
INTRODUCTION TO MPI -- Head Page

INTRODUCTION TO MPI
A Tutorial with Exercises

By: Rosalinda de Fainchtein, Ph.D.
CSC/NASA GSFC, Code 931

This tutorial is adapted from a class by the same name taught as a
service to the NCCS User Community.

As you follow this tutorial, you will write simple MPI parallel
programs, and learn some of the nuances of MPI.

Each topic includes a simple exercise for you to apply the
material learned. A solution for each of these exercises is also
provided.

While the material can be scanned rather quickly, doing the
simple exercises should help you derive the most benefit from
this tutorial.

The material targets students with no prior parallel programming
experience, who know Fortran. If you are a C programmer, you
should be able to follow the examples, nonetheless.

A subdirectory containing C versions of all the examples and

exercises is also available through either anonymous ftp from
UniTree, or to be copied from "jsimpson" (at /scr/mpi-class/C) by
those who have access to this machine.

INTRODUCTION TO MPI -- 1.Contents

CONTENTS

What is MPI?

How do I run an MPI program?

What does a simple MPI program look like?

Basic MPI routines explained --examples and exercises.

More MPI routines and capabilities reviewed.

INTRODUCTION TO MPI -- 2.What is MPI?

What is MPI?

MPI is a library of subroutines for handling communication and
synchronization for programs running on parallel platforms.

MPI targets distributed memory platforms, such as the Cray T3E,
but it often delivers improved performance on shared memory
platforms also (such as the SGI Origin).

MPI is portable.

MPI programs usually follow a single program multiple data
(SPMD) format.

INTRODUCTION TO MPI --3.Running an MPI Program

How do I Run My MPI Program?

Given a program MY_MPI_PROGRAM.f where MPI is initialized
and used:

Compile as usual

f90 -o MY_MPI_PROGRAM MY_MPI_PROGRAM.f

Run the executable using m processors:

mpirun -np m MY_MPI_PROGRAM

INTRODUCTION TO MPI -- 4.Running in Parallel

How does MPI get
MY_MPI_PROGRAM to run in
parallel?

MPI spawns an identical copy of MY_MPI_PROGRAM on each of

the m requested processors.

e.g. If m=4, there will be four identical jobs running on four
processors at the same time!

 _________ _________ _________ _________
 | MY_MPI_ | | MY_MPI_ | | MY_MPI_ | | MY_MPI_ |
 | PROGRAM | | PROGRAM | | PROGRAM | | PROGRAM |
 | . | | . | | . | | . |
 | . | | . | | . | | . |
 | . | | . | | . | | . |
 | . | | . | | . | | . |
 | . | | . | | . | | . |
 | . | | . | | . | | . |
 |_________| |_________| |_________| |_________|

INTRODUCTION TO MPI -- 5.Example 1: ("Hello World")

Example 1: ("HELLO WORLD")

 program example1

 implicit none

!--Include the mpi header file
 include ’mpif.h’
 integer ierr,myid,numprocs
 integer irc

!--Initialize MPI
 call MPI_INIT(ierr)

!--Who am I? --- get my rank=myid
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

!--How many processes in the global group?
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
 print *, "Process ",myid," of ",numprocs," is alive"

!--Finalize MPI
 call MPI_FINALIZE(irc)

 stop
 end

INTRODUCTION TO MPI -- 6.Exercise 1: Run it

Exercise 1

1. Copy Example 1 from jsimpson at: /scr/mpi-class/example1.f into
your directory.

(or use anonymous ftp to UniTree (dirac) to retrieve example1.f)

2. Compile the code and run it on 4 processors.

Output from example1:

jsimpson% f90 -o example1 example1.f
jsimpson% mpirun -np 4 example1
Process 0 of 4 is alive
Process 2 of 4 is alive
Process 1 of 4 is alive
Process 3 of 4 is alive
STOP (PE 3) executed at line 24 in Fortran routine ’EXAMPLE1’

STOP (PE 0) executed at line 24 in Fortran routine ’EXAMPLE1’
STOP (PE 2) executed at line 24 in Fortran routine ’EXAMPLE1’
STOP (PE 1) executed at line 24 in Fortran routine ’EXAMPLE1’

INTRODUCTION TO MPI -- 7.Assigning work to each process: 1

HOW do I assign different work to each processor,
if all processors run the same program?

The short answer:

MPI assigns a rank (an integer number) to each process to
identify it.

