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Achieving Order through CHAOS: the LLNL HPC
Linux Cluster Experience1

Ryan L. Braby, Jim E. Garlick, and Robin J. Goldstone
Production Linux Group
Lawrence Livermore National Laboratory, USA

Abstract

Since fall 2001, Livermore Computing at Lawrence Livermore National Labo-
ratory has deployed 11 Intel IA-32–based Linux clusters ranging in size up to
1154 nodes. All provide a common programming model and implement a sim-
ilar cluster architecture. Hardware components are carefully selected for perfor-
mance, usability, manageability, and reliability and are then integrated and sup-
ported using a strategy that evolved from practical experience. Livermore Com-
puting Linux clusters run a common software environment that is developed and
maintained in-house while drawing components and additional support from the
open source community and industrial partnerships. The environment is based on
Red Hat Linux and adds kernel modifications, cluster system management, moni-
toring and failure detection, resource management, authentication and access con-
trol, development environment, and parallel file system. The overall strategy has
been successful and demonstrates that world-class high-performance computing
resources can be built and maintained using commodity off-the-shelf hardware
and open source software.

1 This work was performed under the auspices of the U. S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48.
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1 Introduction

For the past several years, Lawrence Livermore National Laboratory (LLNL) has
invested significant efforts[1] in the deployment of large high-performance com-
puting (HPC) Linux clusters and in building system software and strategies to
manage them. After deploying two modest-sized clusters, the Parallel Capacity
Resource (PCR) systems (Emperor, 88 nodes; Adelie, 128 nodes) in fall 2001,
these efforts progressed to the successful deployment of the Multiprogrammatic
Capability Resource (MCR, 1154 nodes) in fall 2002 and the ASCI Linux Cluster
(ALC, 962 nodes) in winter 2003. In November 2002, MCR achieved a LINPACK
result of 7.642 TFLOPS, placing it fifth on the 21st TOP500 Supercomputer list
(http://www.top500.org/list/2002/11/). This was accomplished with a total system
cost (hardware including maintenance, interconnect, global file system storage) of
under $14 million.

These systems are all running customer applications and are in various stages
of production readiness, with PCR in “general availability” (full production) and
MCR and ALC in “science run” mode (users expect to have to work around some
system limitations). LC systems provide a common programming model to users,
which minimizes the amount of work necessary for them to get applications run-
ning on new platforms. Section 2 describes the programming model as imple-
mented by LC Linux systems, and Section 3 describes the Linux cluster architec-
ture used to implement the model.

Livermore has experimented with various system integration techniques for
Linux clusters. Selecting the right hardware, determining the best integration ap-
proach, and deciding on a hardware support model are discussed in Section 4.

System software has traditionally been a problem area for Linux clusters. Liv-
ermore’s strategy is to leverage partnerships with industry and the open source
community to build and support various software components and to put the com-
ponents together into a Red Hat-based, in-house Linux distribution called CHAOS
(Clustered High Availability Operating System)[2]. This strategy is detailed in
Section 5.

While implementing and supporting HPC Linux clusters, LLNL staff have
learned many lessons the hard way. Section 6 describes some of these lessons.
Section 7 summarizes LLNL’s experience with the aforementioned clusters and
evaluates the current state of Linux clusters at Livermore, and Section 8 presents
LLNL’s path forward for HPC Linux clusters.

2 Background

LLNL has been at the forefront of HPC for many years. LC provides the majority
of unclassified and classified computing cycles to scientific programs throughout
LLNL. In recent years, clusters of SMP nodes have provided the bulk of those
cycles. As part of the ASCI Program, LC has deployed two generations of IBM
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SP ranking first and second on the TOP500 list.2 Recent successes with Linux
clusters mostly built from commodity off-the-shelf (COTS) components indicate
that a large portion of our customers’ computing requirements can be served with
these cost-effective, stable, and easily manageable systems.

LC clusters fall into two architectural categories: capability clusters, which
can run large-scale, distributed-memory applications and implement the Livermore
Model[3], described below; and capacity clusters, which are a loosely coupled col-
lection of systems that run a serial workload. Linux clusters of both architectures
have been deployed at Livermore.

LC’s scalable systems strategy for capability systems, known as the Livermore
Model (see Figure 1), is to provide a common application programming and ex-
ecution framework. This allows complex scientific simulation applications to be
portable across multiple platforms and provides a stable target environment over
multiple generations of platforms. This strategy has been successful since about
1992, when the Meiko CS-2 MPP was introduced at LLNL.

OpenMP

MPI Comms

OpenMP OpenMP

cpu0 cpu1 cpu0 cpu1 cpu0 cpu1

high speed interconnect

cpu0 cpu1 cpu0 cpu1

Parallel Filesystem Service Nodes

Compute Nodes

Fig. 1. The Livermore Model

The Livermore Model seeks to abstract the parallelism and I/O services of
the computing environment to a high level that evolves slowly. The abstraction
is based on SMP compute nodes attached to a high-speed, low-latency message
passing interconnect. Applications utilize compiler-generated OpenMP threads to

2 ASCI Blue-Pacific SST was second on the 14th TOP500 Supercomputer Sites list:
http://www.top500.org/lists/1999/11/, and ASCI White was first on the 16th list:
http://www.top500.org/lists/2000/11/ (as well as the 17th and 18th lists).
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exploit SMP parallelism and MPI to exploit parallelism between nodes. Data sets
are stored on a common (POSIX interface) parallel file system, which may utilize
striping across multiple file service nodes in order to achieve the required band-
width and scalability.

In addition to the programming model abstraction, the Livermore Model as-
sumes parallel cluster management tools, resource management and control with
near-real-time accounting, job scheduling for allocation management, C, C++, and
Fortran compilers, scalable MPI/OpenMP GUI debugger, and performance analy-
sis tools.

Capacity systems, on the other hand, are oriented toward a serial workload;
thus, they do not provide the message passing abstraction between nodes or parallel
I/O capability, and they require a different resource management strategy. They do,
however, provide the same serial tools (compilers, for example) and have much in
common with capability systems from a system management perspective.

3 Cluster Architecture

Minimizing architectural differences between clusters enables support personnel to
move between clusters with less confusion and simplifies software testing and con-
figuration. All LC Linux clusters (both capability and capacity) share a common
cluster architecture (described in detail below) that includes one or two dedicated
“management” nodes, a private management IP network, a serial console/remote
power management infrastructure, a public IP network that makes nodes externally
visible, and one or more dedicated “login” nodes. Capability systems have addi-
tional common architectural traits required to implement the Livermore Model,
including high-speed, message passing interconnect and storage architecture for
parallel I/O. Figure 2 depicts the 1154-node MCR cluster, illustrating the architec-
ture typical of LC capability Linux clusters.

Fig. 2. MCR architecture
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A dedicated management node serves as the access point for system admin-
istration of the cluster and provides compute cycles for critical system processes
such as the resource manager, power/console management daemons, Simple Net-
work Management Protocol (SNMP) monitoring, and remote OS installation. On
larger clusters, a second management node is used to provide additional capacity
and fail-over capability. Pluggable Authentication Module (PAM) access controls
limit access to support personnel only. Management nodes are attached to the pri-
vate management network via gigabit Ethernet (GigE).

