorithm. Mean 

radiances for each scene type are marked by a "+". 

decision boundaries between the different scene types. Observations with 

radiances above or to the left of the dashed line are classified as clear 

(i.e. very large longwave radiance or very low shortwave radiance). 

given are for latitude zone 0-18N, solar zenith angles 53.1"-60", viewing 

Solid lines give the 

Results 

zenith angle 39"-51", viewing azimuth angles 60"-90" and season March-April- 

May. 

Figure 4a. 

priori probabilities of all scene types. 

Simplification of the case in Figure 3 assuming equal a 
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Figure 4b. Simplification of the case in Figure 3 assuming zero 

c 

t 

correlation coefficient and equal a priori probability for all four -scene 

types. 

Figure 4c. 

radiance variance, zero correlation coefficient and equal a priori 

probability for all four scene types. 

Simplification o f  the case in Figure 3 assuming equal 

Figure 4d. 

of shortwave radiance is much greater than the variance of longwave radiance 

and assuming equal a priori probabilities. 

Simplification of the case in Figure 3 assuming the variance 

Figure 4e. Simplification of the case in Figure 3 assuming the variance 

of longwave radiance is much greater than the variance of shortwave radiance 

and assuming equal a priori probabilities. 

Figure 5. 

the case in Figure 3 .  

Application of the N7-ERB scene identification algorithm to 

The mean radiances used by the MLE are given by a r r + r r  

for reference with the previous figures. 

Figure 6a. 

scene type as a function of viewing zenith angle for solar zenith angle 

53.1"-60", viewing azimuth angle 60"-90" and season March-April-May. 

Variation of mean shortwave and longwave radiances for each 

Figure 6b. 

scene type as a function of viewing zenith angle for solar zenith angle 

53.1"-60", viewing azimuth angle 0'-9" and season March-April-May. 

Variation of mean shortwave and longwave radiances for each 
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Figure 7. 

scene type as a function of latitude for solar zenith angle 53.1"-60", 

viewing zenith angle 39"-51", viewing azimuth angle 60"-90" and season 

March-April-May. 

Variation of mean shortwave and longwave radiances for each 
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TABLE 1. Radiance Statistics for the Example in Figure 3 

Cloud Apriori Shortwave Shortwave Longwave Longwave Correl. Shortwave Longwave 

Condition Prob. Radiance Std. Dev. Radiance Std. Dev Coef. Anisotropy Anisotropy 

Clear 0.05 16.46 3.6 95.89 3.4 -0.221 0.599 1.014 

P. Cloudy 0.46 31.48 12.7 92.33 4.1 -0.366 0.712 1.014 

M. Cloudy 0.28 68.77 28.8 79.73 8.5 -0.451 0.872 1.015 

Overcast 0.21 109.81 27.8 60.29 15.5 -0.545 0.919 1.011 
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. 
TABLE 2. Impact of Correlation Coefficients on the 

Radiance Statistics Given in Table 1. 

~~ 

swlu Iw u;w/'sw uiw/'lw Cloud 

Condition (degrees) 

Clear 1.06 -37.0 1.077 0.905 

P. Cloudy 3.12 -7.3 1.007 0.923 

M. Cloudy 3.37 -8.2 1.009 0.884 

Over cast 1.79 -20.7 1.056 0.793 

. 
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TABLE 3 .  Cloud Conditions and TOA Fluxes vs. the NIMBUS 7 Reference Values. 

METHODOLOGY 

CLOUD CONDITIONS ( % )  FLUX ERRORS (W/rn2) 

CLEAR PCLDY MCLDY OVCST Asw SW Alw lw 

N7: THIR/TOMS REFERENCE 5 . 0  4 6 . 0  2 8 . 0  2 1 . 0  N/A N/A N/A N/A 

MLE: GENERAL 3 . 7  51 .2  2 8 . 0  1 7 . 1  1.0 5 . 6  0 . 0  0.1 

MLE: EQUAL SCENE PROBABILITY 1 4 . 9  3 7 . 9  2 7 . 8  1 9 . 4  1.4 6 . 9  0 .0  0 . 1  

MLE: CORR. COEF. - 0 1 4 . 7  39.2 2 6 . 6  1 9 . 5  1 . 6  7 . 1  0 . 0  0 . 2  

MLE: EQUAL STD. DEV. 1 8 . 8  3 7 . 1  2 2 . 4  2 1 . 6  2 . 0  9 . 8  0 .0  0 . 2  

MLE: LONGWAVE ONLY 2 6 . 2  27 .2  2 9 . 2  1 7 . 4  7 . 2  2 0 . 5  0 . 0  0 . 2  

MLE: SHORTWAVE ONLY 1 6 . 8  37.8 2 2 . 9  2 2 . 5  1.1 1 0 . 8  0 .0  0 . 2  

N7 MATRIX: REJECT NOT USED 3 6 . 0  0.0 0 . 0  3 1 . 2  4 .4  1 5 . 8  - 8 . 7  0 . 3  

N7 MATRIX: REJECT - CLEAR 6 8 . 8  0.0 0.0 3 1 . 2  2 8 . 6  5 1 . 4  0.1 0 . 3  

N7 MATRIX: REJECT - OVCST 3 6 . 0  0.0 0.0 6 4 . 0  - 4 . 9  2 2 . 0  0 . 4  0 . 6  

LAMBERTIAN N/A N/A N/A N/A - 3 6 . 6  3 7 . 0  3 . 5  3 . 6  

. 
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