The routine MPI_COM_RANK returns the rank of the calling
process.

The routine MPI_COM_SIZE returns the size or number of
processes in the application.

These two parameters, size and rank, can then be used (through block
if statements or otherwise) to differentiate the computations that each
process will execute.

 if (my_rank == 0) then
 x=
 y=
 end if
 if (my_rank == size-1) then
 z= ...

 end if

INTRODUCTION TO MPI -- 8.Assigning work to each process: 2

The Longer Answer:

When MPI is initialized, it creates a communicator, consisting of a
group of processes and their labels. This communicator is called,

MPI_COMM_WORLD

The number of processes (m) in this communicator is determined
when we submit the MPI job:

mpirun -np m MY_MPI_JOB

Each process can probe for the value of m by calling the MPI routine

MPI_COMM_SIZE

Each process in the MPI_COMM_WORLD group is assigned a rank,
an integer with incremental value between 0 and m-1. Each process
can determine its own rank by calling the routine

MPI_COMM_RANK

INTRODUCTION TO MPI -- 9.Required Statements

What are the minimum entries in a
program to run an MPI job?

There are three required entries on any MPI program:

include ’mpif.h’

call MPI_INIT(ierr)

call MPI_FINALIZE(ierr)

(No MPI program will run without these statements!)

A template for an MPI program can be found at jsimpson in

/scr/mpi-class/template.f

(or use anonymous ftp to UniTree to retrieve template.f)

INTRODUCTION TO MPI -- 10.Template

Template for an MPI program

 program template

!-- Template for any mpi program

 implicit none ! highly recommended. It will make
 ! debugging infinitely easier.

!--Include the mpi header file
 include ’mpif.h’ ! --> Required statement

!--Declare all variables and arrays.
 integer ierr,myid,numprocs,itag
 integer irc

!--Initialize MPI
 call MPI_INIT(ierr) ! --> Required statement

!--Who am I? --- get my rank=myid
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

!--How many processes in the global group?
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

!--Finalize MPI
 call MPI_FINALIZE(irc) ! ---> Required statement

 stop
 end

INTRODUCTION TO MPI -- 11.Exercise 2

Exercise 2

Starting from template.f, write a program that given a common value
of x (e.g. x=5 in all processes), computes:

y=x2 in process 0

y=x3 in process 1

y=x4 in process 2

and writes a statement from each process that identifies the process
and reports the values of x and y from that process.

INTRODUCTION TO MPI -- 12.Solution to Exercise 2

Solution to Exercise 2

(See the full program at /scr/mpi-class/exercise2-I.f in jsimpson, or
use anonymous ftp to UniTree to retrieve exercise2-I.f)

program template
.

.
!--Define new variables used
 integer ip
 real x,y
 .
 .
 {MPI_COMM_RANK and MPI_COMM_SIZE CALLS......}

!--Insert the calculations after the size (numprocs)
! and rank (myid) are known.

!--Set the value of x on all processes
 x=5.

!--Define the value of y on each process

 if(myid == 0) then
 y=x**2
 else if (myid == 1) then
 y=x**3
 else if (myid == 2) then
 y=x**4
 end if

!--...and print it.

 write(*,*)’On process ’,myid,’ y=’,y

 .
 .
 stop
 end

(A more concise version can be found in /scr/mpi-class/exercise2-I.f
in jsimpson, or use anonymous ftp to UniTree to retrieve
exercise2-II.f)

program template
.
.

!--Define new variables used
 integer ip
 real x,y
 .
 .
 {MPI_COMM_RANK and MPI_COMM_SIZE CALLS......}

!--Insert the calculations after the size (numprocs)
! and rank (myid) are known.

!--Set the value of x on all processes
 x=5.

!--Define the value of y on each process and print it.

 y=x**(2+myid)
 write(*,*)’On process ’,myid,’ y=’,y

 .
 .
 stop
 end

INTRODUCTION TO MPI -- 13.Output from exercise 2

Output from exercise 2:

jsimpson% mpirun -np 3 exercise2
On process 2 y= 625.
On process 0 y= 25.
On process 1 y= 125.
STOP (PE 1) executed at line 40 in Fortran routine ’TEMPLATE’
STOP (PE 2) executed at line 40 in Fortran routine ’TEMPLATE’
STOP (PE 0) executed at line 40 in Fortran routine ’TEMPLATE’

INTRODUCTION TO MPI --- 14.COMMUNICATIONS

COMMUNICATIONS

MPI is designed to manage codes running on distributed memory
platforms. Thus data residing on other processes is accessed through
MPI calls.