All nodes in the cluster are attached to a private (192.168.x.x or 10.x.x.x),
switched management Ethernet. This network carries system traffic such as DNS,
SNMP polls and traps, ganglia multicast, and resource manager heartbeats, some
of which may be sensitive to changes in quality of service and therefore must be
partitioned away from unpredictable, application-generated network activity. The
management network is also used for remote OS installation, software updates,
and system administrator access to nodes, although this type of activity is usually
limited to maintenance windows when impact on the aforementioned services is
less critical. Application- or user-generated network activity is mostly excluded
from this network by virtue of having node host names associated with another
“public” interface.

Because it is a practical necessity when deploying a large cluster to be able to
manage nodes remotely, all nodes have serial consoles attached to terminal servers
and power plugs attached to remote power controllers. Software on the manage-
ment nodes logs console activity, brokers interactive console sessions, and controls
power. Power controllers and terminal servers are either attached to the private
management network or to a separate dedicated network with connectivity to the
management nodes, depending on security capabilities of the specific hardware
used and the cluster size.

LC Linux clusters are deployed in a “service rich” environment having large
center-wide NFS servers, authentication services, automated backup services, etc.
It is convenient to give all nodes in the cluster network routes to reach these ser-
vices so applications can make use of them.3 On clusters with a message passing
interconnect that can pass IP traffic, the interconnect carries external network traf-
fic, with “login” nodes or other dedicated “gateway” nodes acting as routers. On
other clusters, one or more Ethernet networks are used for this purpose, and a regu-
lar router is used. The primary host name of each node corresponds to its interface
on this public network.

Several nodes in the cluster are designated as “login nodes” and serve as the
interactive access point for the cluster. Typically, each cluster is given a conve-
nient DNS alias that is configured to cycle among the login nodes for a primitive
load balancing effect. Login nodes are a place for development and compilation of
applications, batch job submission, workload monitoring, and review of results.

3 LC customers have come to expect that center-wide NFS home directories and other
common file systems are mounted on every node of every cluster; however, they are
discouraged from performing parallel I/O on these file systems for obvious reasons.
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Users typically offload results to the LLNL archive or other systems for post-
processing using a number of dedicated, high-speed network interfaces4 installed
in the login nodes. As mentioned above, login nodes may also be used as routers
for the public network when it is implemented on a non-commodity medium that
cannot be attached directly to a commercial router.

A high-speed interconnect is used for message passing, for bulk data move-
ment for a parallel file system, and to carry IP traffic for the public network. When
configured in a cluster, the interconnect is normally attached to all nodes except
the dedicated management nodes. Interconnect switches may be remotely man-
ageable, in which case they are attached either to the management network or the
power/console network (because they are normally accessed only by the manage-
ment nodes).

Considerable research and development is being carried out at Livermore and
elsewhere in the area of parallel file systems; thus, there are two storage archi-
tecture approaches currently in use. Both approaches dedicate several nodes as
I/O servers, over which the rest of the cluster stripes data transfers to achieve the
required parallel I/O bandwidth. In one approach, storage is directly attached to
the I/O nodes via FibreChannel. In the other, the I/O nodes act as gateways for
GigE-attached storage.

4 Hardware Choices and Integration Strategy

LC invests significant effort in ensuring that its computer systems meet established
high standards of performance, usability, manageability, and reliability. For the
largest systems, a platform architect is responsible for the overall system design.
A Request for Proposal (RFP) is drafted and published, and responses are evalu-
ated against the often large number of requirements set out in the RFP. A vendor
is selected and a Statement of Work (SOW) is written to further clarify the details
of the configuration, delivery schedule, integration requirements, and acceptance
criteria. The process, from beginning to end, typically takes about 6 months. For
smaller clusters, some of these steps can be skipped, although in all cases much
attention is given to the configuration details that will ensure a successful deploy-
ment.

As an RFP is prepared, new hardware is evaluated in LC’s I/O Testbed facility5

to ensure that requirements are achievable and to begin to solidify some details of
the procurement, such as what adapters will be required and what memory and
interconnect bandwidth should be demonstrable. In addition, for every large pro-
duction cluster procured, a small test cluster of the same architecture is deployed in
the testbed, where it is used to test new software and system configurations before
they are tried on the production platforms. The testbed cluster is usually requested

4 Archival tools such as Parallel FTP can stripe data across multiple interfaces.
5 The I/O Testbed facility is so named because of its origins as a testbed for LC’s storage

archive.
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to be shipped to Livermore as early as possible so that LC can work in parallel
with the vendor toward solving the inevitable problems that will delay acceptance.

4.1 Hardware Choices

When building Linux clusters with COTS components, it is important to recognize
that specifying components requires a much greater level of care than selecting
components to build a desktop PC. Motherboard chip sets need kernel support for
environmental sensor access and memory error detection. Hardware incompati-
bilities may arise between the BIOS and high-performance peripheral adapters.
Hardware that is well supported under Windows might not perform as well, be
as stable, or work at all under Linux. Subtle differences in hardware can manifest
themselves as significant differences in the overall manageability and mean time
between failure (MTBF) of a large cluster. It is therefore important to be clear and
detailed with regard to the functionality and performance required of new hard-
ware in an RFP and to test as much as possible in advance of entering into a
binding agreement with a vendor.

Hardware considerations fall into four broad categories: nodes, interconnect,
storage, and remote manageability.

Nodes LC clusters have several types of service nodes (e.g., “management,” “lo-
gin,” “io,” and in some cases other types) and a single type of “compute” node.
Because there are considerably fewer service nodes than compute nodes, compact
form factor is more critical in compute nodes, while the number of I/O slots and
I/O bus bandwidth tend to be more important in service nodes. The rest of the node
requirements are usually the same across all types. Node requirements can be di-
vided into six categories: processor technology, memory, motherboard, internal
disk, PCI configuration, and form factor.

Assuming that the processor technology is not the first of an architecture to
be deployed,6 the number of processors, the processor generation, and a minimum
clock speed would usually be specified in the RFP. New revisions of commodity
processors are released frequently, and vendors vary in their ability to obtain the
latest revisions in quantity, so this is sometimes an area in which vendors can
differentiate themselves in a competitive response.

