$3 M^{\text {TM }}$ Novec $^{\text {TM }} 612$ Magnesium Protection Fluid

Dean S. Milbrath 3M Industrial Chemicals, EMMD

International Conference of SF_{6} and the Environment
December 1-3, 2004

- How much SF_{6} is lost?
- How is Novec ${ }^{\text {TM }} 612$ different from SF_{6} ?
- How do you use Novec ${ }^{\text {TM }} 612$ in casting operations
-Carrier gas, mixing
-Concentrations, Flow rates
-Gas distribution
- How expensive is it use Novec ${ }^{\text {TM }}$ 612 as a cover gas?

SF_{6} Emissions

Open Casting
Generally 1-6\% SF_{6} at high flow rates used
$>95 \%$ emitted unchanged

- Open casting (not contained)
- Large thermal air currents (over $900^{\circ} \mathrm{F}$ temp difference)
- Minimal hot surface for reaction
- Emission depend upon gas distribution, alloy, and cooling efficiencies
Melt Furnaces
Generally 0.2-1.0\% SF_{6} at low flow rates used
About 90\% emitted unchanged
- Contained atmosphere, longer contact with hot surfaces
- Emissions depend upon equipment, alloy and process operations

Greenhouse Gas Emissions from 1 Cylinder of SF $_{6}$

Annual CO_{2} emissions from 263 U.S. passenger cars

Requirements for an SF_{6} Replacement Cover Gas

\checkmark Protect molten pure and alloyed Mg
\checkmark Low GWP and no ODP
\checkmark Safe, nontoxic at RT
\checkmark Nonflammable
\checkmark Minimal (or manageable) toxic thermal decomposition products
\checkmark Cheaper than SF_{6}

Global Warming Potentials

Compound L	Lifetime (yrs)	GWP 100 Y	TH)
CO_{2}	100-150	1	
SF_{6}	3200	22,200	
$\mathrm{C}_{3} \mathrm{~F}_{8}$	2600	8,600	PFCs
$\mathrm{C}_{4} \mathrm{~F}_{10}$	2600	8,600	
$\mathrm{C}_{6} \mathrm{~F}_{14}$	3200	9,000 $ـ$	
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}$	13.6	1,600	HFCs
$\mathrm{CF}_{3} \mathrm{CHF}_{2}$	32.6	3,800	
CHF_{3}	243	14,800	
$\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{C}(\mathrm{O}) \mathrm{C}_{2} \mathrm{~F}_{5}$	$5 \quad 0.014$	~ 1	FKs

Novec ${ }^{\text {TM }} 612$ Comparison

Environmental Properties	SF_{6}	$\mathbf{S O}_{2}$	HFC-134a	Novec $^{\text {™ }}$ 612 Agent
Ozone depletion Potential (ODP)	0	0	0	0
Atmospheric Lifetime (years)	3200		140	0.014
Global Warming Potential (GWP)	22,200	1	1300	1

Greenhouse Gas Emissions for Novec ${ }^{\text {TM }} 612$

Equivalent to a 125 Pound Cylinder of SF_{6}

Equivalent Novec ${ }^{\text {TM }}$ 612
0.003 Car-Years or

1 Cow-Day Equivalent

Fluorinated Ketone Physical and Environmental, Safety and Health Properties

Physical Properties		EHS Properties	
Boiling Point ${ }^{\circ} \mathrm{C}$	49	Atmospheric lifetime, days	<10
Freezing Point ${ }^{\circ} \mathrm{C}$	-108	Global Warming Poteintial	1
Viscosity, liquid @ $20^{\circ} \mathrm{C}$, cSt	0.042	Flash Point	None
Vapor Pressure @ $20^{\circ} \mathrm{C}$, kPa	32.6	PEL, ppmV	150
Gas Phase Thermal Stability	<575 C	Acute LC50, ppmV	>100,000
Gas Density @ $80^{\circ} \mathrm{C}$ - $1 \mathrm{Atm}, \mathrm{g} / \mathrm{mL}$	0.011		

History of Novec 612 Agent

Fluoroketone chemistry in use in other large scale applications
Safety and environmental sustainability established
Mg cover gas development started in late 2000
Studied thermal degradation, reactions with Mg, and formulation of cover gases
Numerous commercial trials in open casting and die casting equipment
Novec ${ }^{\text {TM }} 612$ Fluid is an effective cover gas agent

Commercial Trials

Open casting: >150 mTons of pure and alloyed Mg cast
Tested on hot and cold chamber die casting cells
Limited sand casting
Pure, AM50, AM60, AZ91, WE-42, RZ-5, AJ-52, AJ-62, Mg-Ca and $\mathrm{Mg}-\mathrm{Sr}$ alloys cast
Tests done in US, Canada, Germany, Austria, Norway, and Japan

Basics of Using Novec ${ }^{\text {TM }} 612$ Cover Gases

- Cover Gas Formulation
- Cover Gas Distribution
- Equipment and process variation
- Dynamic flow control
- Process Economics

Cover Gas Formulation

Novec ${ }^{\text {TM }} 612$ cover gas process window is smaller than SF_{6}
Protection/economics depend upon carrier gas used

- CO_{2} Carrier gas with 5-20\% dry air
- Nitrogen/5-20\% dry air also works
[Higher 612 consumption and HF emission]
- Also used in up to 50:50 CO_{2} /dry air