Although MPI includes a large number of communication routines,
most applications require only a handful of them.
A minimal set of routines that most parallel codes run with are:

MPI_INIT

MPI_COMM_SIZE

MPI_COMM_RANK

MPI_SEND

MPI_RECV

MPI_FINALIZE

INTRODUCTION TO MPI -- 15.Point To Point Comm.

POINT TO POINT COMMUNICATIONS

MPI_SEND and MPI_RECV perform "point to point"
communications.

The two routines work together to complete a transfer of data
from one process to another.

One process posts a send operation, and the target process posts a
receive for the databeing transferred.

e.g. (pseudocode)

 if (my_rank == 0)
 & call MPI_SEND(......,1,..)

 if (my_rank == 1)
 & call MPI_RECV(......,0,.....)

INTRODUCTION TO MPI -- 16.Blocking send

Blocking MPI Send Routine

MPI_SEND(buf,count,datatype,dest,tag,comm,ierror)

buf =initial address of send buffer (choice)

count =number of entries to send (integer)

datatype=datatype of each message entry (handle)

dest =rank of destination (integer)

tag =message tag

comm =communicator (handle)

ierror =return error code (integer)

datatype available handles:

MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_LOGICAL
MPI_CHARACTER
MPI_BYTE
MPI_PACKED

INTRODUCTION TO MPI 17.Blocking receive

Blocking MPI Receive Routine

MPI_RECV(buf,count,datatype,source,tag,comm,

buf =initial address of send buffer (choice)

count =number of entries to send (integer)

datatype=datatype of each entry (handle)

source =rank of source (integer)

tag =message tag

comm =communicator (handle)

status =return status array(integer)

ierror =return error code (integer)

Any routine that calls MPI_RECV, should declare the status array:

integer status(MPI_STATUS_SIZE)

The status array contains information on the received message, such
as its tag, source, error code. The number of entries received can also
be obtained from this array.

INTRODUCTION TO MPI -- 18.Example 2

EXAMPLE 2: Point to Point Communication

Process 0 sends the array x to process 1:

 .
 .
 integer count,dest,tag,ierror
 integer status(MPI_STATUS_SIZE)
 real x(5),y(5)
 .
 .
! --the common calling arguments
 count =5 ---->! 5 buffers (variables) to be transferred
 datatype=MPI_REAL
 tag = 2
 comm = MPI_COMM_WORLD

!---process 0 send data to process 1 (dest=1)
 if (my_rank == 0) then
 dest = 1
 call MPI_SEND(x(1),count,datatype,
 & dest,tag,comm, ierror)
! ---------------> [Note: x(1) is the first of "count" buffers to be sent]

 end if

!---process 1 receives data from process 0 (source=0)
 if (my_rank == 1) then
 source=0
 call MPI_RECV(y(1),count,datatype,
 & source,tag,comm,status, ierror)
 end if

The full program can be copied from jsimpson at
/scr/mpi-class/example2.f, or by anonymous ftp to UniTree.

INTRODUCTION TO MPI -- 19.The Message Envelope

THE MESSAGE ENVELOPE

How does an MPI process select which message to receive if more
than one message has been sent to it?

Each message carries verification information with it called the
message envelope.

The message envelope consists of the following:

source
destination
tag
communicator

A message is received only if the arguments in the posted receive call
agree with the message envelope of an incoming message.

INTRODUCTION TO MPI -- 20.Exercise 3

Exercise 3

Using the program in exercise 2, send all values of y to process 0 and

compute the average of y at process 0.
Print the result, including the process rank from where it is being
printed.

INTRODUCTION TO MPI -- 21.Solution of Exercise 3

Solution of Exercise 3

 program template
 .
 .
 integer tag,status(MPI_STATUS_SIZE)
 real x,y,buff
 .
 .
 {CALCULATION OF Y ON THE DIFFT. PROCESSES}
 .
!--Average the values of y
 tag=1
 if (myid == 0)then
 do ip=1,numprocs-1
 call MPI_RECV(buff,1,MPI_REAL,ip,tag,
 & MPI_COMM_WORLD,status,ierr)
 y=y+buff
 end do
 y=y/float(numprocs)
 write(*,*)’The average value of y is ’,y
 else
 call MPI_SEND(y ,1,MPI_REAL,0,tag,
 & MPI_COMM_WORLD, ierr)
 end if
 .
 .
 stop
 end

The full program can be found in jsimpson at:
/scr/mpi-class/exercise3.f, or by anonymous ftp to UniTree.