Because memory is costly, the amount required will usually be determined in
advance by the budget allotted for the procurement and will not vary between re-
sponses. On Intel IA-32 architecture systems, it is worth noting that there are soft-
ware risks when memory exceeds two thresholds, one at 4 GB (where Intel’s Phys-
ical Address Extension (PAE) mode has to be enabled to address the high memory)
and one at approximately 8 GB (where the size of virtual memory–related kernel

6 Before a new architecture would be considered, extensive testing with user applications
and internal LC planning would occur that is beyond the scope of this paper; suffice it
to say that an RFP for a cluster of a new architecture would be very rigorous and would
require prospective vendors to share some of the additional risk contractually.
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tables starts to become unwieldy). It should be noted that PCI address space is typ-
ically mapped into the top of the IA-32 4-GB physical address space, so the first
threshold is somewhat less than 4 GB, depending on the PCI devices used. Also,
there are potential issues with PAE mode. Not all chip sets support remapping of
physical memory shadowed by PCI space to addresses above 4 GB (where it could
be addressed in PAE mode), in which case the memory would be unusable. PAE
mode also risks breaking kernel driver code that has not been rigorously tested
on large memory systems; for instance, physical addresses will no longer fit in
the 32-bit “unsigned long” data type. PAE mode effectively halves the size of the
hardware translation look-aside buffer (TLB), which could affect performance on
some workloads. So, while PAE mode allows configurations with more than 4 GB
of memory, it introduces a number of potential issues. Some research and testing
is appropriate before crafting requirements that exceed either of these thresholds.
In addition to the amount of memory, the type (e.g., DDR-200 versus DDR-266),
the stick denominations (leaving room for expandability if desired), and memory
error checking and correction technology such as ChipKill[4] might be specified.

The choice of motherboard may affect performance as well as manageabil-
ity. The motherboards deployed in LC Linux clusters are listed in Table 1. Mem-
ory bandwidth is dependent on front side bus (FSB) speed and supported memory
technology, PCI capabilities and configurations vary, and ability to properly handle
various error conditions such as memory7 or PCI parity errors is chip set specific.
A motherboard implies a particular BIOS, and BIOSes should be able to com-
municate over the serial console and be upgradeable and configurable from Linux.
LinuxBIOS[5], an open source BIOS, provides these capabilities and was designed
with clusters in mind; however, it requires a significant development effort to port
and test for each new motherboard. For visualization applications, AGP support
may be packaged with motherboards intended for desktop systems, but desktop
motherboards may not fulfill other requirements, such as BIOS serial console redi-
rection. Drivers must exist for motherboard sensors. Support is affected by pub-
lic availability of chip set programming information. When it is unavailable, the
ability of on-site programmers and the open source community to solve chip set–
related problems will be diminished, so it becomes more important that the vendor
be capable of providing this level of support in the BIOS and kernel.

In LC Linux clusters, each node has a complete copy of the OS, a large user
scratch area, and swap space configured on a local disk. IDE drives are preferred
from a cost standpoint, and in most cases redundant system disks are not justified
because of high MTBF and the ease with which these drives can be replaced and
reinstalled. When redundancy is required, SCSI is used because of the availability
of on-board SCSI RAID controllers and hot swap, front-panel access. Recently, a
number of vendors have begun offering ATA RAID solutions that offer hot swap

7 Some systems respond to an uncorrectable memory error through a BIOS handler for a
System Management Interrupt (SMI). Others generate a non-maskable interrupt (NMI)
that is merely logged on the console by Linux. Still others do nothing at all. A ker-
nel module for polling various memory controllers for parity errors is discussed in Sec-
tion 5.4
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Table 1. Motherboards deployed in LC Linux clusters

Motherboard Chip Set Memory FSB PCI Slots AGP BIOS
Type (MHz)

SuperMicro P4DC6+ Intel 860 RDRAM 400 6 PCI 4x Award (modified)
SuperMicro P4DPR-iGM Intel E7500 DDR-200 400 1 PCI-X, 1 PCI - LinuxBIOS/Phoenix
SuperMicro P4DPE Intel E7500 DDR-200 400 6 PCI-X - LinuxBIOS/Phoenix
IBM xSeries x335 ServerWorks GC/LE DDR-200 400 2 PCI-X - IBM
IBM xSeries x345 ServerWorks GC/LE DDR-200 400 4 PCI-X, 1 PCI - IBM
SuperMicro X5DP8-G2 Intel E7501 DDR-266 533 6 PCI-X - Phoenix

capability and an attractive price. This will likely replace SCSI RAID in future
LC clusters. If hardware RAID is to be used, it is important to verify that failed
disks can be detected through Linux. It may be appropriate to include minimum
specifications for the local disk in an RFP, such as rotational speed and interface
type (e.g., ATA100).

The PCI subsystem is important on nodes with high-speed storage, network-
ing, or message passing adapters. Because interconnect performance is critical to
overall cluster performance, minimum bandwidth and latency for the chosen inter-
connect should be specified in an RFP. Nodes packaged in compact enclosures may
need riser cards and should accommodate the adapter form factor. Configurations
for service nodes with multiple adapters should be specified in detail to ensure
that the appropriate number of slots and amount of bus bandwidth is available to
achieve performance targets.

Dense node packaging saves costly computer room floor space but affects
power distribution, heat dissipation, serviceability, and data cabling. “Blade servers”
promise to achieve high density while alleviating the serviceability and cabling
concerns, but blade processor and chip set technologies lag those offered by COTS
products, and blade densities preclude the use of the highest clock speeds. One rack
unit (1U) seems to be an empirical limit for node density in HPC Linux clusters.8

At 1U per node, or about 40 nodes per rack, each rack might require the dissipa-
tion of up to 5.2 kW9 of heat from the processors alone. In addition to potentially
taxing computer room air conditioning (CRAC) capacity, this much heat density
creates air flow challenges.

Message Passing Interconnect Systems implementing the Livermore Model must
provide a low-latency, high-bandwidth interconnect optimized for message pass-
ing. The interconnect is such a critical component, and is so closely linked to
system software, that in all procurements of capability clusters thus far, LC has

8 Linux NetworX built a “0.8U” solution for MCR that vertically mounts ten dual-Xeon
nodes in an 8U chassis, but because gaps must be left between chassis for air intake, it is
effectively a 1U node density.

9 Each rack would dissipate 5.2 kW if each node contains dual 2.4-
GHz Intel Xeon processors, which have a thermal guideline of 65.0 W;
http://processorfinder.intel.com/scripts/details.asp?sSpec=SL6K2.
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purchased the interconnect separately and provided it to the system integrator as
government furnished equipment (GFE). Early in LLNL’s Linux effort, a relation-
ship with Quadrics, Ltd. (http://www.quadrics.com) of Bristol, U.K., was estab-
lished to port device drivers for the Quadrics QsNet interconnect from Tru64 to
Linux. This collaboration has been very beneficial over several years, and LC has
exclusively used QsNet in its capability Linux clusters.

Message passing interconnects require significant supporting software to oper-
ate, including a resource manager, MPI implementation, and kernel device drivers.
Quadrics provides open source MPI (based on MPICH), kernel device drivers, and
user space libraries. Their resource management product (RMS) is not open source
and is expected to be replaced on LC clusters with SLURM (Simple Linux Util-
ity for Resource Management)[6], an open source resource manager developed at
Livermore (see Section 5.5). In addition to application message passing, the inter-
connect carries NFS/IP traffic and does bulk data movement for the Lustre parallel
file system on LC clusters.10 Impacts on these uses must also be considered when
specifying the interconnect.

QsNet achieves latency and bandwidth on the order of 5 µs and 320 MB/s be-
tween user processes on a pair of nodes. Results vary depending on motherboard
chip set (see Table 2), so it is important that an RFP establish minimum intercon-
nect performance requirements in conjunction with node requirements, discussed
in Section 4.1.