Higher HF emission and 612 use rates

- 100\% Dry air carrier is not recommended

Cover Gas Preparation

Evaporate Novec ${ }^{\text {TM }} 612$ into a carrier gas stream

- Direct evaporation works, but requires precision pumps with computer controls
- Nippon Sanso system provides a concentrated Novec 612 in CO_{2} stream
- Gas bubbler method is reliable with no moving parts

Liquid to Gas System to Generate Cover Gas System

Dry Air or CO_{2}

Bubbler Evaporation

Cover Gas Formulation

Novec ${ }^{\text {TM }} 612$ liquid is converted to a concentrated gas stream (similar to SF_{6} cylinder output)
Novec ${ }^{\text {TM }} 612$ Concentrate stream is then diluted to working concentrations
Gas mixing equipment just like SF_{6} Requires recalibration for 612
(about 1.25 denser than air)
Commercial units available [Contact 3M for details]

Typical Novec ${ }^{\text {TM }} 612$ Cover Gas: Concentration/Flow Rates

Open casting: Pure Mg, AM-50, AZ-91
Concentration: 0.2-1.0\% (in CO_{2} w/10\% dry air)
Flow Rates: 50 to 180 SCFH
Typical thermal dilution about 30-100 fold with thermal air currents
Emitted gases: Novec 612 and CO with traces of HF and $\mathrm{C}_{3} \mathrm{~F}_{8}$

Typical Novec ${ }^{\text {TM }} 612$ Cover Gas: Concentration/Flow Rates

Die Casting: AM-60, AZ-91
Concentration: 0.015 to 0.05% in CO_{2} with 15\% dry air or
0.03 to 0.075% in N_{2} with 15% dry air

Flow rate: 20 to 50 SLPM at idle conditions
Gases Emitted: Novec ${ }^{\text {TM }}$ 612, CO, HF with traces of $\mathrm{C}_{3} \mathrm{~F}_{8}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$.

Gas Distribution: Frying Pan Analogy

Choices in adding oil to a frying pan -Pour it on: Slow to spread evenly without mechanical assistance (High conc, low flow rate)
-Pour around the edge: better, but still slow (High conc, increased flow rate)
-Spray it on: Fast and efficient (Low conc, high flow rate)
More oil used when poured than when it is sprayed

Cover Gas Distribution

Even distribution of cover gas is very important for all SF_{6} substitutes

- Much more reactive, limited carry

Uneven distribution requires high concentration and high flow rates

- Higher emissions of HF, carbonyl fluoride and trace PFCs

SF_{6} Cover Gas: Single Point Addition

Reactions of $\mathrm{Novec}^{\text {TM }} 612$ " MgF_{2} " ${ }^{+} \mathrm{CO}_{2}$

Reactive Cover Gas: Multiple Point Addition

Ring Cover Gas Distribution over a Melt Furnace

Gas Distribution Ring

Over Melt furnace

Single Direction Holes

Ring Cover Gas Distribution over a Melt Furnace

Ring Cover Gas Distribution over a Melt Furnace

Ring Cover Gas Distribution over a Melt Furnace

Equipment/Process Variation

Variables affecting cover gas performance

- Alloy, type of casting process
- Surface temperature (casting process and furnace heating geometry)
- Operating procedures (cleaning methods and frequency)
- Cover gas distribution and flow control

Gas Flow Basics

- Hot gas is less dense than cold gas
- Hot gases rise, Cold gases sink
- Headspace gases are 300 to 500 C hotter than incoming cover gas
- Headspace gases are about $1 / 4$ to $1 / 2$ the density of incoming cover gas

Opened Furnace Hatch

Replace by cool, moist ambient air

Escaping Hot Gases

Dynamic Flow Control

Opening furnace hatches introduces large amounts of ambient air into furnace headspace

- Added moisture produces HF, metal oxides
- Cover gas recovery to stable state takes a lot of time
- Old Solution: Set cover gas use high to accommodate open hatch condition.

Opened Furnace Hatch

Ambient air is mixed with cover

Dynamic Flow Control

New Solution:

-Set cover gas use for closed furnace
-Increase flow rates automatically as doors are opened
Ambient air is diluted with cover gas and recovery time is reduced,
Effect of moisture intrusion is less (less HF)
A more stable melt is produced
More economical use of cover gases

Dynamic Flow Control

Flow Control Strategy:
Use cover gas agent concentration and flow rate to protect an idling furnace
Increase flow rate during open operations, e.g. ingot addition, dosing pump operation, drossing and furnace cleaning
Can make use of existing process controls
Results: Lower agent use rates, lower emissions, more economical process

Process Economics

Generally use rates are 25 to $\mathbf{3 0 \%}$ that of SF_{6} (direct substitution) [Costs below SF_{6}]
Lower use rates with changes to recommended CO_{2} cover gas formulations [Savings]
Additional savings with improved gas distribution and dynamic flow control [Significant savings]

Novec ${ }^{\text {TM }} 612$ Magnesium Protection Fluid

Virtually eliminates GHG from cover gas
Commercially proven and viable
Uses existing gas-mixing equipment with modifications
Even gas distribution is very important
Dynamic cover gas flow control will reduce cover gas use, emissions and costs