INTRODUCTION TO MPI -- 22.Output from Exercise 3

Output from exercise 3

mpirun -np 3 exercise3
On process 0 y= 25.
On process 2 y= 625.
On process 1 y= 125.
The average value of y is 258.33333333333331
STOP (PE 1) executed at line 56 in Fortran routine ’EXERCISE3’
STOP (PE 2) executed at line 56 in Fortran routine ’EXERCISE3’
STOP (PE 0) executed at line 56 in Fortran routine ’EXERCISE3’

INTRODUCTION TO MPI -- 23.Wildcards

WILDCARDS

What if I want to receive a message regardless of its source and/or
tag?
====> Replace the source and/or tag entry on the MPI_RECV call
with a wildcard:

Ignore source by using the MPI_ANY_SOURCE wildcard:

call MPI_RECV(buf,count,datatype,
& MPI_ANY_SOURCE,tag,comm,status, ierror)

Ignore tag by using the MPI_ANY_TAG wildcard:

call MPI_RECV(buf,count,datatype,
& source,MPI_ANY_TAG,comm,status, ierror)

Ignore tag and source:

call MPI_RECV(buf,count,datatype,
& MPI_ANY_SOURCE,MPI_ANY_TAG,comm,status, ierror)

WILDCARDS SHOULD ONLY BE USED WHEN ABSOLUTELY
NECESARY!

INTRODUCTION TO MPI -- 24.Blocking vs Non-Blocking

Blocking vs Non-Blocking
Communications

MPI_SEND and MPI_RECV are blocking communications routines.

What does it mean for MPI_SEND to be a blocking routine?
Once a call to MPI_SEND is posted by a process, the call does

not return control to the calling program or routine, until the
buffer containing the data to be copied unto the receiving process
can be safely overwritten (This insures that the message being
sent is not "corrupted" before the sending is complete)

What does it mean for MPI_RECV to be a blocking routine?
The call does not return control to the calling program until the
data to be received has in fact been received.

INTRODUCTION TO MPI -- 25.Avoiding "hung" Processes

Avoiding "Hung" Processes

A "Hung" condition occurs when one or more processes reach a
call to an MPI block_receive routine, but the message never
arrives. The process will wait indefinitely and no error message
will be generated. (The same will happen with a block send
message that is never completed).

A "Hung" condition can occur when two processes exchange
messages, if the exchange is not programmed carefully.

First: an example of an exchange that will never "hang":
Can you tell why? (If not compare to the example on next page).

!--Exchange messages
 if (myid == 0) then
 call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)
 call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,
 & status,ierr)
 elseif (myid == 1) then

 call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD,
 & status,ierr)
 call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)
 end if

The code above is an excerpt from example3_a.f found in jsimpson at
/scr/mpi-class/example3_a.f. It can also be downloaded by
anonymous ftp to UniTree.

(you can verify that this code will run to completion without a
problem).

INTRODUCTION TO MPI -- 26.Example of a hanging program

Example of a hanging program

Suppose that the order of the send and receive calls are modified
as follows

!--Exchange messages
 if (myid == 0) then
 call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,
 & status,ierr)
 call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)
 elseif (myid == 1) then
 call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD,
 & status,ierr)
 call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)
 end if

The code above is an excerpt from example3_a.f found at
/scr/mpi-class/example3_c.f. It can also be downloaded by
anonymous ftp to UniTree.

Will this program run as well as example3_a?
Why?

INTRODUCTION TO MPI -- 27.Example of a hanging program: Why?

Example of a hanging program:
Why?

The program in example3_c.f will not run at all, it will hang!
(that is, it will never complete and give no error diagnostic --
other that running out of time).

Here is why:

1. Each of processes 0 and 1 calls a blocking MPI_RECV
routine and expects to receive a message from the other
process.

2. Neither process will continue on to the next statement until
the information has been received (or is at least safely on its
way).

3. At this point neither process has actually SENT any message

to the other process.

4. Thus both processes will wait indefinitely for a message
that will never come....

INTRODUCTION TO MPI -- 28.Example of a Program that MIGHT Hang

Example of a Program that
MIGHT Hang

The following order of the send and receive calls will work on
some platforms but not others.