Table 2. QsNet MPI ping-pong between a pair of nodes (mping)

Chip Set Min Latency Max Bandwidth
(µs) (MB/s)

Intel 860 5.3 224
Intel E7500 5.0 322
Intel E7501 4.5 323
ServerWorks GC/LE 4.6 325

QsNet has two primary hardware components: the QM400 Elan3 64 bit/66
MHz PCI adapter and the 16x16 QM401 Elite switch module. For clusters of 16
nodes or fewer, a single QM401 is packaged in a standalone switch configuration.
For clusters of 16 to 128 nodes, a backplane capable of holding eight QM401s and
additional Elite stages to tie them together is available. For larger configurations,
multiple 128-way chassis dedicate some number of ports to up-links and are tied
together with trunk switches to form a federated QsNet switch. A 1024-way fed-
erated switch that implements a full fat-tree requires 8 trunk switches and 16 first
level switches (each with 64 up-links and 64 down-links). A less scalable but more
cost-effective 1536-way federated configuration requires 4 trunk switches and 16

10 User applications tend to separate computation and file I/O, so this dual use has little
impact on application performance.
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first level switches (each with 32 up-links and 96 down-links). Livermore clusters
have used all of these configurations except the 1024-way full fat tree.

While other message passing interconnect technologies exist, LC has chosen
to stay focused on QsNet for its current generation of production Linux clusters.
Other technologies for future generations are being evaluated, including Infiniband
and QsNet Elan4.

Storage LC’s parallel file system effort, described in Section 5.7, is focused on
Lustre[7]. Initially an intra-cluster file system similar to others commonly found on
Linux clusters, Lustre will grow to a scalable, global, secure file system capable of
serving the needs of an entire data center. The underlying storage systems chosen
to support Lustre initially can be either direct-attached storage connected to cluster
I/O nodes or network-attached storage (NAS) accessed by I/O nodes over a storage
network.

The fundamental unit of storage service used by Lustre is called an Object Stor-
age Target (OST). Direct-attached storage would run OST software under Linux
on the I/O node, while NAS would have to implement OST protocol “natively.”
Because OSTs will eventually need to be accessed center-wide, LC has some bias
toward building relationships with storage companies willing to implement the
OST protocol in NAS devices, despite the fact that an OST embedded in a storage
appliance is more difficult to debug than an OST running under Linux. Thus for
strategic reasons, storage hardware has been omitted from cluster RFPs and has
been provided to integrators as GFE.

Currently, LLNL is using two main types of storage for HPC Linux clus-
ters: BlueArc NAS systems and Data Direct Networks (DDN) FibreChannel ar-
rays. Both companies are working with LLNL and Cluster File Systems, Inc.
(http://www.clusterfs.com) on native OST implementations.

The BlueArc NAS solution consists of BlueArc SiliconServer Si7500 servers
(http://www.bluearc.com) with approximately 1.4 TB of disk per server. Each
BlueArc is connected to a private GigE switched network (1 fibre GigE port).
This GigE network is connected to the cluster I/O nodes (2 copper GigE ports).
I/O traffic to and from the BlueArcs is routed through the I/O nodes to the rest of
the cluster. On MCR, seen in Figure 2, 64 BlueArc servers are connected to the
GigE federated switch. Some of these BlueArcs are serving NFS (until Lustre is
ready for production use), while the rest are Lustre OSTs.

The DDN FibreChannel solution utilizes S2A8000 Storage Controllers
(http://www.datadirectnetworks.com/products/san/s2a8000.html). Each of these
controllers offers 8 full-duplex FC-2 host connections and 20 FC drive loops. Dual-
port FC-2 host bus adapters installed in the I/O nodes are attached directly to two
S2A8000 host connections. Because the configured logical unit numbers (LUNs)
on the S2A8000s appear as standard SCSI block devices on the I/O nodes, they can
be used either as storage backing Linux-based NFS service or Linux-based OST
service.
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Remote Power and Console Management The choice of terminal server and
remote power controller (RPC) for a cluster is driven by compatibility with LC
console and power management software, security requirements, and form factor.
Table 3 lists the devices deployed in LC Linux clusters.

Table 3. Remote console/power control devices deployed in LC Linux clusters

Cluster Node Count Power Controller Terminal Server

Adelie 128+1 LNXI Ice Box V2
Emperor 96+1 LNXI Ice Box V2
Pengra 16+1 BayTech RPC3 Cyclades TS1000
ILX 45+1 BayTech RPC3 Cyclades TS1000
MCR 1152+2 LNXI Ice Box V3
ALC 960+2 IBM xSeries service processor MRV iTouch IR-8040
PVC 70+1 BayTech RPC3 Cyclades TS1000/TS2000

Terminal servers must support “reverse Telnet,” in which each serial port on
the server is directly accessed through a unique IP address:port pair. Units that
instead provide a command-line interface with commands to connect through to
the individual ports are not compatible with LC console management software,
which maintains a persistent connection to each serial port for continuous logging
and interactive access. Serial consoles should run with no handshaking (software
or hardware) at the fastest baud rate possible without data loss. A rate of 38,400
baud is a reasonable minimum. Because the console serial driver operates in a
polled mode and the length of time spent busy-waiting is inversely proportional to
the baud rate, kernel routines that write to the console, especially from an interrupt
handler, can create instabilities at lower baud rates. Handshaking would exacerbate
this problem by making the length of time spent busy-waiting dependent on the
terminal server’s load. As a general rule, baud rates should be set such that all ports
can simultaneously send about 2 KB (the size of a long kernel “oops” message)
without data loss.

RPCs provide either a serial interface that can be plugged into a terminal server
serial port and accessed via Telnet or a network interface that supports Telnet di-
rectly. LC power control software uses a fairly primitive Expect-like scripting lan-
guage to control the plugs, so line oriented interfaces are preferred over those that
make use of ANSI terminal features. The interface should at least support “plug
on,” “plug off,” and “plug status” commands. Software maintains a persistent con-
nection to the remote power controllers to reduce command latency, so it should be
possible to disable inactivity timeouts. On large clusters, devices that control mul-
tiple plugs are preferred over devices that control only one (such as an embedded
node service processor with its own serial port or Ethernet connection), because
this reduces the amount of terminal server/Ethernet switch infrastructure and ca-
bling required and also keeps down the number of sockets that need to be held
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open by the power control software. Some RPCs provide the capability of driving
the hardware reset pin on the motherboard as an alternative to power cycling a sys-
tem. RPC devices with this capability are usually provided as part of an integrated
solution, such as an embedded service processor or custom node packaging.

Some RPCs and terminal servers implement simple security measures such as
host access lists. When access lists are unavailable, these devices must be attached
to a network that is only reachable from nodes with restricted user access; oth-
erwise, it may be possible for users to boot a node in single user mode and give
themselves root access.

