National Soil Erosion Research Lab Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
WEPP
RUSLE
USLE Database
Sustaining the Global farm-Proceedings from ISCO99
ASAE 2001 Erosion Symposium
 

Research Project: Conservation Effects Assessment for the St. Joseph River Watershed

Location: National Soil Erosion Research Lab

Title: Erosion Potential of Various Golf Course Bunker Sands

Authors
item Nemitz, J - PURDUE UNIVERSITY
item Bigelow, C - PURDUE UNIVERSITY
item Moeller, A - PURDUE UNIVERSITY
item Hardebeck, G - PURDUE UNIVERSITY
item Walker, K - PURDUE UNIVERSITY
item Smith, Douglas

Submitted to: ASA-CSSA-SSSA Annual Meeting Abstracts
Publication Type: Abstract
Publication Acceptance Date: September 4, 2007
Publication Date: November 5, 2007
Citation: Nemitz, J., Bigelow, C., Moeller, A., Hardebeck, G., Walker, K., Smith, D.R. 2007. Erosion Potential of Various Golf Course Bunker Sands. American Society of Agronomy Annual Meeting Abstracts. November 4-8, 2007, New Orleans, LA. 2007 CDROM.

Technical Abstract: Sand bunkers are principal golf course features adding aesthetic beauty and challenge for golfers. Bunkers often require substantial resources for proper maintenance particularly where sand is installed on severe slopes in humid climates subject to occasional heavy rainfall. Numerous sands are commercially available for bunkers, however, very little information exists regarding their performance. A controlled environment study was conducted at the USDA National Soil Erosion research laboratory to determine sand loss from four widely used bunker sands when installed at four slope angles (7.5, 15, 25 and 40 o). Additionally the influence of geotextile fabric underlayments were evaluated at the 40o angle. The sands selected represented a wide range of products; crushed limestone, crushed gravel and two mined materials which varied in angularity, subangular to angular, coefficient of uniformity, 1.82-3.33, gradation index, 2.76-7.78, and angle of repose (AR), 30.3-34.9. Sands were installed into stainless steel trays 20 cm x 1 m x 7.6 cm deep and subjected to a 10.2 cm hr-1 simulated rainfall. For sands installed on the 40o slope, crushed limestone had the least loss, 49.6 g m-2 min-1, while one medium-fine sand had the highest, 2,422 g m-2 min-1. There were few relationships between quantitative sand characteristics and erosion except for AR and sands possessing a higher AR, 33.1 or 34.9, resulted in less erosion. Adding fabric underlayments to the erodable sand at 40o reduced sand loss by a factor of 100, however, significant sand migration into the fabrics following this short simulation was also observed.

   

 
Project Team
Smith, Douglas - Doug
Pappas, Elizabeth - Betsy
Heathman, Gary
Norton, Lloyd - Darrell
Huang, Chi Hua
 
Publications
   Publications
 
Related National Programs
  Water Availability and Water Management (211)
 
Related Projects
   Soci-Economic Assessment of Conservation Effects in the St. Joseph River Watershed
   Ecological Assessment of Habitat and Aquatic Life in Cedar Creek in Support of the Conservation Effects Assessment Program
   Drainage Water Management in the St. Joseph River Watershed
 
 
Last Modified: 03/16/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House