IT IS NOT RECOMMENDED!

!--Exchange messages
 if (myid == 0) then
 call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)
 call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,
 & status,ierr)
 elseif (myid == 1) then
 call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)
 call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD,
 & status,ierr)
 end if

The full program can be found in jsimpson at:
/scr/mpi-class/example3_b.f, or by anonymous ftp to UniTree.

A safe alternative is to use the MPI_SENDRECV routine instead.

INTRODUCTION TO MPI -- 29.MPI_SENDRECV

MPI_SENDRECV(sendbuf,sendcount,sendtype,
& dest,sendtag,recvbuf,recvcount,recvtype,
& source,recvtag,comm,status,ierror)

sendbuf =initial address of send buffer (choice)

sendcount = # of entries to send (integer)

sendtype =type of entries in send buffer (handle)

dest =rank of destination (integer)

sendtag =send tag (integer)

recvbuf =initial address of receive buffer (choice)

recvcount=max. num. of entries to receive (integer)

recvtype =type of entries in receive buffer (handle)

source =rank of source (integer)

recvtag =receive tag (integer)

status =return status(integer)

comm =communicator (handle)

ierror =return error code (integer)

INTRODUCTION TO MPI -- 30.Example 4: Using MPI_SENDRECV I

Example 4: Using
MPI_SENDRECV I

Example 4 shows the use of the sendrecv MPI call replacing a
pair of consecutive send and receive calls originating from a
single process. Note that the communications here are the same
as in example3_b, except that the sendrecv insures that no
deadlock occurs.

Here is an excerpt from example 4,

!--Exchange messages
 tag1=1
 tag2=2
 if (myid == 0) then
 call mpi_sendrecv(a,1,mpi_real,1,tag1,
 & b,1,mpi_real,1,tag2,
 & MPI_COMM_WORLD, status,ierr)
 elseif (myid == 1) then
 call mpi_sendrecv(b,1,mpi_real,0,tag2,
 & a,1,mpi_real,0,tag1,
 & MPI_COMM_WORLD,status,ierr)
 end if

(See /scr/mpi-class/example4.f in jsimpson, or
use anonymous ftp to UniTree to retrieve example4.f)

INTRODUCTION TO MPI -- 31.Example 5: Using MPI_SENDRECV II

Example 5: Using
MPI_SENDRECV II

MPI_SENDRECV is compatible with simple MPI_SEND and
MPI_RECV routines. Here is an example that illustrates the
point.

Example 5
Process 0 sends a to process 1 and receives b from process 2:

 tag1=1
 tag2=2
 if (myid == 0) then
 call mpi_sendrecv(a,1,mpi_real,1,tag1,
 & b,1,mpi_real,2,tag2,
 & MPI_COMM_WORLD, status,
 & ierr)
 elseif (myid==1) then
 call mpi_recv(a,1,mpi_real,0,tag1,
 & MPI_COMM_WORLD, status,
 & ierr)
 elseif (myid==2) then
 call mpi_send(b,1,mpi_real,0,tag2,
 & MPI_COMM_WORLD,
 & ierr)
 end if

(See /scr/mpi-class/example5.f in jsimpson, or
use anonymous ftp to UniTree to retrieve example5.f)

INTRODUCTION TO MPI -- 32.NON-BLOCKING COMMUNICATIONS

NON-BLOCKING
COMMUNICATIONS

The most common non-blocking MPI communication routines
are:

MPI_ISEND(buf,count,datatype,dest,tag,comm,
request,ierror)

MPI_IRECV(buf,count,datatype,source,tag,comm,
request,ierror)

buf =initial address of send buffer (choice)

count =number of entries to send/receive (integer)

datatype=datatype of each entry (handle)

dest =rank of destination process (integer)

source =rank of source process(integer)

tag =message tag

comm =communicator (handle)

request =request handle (handle)

ierror =return error code (integer)

INTRODUCTION TO MPI -- 33.BLOCKING vs NON-BLOCKING

BLOCKING vs
NON-BLOCKING

What is the difference between MPI_ISEND
and MPI_SEND?

MPI_ISEND returns control to the calling routine
immediately after posting the send call, before it is safe to
overwrite (or use) the buffer being sent.

(MPI_IRECV and MPI_RECV differ in a similar way)

What is the advantage of using non-blocking
communication routines?

Performance can be improved by allowing computations that

do not involve the buffer being sent (or received) to proceed
simultaneously with the communication.