Form factor is a consideration in dense cluster designs. Terminal servers are
available in port densities up to 48 ports in a single rack space (1U). RPC form
factors are more numerous, including plug strips that mount vertically, consuming
zero vertical rack space. There are also combination units such as the Linux Net-
worX ICE Box (http://www.lnxi.com), which provides RPC and terminal server
functionality for ten nodes in a chassis and mounts in the rear of the rack behind
the nodes. RPC selection should be part of an overall plan for cluster power dis-
tribution. Depending on the cluster density and RPC device, it may be appropriate
to install a power distribution unit (PDU) in each rack to aggregate RPC supply
connections into a single supply cable for the rack and to provide a local “master”
power switch for the rack.

4.2 Integration Considerations

It may seem that building commodity Linux clusters is a simple matter of stacking
a bunch of PCs in a rack. Yet this seemingly straightforward task is not simple.
Many minor details need attention, and it can require a lot of time to assemble a
collection of parts into a large cluster. When dealing with integration partners, it
is important to have clear requirements for a cluster. While LC system administra-
tors have successfully built and deployed clusters of 17, 46, and 71 nodes in size
without an integrator, the process was tedious and not very cost effective. Unless
inexpensive labor is available, anything larger than a single rack cluster is probably
not suitable for self-integration. For these larger systems, some amount of vendor
integration services are justified.

Regardless of whether or not a vendor partner is used for system integration,
some details that should not be ignored include racks, cabling, labels, BIOS/CMOS
settings, and hardware burn-in.

The cluster will need racks, and all racks are not created equally. A high-quality
rack with flexible mounting options and generous space for cable routing will im-
prove the quality of the finished product. The Wrightline
(http://www.wrightline.com/) Vantage series of racks has been a good choice for
LC installations.

Wherever possible, network switches, power controllers, and terminal servers
should be located to minimize cable length and cable crossover between racks.
Heavier components should be placed lower in the racks for stability and increased
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ease of service. For aesthetic and airflow purposes, blank spaces should be consol-
idated at the tops of racks, and blank filler plates should be used. Power switches
should be covered by rack doors or otherwise located or protected so that they
won’t be accidentally turned off.

A rack full of tangled wires is an eyesore and a serviceability nightmare. Ca-
ble lengths should be optimized to avoid excessive coils of unneeded cables, and
cables should be routed down the sides of the racks and tied off with Velcro bands.
Plastic zip ties should be avoided, because they make it difficult to reroute or re-
place cables. Cables should not be crimped or bent at excessive angles. DB-type
cables should be screwed down to ensure good connections. RJ-type cables should
use non-hooded connectors, because rubber hoods can impede the ability to make
a secure connection and make it difficult to release in tight spaces such as dense
Ethernet switches.

All cables in the cluster should be labeled at both ends with a source and des-
tination identifier. This will aid in the debugging of any connection problems and
ensure that components can be removed and replaced reliably. Labels should be of
high quality to ensure that the ink does not smear and that they do not fall off as a
result of excessive heat.

It is likely that some BIOS/CMOS settings will need to be adjusted to effec-
tively use COTS hardware in a Linux cluster. For example, most PC BIOSes do
not enable serial console redirection by default. When nodes are delivered from
the vendor, BIOSes may not be at the current revision level; they may not even
be at the same level between individual nodes in the same cluster. The hardware
evaluation process should include determination of the desired BIOS revision and
CMOS parameter settings. Once the proper BIOS level and CMOS settings have
been determined, it should be the integrator’s responsibility to ensure that these
settings are correct on all nodes. Configuration of peripheral firmware (e.g., hard-
ware RAID controllers, FibreChannel adapters, etc.) should also be specified and
addressed by the integrator. Again, it may be necessary to test options and deter-
mine appropriate settings for these devices during the hardware evaluation.

The integrator should install all nodes of the cluster with some OS image and
conduct burn-in tests on the hardware. This serves to address infant mortality as
well as any serious hardware misconfigurations. Depending on the size of the sys-
tem, the RFP may also specify minimum performance levels that the integrator
should demonstrate on the system.

4.3 Hardware Support Strategy

There are a number of differences between COTS clusters and vendor-proprietary
clusters that should factor into hardware support strategy decisions. Most notable
among these is the cost of the hardware. COTS components such as motherboards,
CPUs, memory, and hard drives are relatively inexpensive and readily available.
However, on-site hardware support from a vendor or third-party maintenance sup-
plier can be very expensive, offsetting some of the price appeal of these systems.
On proprietary systems, for which the hardware can be very expensive, the cost of
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on-site support is often offset by the savings on parts, which are typically included
in hardware support contracts. Another factor is the complexity of the repair op-
erations. With the possible exception of motherboards, replacement of failed com-
ponents in COTS clusters is fairly straightforward once the failed component is
identified. Thus, even for production installations with high availability require-
ments, do-it-yourself hardware maintenance can be a cost-effective and reliable
strategy.

LC has adopted a model that makes use of a “cold” parts cache, a “hot spare”
cluster, and appropriately skilled staff members. When a new cluster is purchased,
a number of additional components are procured and stored on a shelf. The quan-
tity of each component is based on published MTBF data as well as locally col-
lected data on similar hardware. Other factors in sizing the parts cache include the
manufacturer’s warranty for each component and the tolerance level for substitu-
tion of non-identical components. If, in a year, the cache of 2.4-GHz processors
runs out and 3.0-GHz processors have to be substituted in some nodes, how will
this newly introduced heterogeneity affect the users of the system? If there is a
need to maintain a homogeneous cluster, then more spare parts may be purchased,
although this should be weighed against the risk of being left with a cache of un-
used, obsolete parts. Another option is the “cluster eats itself” approach in which
nodes are turned off and used for spare parts once the original parts cache has been
depleted.

A hot spare cluster serves a number of important purposes. It provides the
quickest means for getting a failed node back into service. When the cause of fail-
ure is not obvious or the repair is known to be time consuming, a failed node can
quickly be swapped with one from the hot spare cluster. A hot spare cluster can be
used to burn in hardware before it is placed in the production cluster, thus prevent-
ing replacing defective hardware with new defective hardware. When the cause
of failure has not yet been isolated, the problem determination can be performed
off-line in the hot spare cluster, without further impact on the production resource.
When a production cluster is too small to justify the purchase of a hot spare clus-
ter, it is still a good idea to purchase an extra node or two that can be kept on a
shelf and brought into service quickly in the event that a production node cannot
be easily repaired. These extra nodes also ensure that there are spares of every part
on hand.

Commodity Linux cluster hardware is similar to the PC hardware in homes
and offices; therefore, finding staff members capable of repairing these nodes is
not difficult. In fact, it can be difficult to prevent highly trained, highly paid com-
puter scientists from running to the machine room with a screwdriver at every
opportunity! The LC Operations staff performs the repairs on the Linux cluster
nodes. The primary role of the LC Operations staff is to monitor production sys-
tems in real time; thus, they typically are the first to see failures. Upon noticing a
failure, the operator will confer with the responsible system administrator to de-
termine the cause of failure and the appropriate repair action (replace component
in place or perform node swap). The operator will perform the repair, then notify
the system administrator for followup action (validation of repair, OS reinstalla-
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tion if required, etc.). A designated member of the operations staff generates return
authorization requests for failed components and tracks the replacement of those
components.

LC’s newest cluster from IBM, ALC (960-nodes), does include a 3-year war-
ranty with next day on-site hardware repair. This warranty is more a luxury than
a necessity. This repair contract is used to augment LC’s support strategy. Failed
nodes are swapped from ALC into its hot spare cluster. A service call is then placed
with IBM, who dispatches a technician to make the repair the following day.

5 System Software

Like many sites operating Linux clusters, Livermore draws from several sources
to build usable system software, including the open source community, industrial
partnerships, and in-house development. It was recognized early on that the lack
of integration testing and release discipline in this approach would be a weakness,
so after an unsuccessful search for an existing HPC Linux distribution that could
serve Livermore’s needs, LC began producing CHAOS, its in-house, Red Hat-
based Linux distribution for clusters. CHAOS is described in Section 5.1.

CHAOS tracks Red Hat “boxed set” releases and adds HPC enhancements in
the following areas: kernel (Section 5.2), cluster system management tools (Sec-
tion 5.3), cluster monitoring and failure detection (Section 5.4), resource manage-
ment (Section 5.5), authentication and access control (Section 5.6), and parallel
file system (Section 5.7).

Because CHAOS components are gathered from multiple sources and inte-
grated on site, Livermore owns the first level of software support. Some problems
are addressed by local software developers, and others are handled by external
sources, such as Red Hat Inc., Quadrics Ltd., or Cluster File Systems, Inc. The
CHAOS support strategy is described more fully in Section 5.9.

5.1 CHAOS

CHAOS is currently used on all LC Linux clusters. The CHAOS strategy is to
leverage the Red Hat relationship for the majority of software components that
are not Livermore or cluster specific. CHAOS developers focus on cluster-specific
components and on integration testing aimed at LC systems and customer work-
loads.

Each Red Hat “boxed set” release,11 which occurs about every 6 months, is
normally followed by a CHAOS release. CHAOS only includes a subset of the
Red Hat packages that would normally be installed on a standard Red Hat desktop
or server configuration. Packages are chosen for inclusion in CHAOS on the basis

11 Red Hat also offers the Advanced Server product, which, because of its 18-month release
cycle, was deemed insufficiently agile to support new cluster hardware. New hardware is
often incorporated into LC clusters shortly after becoming generally available.
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of user and system requirements; for example, multimedia oriented tools are not
included, except as requested by visualization customers.

On top of this scaled-back Red Hat base, CHAOS adds packages that come
from other sources, such as a custom kernel (Red Hat-derived), cluster manage-
ment tools, cluster monitoring tools, resource manager, access control facilities,
parallel file system, and application development tools. Because CHAOS contains
only the exact tools needed to support the LC Linux environment at the time of re-
lease (no effort is made to retain backward compatibility with hardware no longer
at LC or to support tools or operating modes not in use at LC), the CHAOS effort
is well focused.

New releases of CHAOS are planned, staged, tested, packaged, and released
under the direction of a release manager who ensures that each version of CHAOS
is ready to be installed on production systems with no surprises and that customers
are made aware in advance of any impacts. Development and testing is carried out
on LC’s I/O Testbed facility, which is populated with small clusters and hardware
representative of the current mix of hardware running in production. Tests include
regression tests for past problems as well as applications typical of a production
workload. When a release is vetted on the testbed systems and is deemed produc-
tion worthy, it is installed on progressively larger production clusters, so that any
problems missed by testing, such as problems of scale, are discovered and solved
with the least impact.

As mentioned above, the additional effort needed to integrate, test, and release
CHAOS is minimal because the effort is focused. In addition, the cost of the ef-
fort is offset by the fact that LC has exclusive control over release schedules and
content, which can be tailored to fit LC customer needs and production roll-out
schedules for new clusters. LC does not plan to turn CHAOS into an open source
project, which would imply distributed decision making. Nearly all of its compo-
nents, however, are or will be released individually under the GNU General Public
License (http://www.gnu.org/copyleft/gpl.html) and made available for download
from the Linux@Livermore website (http://www.llnl.gov/linux/).

5.2 CHAOS Kernel

The CHAOS kernel actively tracks Red Hat errata kernel releases. Its modifications
include enhanced device support and other changes such as increased resource lim-
its needed in LC’s environment. Kernel source code is managed in the Concurrent
Versions System (CVS) source code control system. Kernel crash dump support
and serial console logging enhance LC’s ability to support the Linux kernel.

The Red Hat kernel series was chosen as the basis for CHAOS kernels over the
stable Linux kernel releases (ftp://ftp.kernel.org) for several reasons. First, the ker-
nel must be synchronized with other Red Hat components; for example, Red Hat
9 (http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/release-notes/x86/)
introduced the Native POSIX Thread Library (NPTL), which includes substantial
kernel and GLIBC changes that must be deployed together. Second, using Red Hat
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kernels enables LC to leverage a support relationship with Red Hat kernel develop-
ers, which has proved to be more effective than interacting directly with the Linux
kernel community on problem resolution and propagation of changes upstream.
Finally, the content of the Red Hat kernel is somewhat more closely aligned to Liv-
ermore needs than are the stable kernel releases. For example, LC believes that ker-
nel crash dump support is required in a production environment, and recently Red
Hat has begun to ship kernels with netdump[8] support. While not quite ready for
use on clusters, netdump is a promising replacement for the aging Mission Critical
Core Dump patch currently used at Livermore. In contrast, no crash dump facility
is currently planned for the stable kernel series (http://lwn.net/Articles/14793/).

CHAOS kernel changes are summarized in Table 4. The kernel is maintained
under CVS source code control, with scripts on hand to build Red Hat Package
Manager (RPM) releases directly from CVS release tags. When a new Red Hat
errata kernel is released, it is checked into a Red Hat CVS branch by an on-site
Red Hat engineer and scrutinized for differences from the last Red Hat release.
When the changes are understood, the new errata is merged onto the LLNL branch.
Other changes are added directly to the LLNL branch. When a kernel is ready for
release, it is tagged and built as an RPM. Before a release is installed on production
systems, it is tested with the Cerebus (http://sourceforge.net/projects/va-ctcs/) test
suite and a scaled-down version of the CHAOS test suite, which includes user
applications that exercise the message passing interconnect.

The crash dump facility, syslog, and the serial console infrastructure make pos-
sible the gathering of detailed forensics after a crash. Problems with interconnect
drivers or other CHAOS-specific changes are handled locally or with the help of
collaborators. Problems that appear to be generic to the Red Hat kernel are redi-
rected to Red Hat. An on-site Red Hat engineer acts as the liaison between Red
Hat engineering and the CHAOS team; it is the engineer’s responsibility to ensure
that problems assigned to Red Hat are indeed Red Hat problems and not problems
introduced locally. When a fix is generated, depending on its urgency, it may go
on both the main LLNL branch and a production release branch to allow the fix to
go into production without introducing untested new functionality from the LLNL
branch. Fixes that are not CHAOS-specific are sometimes applied locally and then
removed when the fix appears in a Red Hat errata release.