How can the communicated buffer be re-used
safely?

The MPI_ISEND (and MPI_IRECV) return a handle: the
request argument. The MPI_WAIT routine can later be called
in order to "complete" the request communication.
MPI_WAIT blocks computation until the request in question
is complete and it is safe to re-use the buffer.

INTRODUCTION TO MPI -- 34.BLOCKING vs NON-BLOCKING -- Rephrasing

BLOCKING vs
NON-BLOCKING --
Rephrasing:

The non-blocking routines MPI_ISEND and MPI_IRECV
are similar to their blocking couterparts, MPI_SEND and
MPI_RECV.

The difference between them is that non-blocking
communications return control to the calling routine

BEFORE it is safe to re-use the buffer being sent or received.

This allows the program to proceed with computations not
involving the communication buffer, while the
communication completes.

Before the program is to use the sent/received buffer, a call to
MPI_WAIT is necessary.

MPI_WAIT is a blocking routine. It does not return control
to the calling routine until it is safe to re-use the buffer.

INTRODUCTION TO MPI -- 35.NON-BLOCKING: An Example

NON_BLOCKING: An
Example

(Pseudocode)

1. Post a non-blocking send of variable a.

2. call MPI_ISEND(a,.........,REQUEST1,...)

3. While the communication of a takes place, compute the values of b, c, and d
(which do not involve a).

b=x2
c=y3

d=b+c

4. Block computation until it is safe to use a again.

call MPI_WAIT(REQUEST1,status)

5. Use a on the computation of e, modify a, etc.

e=a+b
a=d

INTRODUCTION TO MPI -- 36.Collective MPI Routines

COLLECTIVE MPI
ROUTINES

Collective MPI routines involve simultaneous communications
among all the processors in a communicator group.

There are 3 types of collective communications

Barrier synchronization

Global communications

Broadcast
Gather
Scatter

Global Reduction Operations

sum
max
min,
etc.

INTRODUCTION TO MPI -- 37.Broadcast Routine

BROADCAST ROUTINE

The broadcast MPI routine is one of the most commonly used collective routines.

The root process broadcasts the data in buffer to all the processes in the
communicator.

All processes must call MPI_BCAST with the same root value.

MPI_BCAST(buffer,count,datatype, root,comm,ierror)

buffer =initial address of buffer (choice)

count =number of entries in buffer (integer)

datatype=datatype of buffer (handle)

root =rank of broadcasting process (integer)

comm =communicator (handle)

ierror =return error code (integer)

INTRODUCTION TO MPI -- 38.Exercise 5: Using Broadcast

Exercise 5: Using Broadcast

Modify the code for exercise 2 so that the value of x is defined
ONLY on processor 0. Add the necessary code to broadcast the
value of x to all the other processors.

INTRODUCTION TO MPI -- 39.Solution to Exercise 5

Solution to Exercise 5

program template
.
.
!--Define new variables used
 integer ip
 real x,y
 .
 .
 {MPI_COMM_RANK and MPI_COMM_SIZE CALLS......}

!--Insert the calculations after the size and rank
! are known.

!--Set the value of x on process 0.
 if (myid == 0) x=5.

!--Broadcast the value of x to all processes.
 call MPI_BCAST(x,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)

!--Define the value of y on each process and print it.
 do ip=1,numprocs
 if(myid == ip-1) then
 y=x**(2+myid)
 write(*,*)’On process ’,myid,’ y=’,y
 end if
 end do
 .
 .
 stop
 end

(See the full program at /scr/mpi-class/exercise5.f,
or use anonymous ftp to UniTree to retrieve exercise5.f)

INTRODUCTION TO MPI -- 40.References

REFERENCES

To use as a general MPI reference:
M,Snir, et.al, MPI The Complete Reference, second
edition, MIT Press 1998.

TAG links to various MPI web-based references

Using MPI on NCCS computers

Good reference + tutorials.

Heterogeneous Computing with MPI

Please forward your feedback, questions, and suggestions to
xrtag@nccs, or call the TAG help desk number: (301)
286-9120.

Privacy/Security Warning

Author: NCCS Technical Assistance Group (TAG)
Authorizing Technical Official: W. Phillip Webster, Code 931, GSFC/NASA
Authorizing NASA Official: Nancy Palm, Branch Head, Code 931, GSFC/NASA
Last Updated:03/07/01
Reason for Change: New