5.3 Cluster System Management Tools

A good set of cluster system management tools is essential to the successful op-
eration of large clusters. This is true regardless of whether the underlying OS is
Linux or not; indeed, many of the tools used on the LC Linux clusters are the
product of lessons learned on large IBM SP systems. The CHAOS cluster system
management tool set, described below, has been successful in meeting the needs
of LC Linux system administrators and has enabled systems the size of MCR to
be managed with one full-time system administrator.12 The close relationship be-

12 In the LC environment, a system has one primary system administrator, but system ad-
ministrators are part of a team and can rely on other team members’ expertise in spe-
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Table 4. CHAOS 2.4.18 kernel modifications

Patch Description

Enhanced Device Support
QsNet Elan Quadrics Elan3 adapter and related drivers (added)
QLogic qla2300 QLogic 2 gigabit FibreChannel adapter (updated)
MTD ich2rom Intel firmware hub flash device (updated)
IBMASM IBM Remote Supervisor Adapter (RSA) (added)
E1000 Intel EEPro1000 GigE adapter (updated)
AceNIC Netgear GA620 GigE adapter (updated)

Other Modifications
MCORE/BOOTIMG Mission Critical Linux Crash Dump
QsNet Adapter MMU sync, exit handlers, core file naming
TV ptrace Ptrace changes for TotalView parallel debugger
PerfCtr Hardware performance counter support
ECC Poll memory errors and count/panic
p4therm Module to detect Xeon thermal throttling and panic the node
Lustre support Vfs intents, RO devices, zero-copy TCP enhancement (not Lustre itself)
statfs64 Support for statfs64 system call
NFS groups > 16 Membership in > 16 groups on NFS file systems
NFS zombie Bug fix for unkillable zombies blocked in NFS I/O
dsp stack trace Use frame pointers to improve oops stack traces
FDs > 1024 Allow 8192 file descriptors per process
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tween LC system administrators and developers has resulted in refinement of the
tool set to be well matched to LC needs. The tool set includes a cluster installer,
parallel remote shell tool, serial console management utility, remote power control
utility, a configuration database, and static route manipulation script, all described
below.

YACI (Yet Another Cluster Installer) (http://www.llnl.gov/linux/yaci/) uses a
technique similar to VA System Imager to build node images in a chrooted envi-
ronment, then boots a standalone OS over the network on each node, copies images
to the nodes using either an NFS pull or a multicast push and installs the local disk.
The image built for CHAOS includes CHAOS-specific localizations that occur af-
ter the node is installed to enable it to join the cluster with up-to-date software and
configuration files. Once the management node is installed and configured with
YACI (including creating the node images to install), YACI can perform the install
on the remaining 1152 nodes of MCR in about 50 minutes.

Pdsh (Parallel Distributed Shell)13 (http://www.llnl.gov/linux/pdsh/) is a high-
performance, parallel remote shell utility. It has built-in, thread-safe clients for var-
ious “rcmd” implementations, including Kerberos IV and Berkeley remote shell,
and can call ssh externally (but with reduced performance). Pdsh uses a “sliding
window” parallel algorithm to conserve socket resources on the initiating node and
to allow progress to continue while timeouts occur on some connections. Using
pdsh, a system administrator can run commands in parallel across an entire cluster
and can interpret the standard output of those commands using a companion script
called “dshbak.” Pdsh can run a simple command like “hostname” across all 1154
nodes of MCR in less than 2 seconds.

ConMan (http://www.llnl.gov/linux/conman/) is a serial console management
program designed to support a large number of console devices and simultaneous
users. It supports local serial devices and remote terminal servers (via the Tel-
net protocol). On LC clusters, ConMan runs on a single management node. On
systems with dual management nodes, the serial consoles are cross-wired with in-
stances of ConMan running on each. ConMan maintains a persistent connection
for each console it manages14 for continuous logging. In addition to logging, Con-
Man supports interactive access to consoles and can be configured so that consoles
are referenced on the command line using their host names. It allows the genera-
tion of a serial “break” over both Telnet and serial interfaces, which enables the
kernel SysReq feature to be used to gather information on hung systems, force
crash dumps, etc. Interactive users can also initiate a power cycle via configurable
external commands with a few keystrokes. On LC systems, ConMan is config-
ured to run the PowerMan client (see below) when an interactive user requests a

cialized areas. Also, the role of an LC system administrator is somewhat specialized; for
example, a customer support team fields customer requests, a DPCS team manages the
batch system, etc.

13 Pdsh is similar to dsh, part of the IBM PSSP software offering, but offers improved
performance and handling of error conditions.

14 On large systems, the default Linux limit of 1024 file descriptors per process may be
inadequate, so on CHAOS kernels this limit has been raised to 8192.
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power cycle. Interactive sessions can be shared or stolen, and a broadcast mode is
supported.

PowerMan (http://www.llnl.gov/linux/powerman/) is a tool for controlling mul-
tiple RPC devices in parallel via a command-line interface. PowerMan can be con-
figured to associate host names with specific plugs on the RPC devices, allowing
the PowerMan commands to use node host names. Basic functionality consists
of “power on,” “power off,” and “power status” commands. Where supported by
the hardware, PowerMan can be configured to control beacons that flag nodes re-
quiring service and to gather out-of-band temperature data. On LC clusters, Pow-
erMan runs on a single management node. On systems with dual management
nodes, PowerMan is configured so that one management node controls the other’s
power and vice-versa. PowerMan holds open persistent connections to each RPC
and uses an Expect-like scripting language to send commands to the RPCs and
process responses in parallel. Table 5 summarizes the growing list of supported
RPC hardware. PowerMan can query the power status of all plugs on the MCR
system, which includes 121 ICE Box devices, in about 1 second and can power
cycle the entire cluster in under 10 seconds.

Table 5. RPC devices supported by PowerMan 1.0.17

Device Rack Space Plugs Supply

LNXI ICE Box v2 0U/rear-mount 10 2x15A/110 V
LNXI ICE Box v3 0U/rear-mount 10 2x15A/110 V
BayTech RPC3-20 1U 8 1x20A/110 V
WTI NPS-115 1.5U 8 2x15A/110 V
APC MasterSwitch Plus 1U 8 1x15A/110 V
WTI RPS-10 HD stand-alone 1-8 units/RS485 chain 1x15A/unit
IBM xSeries RSA 0U/inside node 1-23 nodes/RS485 chain n/a
Rackable Phantom 0U/inside node n/a n/a

Genders (http://www.llnl.gov/linux/genders/) is a collection of utilities used as
a basis for cluster configuration management. The utilities operate on a table of
node names and attributes and include a query tool, an rdist Distfile preprocessor,
and a C and Perl application programming interface (API). When used for cluster
configuration management, the genders file (typically /etc/genders) is replicated
on every node of the cluster. It describes the layout of the cluster; specifically, it
describes the subtle differences between nodes that need to be sensed by scripts
and that are used to determine what variations of configuration files belong on a
node. By abstracting this information into a plain text file, it becomes possible to
change the cluster configuration by modifying only one file.

Nodeattr, the genders query tool, can be called on to provide a list of nodes
that have a particular attribute. It is commonly called from system administration
scripts to test whether a node has a particular characteristic before performing
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some operation (for example, nodes with the “qla2200” attribute might need to
modprobe the qla2200 kernel module in the rc.local file, while others do not).

Dist2, the rdist Distfile preprocessor, expands specially formatted rdist macros
with embedded genders attributes into node lists. When the genders file changes,
dist2 can simply be rerun to redistribute appropriate configuration file variations.
dist2 also facilitates rapid “localization” of nodes rejoining the cluster after a fresh
operating system install or a long absence.

C and Perl APIs are provided for querying the genders file from system ad-
ministration scripts and utilities that must manipulate lists of nodes or attributes
and that, for performance or other reasons, cannot do so via repeated calls to the
nodeattr utility. Pdsh has an option which exploits this API to target a command to
a set of nodes with a common genders attribute.

Croute is a Perl script that sets static routes on the basis of the IP addresses of
locally configured interfaces and information in a config file. Large clusters with
multiple networks sometimes need complex network routing schemes to achieve
load balancing of traffic across multiple interfaces. The croute tool provides a
mechanism for expressing these routing schemes in a single config file.

5.4 Monitoring and Failure Detection

Detecting hardware and software failures and acting on them quickly is crucial
to ensuring that a cluster functions properly and delivers reliable service to cus-
tomers. LC clusters employ system monitoring, kernel level fault detection, and
boot-time checks to detect failures, which are then handled by an around-the-clock
operations staff and system administrators.

Clusters are monitored using a locally built SNMP infrastructure. The man-
agement node periodically runs HM, a multithreaded program that polls an SNMP
agent on each node and stores the results in a MySQL (http://www.mysql.com/)
database, where it is retrieved and displayed on a web page using PHP scripts.
Problems are flagged in red on the web page. The pages for all production clusters
are monitored by operations staff who can take appropriate action, such as decon-
figuring faulty compute nodes to prevent allocation by the resource manager or
paging the on-call system administrator. On each node, a modified UCD SNMP
daemon (http://net-snmp.sourceforge.net/) is run that includes support for reading
motherboard sensors via the LM sensors (http://secure.netroedge.com/∼lm78/)
package, as well as other functions that are compiled into the SNMP daemon to
minimize the impact of each polling cycle on applications. Table 6 lists most of
the entities currently monitored using SNMP.

Ganglia (http://ganglia.sourceforge.net/) is also run continuously to provide a
method, in addition to SNMP (which is less frequently updated), of detecting when
nodes have crashed or locked up such that they can no longer multicast a heartbeat
on the management network. A library exports this information to other tools, such
as pdsh, which optionally use it to skip over nodes that would otherwise time out.
In addition, a command-line tool can display a quick summary of up/down nodes
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Table 6. Entities monitored by SNMP

Entity Description

crashdumps Crash dumps in /var/dumps
daemons Critical daemons
ECC Correctable memory error counts
filesystems Local file systems percent free
load System load average
neterrs Network interface errors
nfs NFS file systems mounted
ntp NTP time synchronization
rms Status of RMS partitions
orphans Orphaned application processes
sensors Fan speeds, power supply voltages
swap Available swap space

for system administrators. Ganglia has been configured so that only the manage-
ment nodes listen to heartbeat messages and has been modified to hold back other
messages it would normally send. This minimizes application disruption.

On a cluster running computations where the answers matter, an uncorrectable
memory error should result in a kernel panic. The CHAOS kernel has been modi-
fied to detect memory ECC errors using the ECC module
(http://www.anime.net/∼goemon/linux-ecc/) for chip sets that LC has deployed.
A /proc file allows SNMP to obtain and report correctable error counts by memory
module, which, if excessive, indicate that memory should be proactively replaced.
When an uncorrectable error occurs, the kernel panics, calling out the offending
memory module. This effectively removes the node from play and terminates any
running application that may have been affected by bad data.

The Linux kernel by default generates an “oops” message on its console and
continues on when it dereferences a bad pointer. Because this results from a kernel
bug that should be detected and tracked down, and can cause data corruption, a
better result is to have the kernel panic. The Mission Critical Core Dump patch
employed in CHAOS kernels provides a “panic on oops” sysctl (kernel tuning)
parameter which achieves this result. Panic on oops is always set on LC Linux
clusters.

Another kernel-level fault detection mechanism is a module that polls the Xeon
IA-32 THERM STATUS Model Specific Register (MSR)[9] and panics the node
when the Xeon thermal sensor is tripped. In the absence of this module, an over-
heating node can silently begin to run at a reduced system clock duty cycle. In
most parallel applications run by LC customers, a slow node may have a substan-
tial performance impact.

When a node boots, a script called “checknode” runs through a sequence of
hardware checks to ensure that the node boots up with the expected amount of
memory, number of CPUs, CPU clock speed, etc. Checknode uses genders (dis-
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cussed in Section 5.3) to retrieve the expected values for each node. If checknode
finds any problems, it writes a description of the problem to a file (/etc/badnode),
which subsequent startup scripts will abort upon finding, thus preventing the node
from being brought on-line. A node in this state will be flagged by the SNMP
monitoring system.

5.5 Resource Management

LC provides a common batch scheduling and resource accounting system across
all its platforms called DPCS (Distributed Production Control System)
(http://www.llnl.gov/icc/lc/dpcs/dpcs overview.html). DPCS interfaces with the na-
tive resource manager on each platform. On capability Linux systems, the resource
manager is currently RMS from Quadrics, although a transition to SLURM is
under way. On capacity systems, DPCS interacts with an instance of the NQS
(http://asis.web.cern.ch/asis/products/CERN/nqs.html) batch queuing system run-
ning on every node. LC’s resource management strategy provides flexibility that
enables it to handle the unique requirements that arise in a dynamic environment.

DPCS provides a common user interface for batch job submission and accounts
for resource utilization center wide. It is a “metabatch” system in the sense that
users can request execution on the first cluster that has resources available that
meet a list of constraints. DPCS implements a fair share scheduling policy using
banks to account for resources consumed by users and projects. Reports generated
from DPCS show how well LC clusters are being utilized and by which groups;
these reports are invaluable in planning future procurements.

DPCS relies on a native resource manager to obtain resource availability infor-
mation, to allocate resources, and to shepherd jobs through the system. It interacts
with the resource manager through APIs provided by the resource manager and
shell scripts. DPCS also has a daemon on every node that can monitor the resource
consumption for accounting purposes.

On Linux capability clusters, RMS is currently the resource manager. RMS
runs on large systems, such as ASCI Q (http://www.llnl.gov/asci/platforms/lanl q/)
under the Tru64/Sierra product, and its scalability has therefore been tested; in-
deed, it performs well on Linux clusters the size of MCR at 1154 nodes. RMS’s
proprietary licensing is, however, somewhat at odds with LC’s open source Linux
strategy, and it assumes the QsNet interconnect. Because of these limitations, LC
initiated an effort to create an open source resource manager, SLURM, which
will be released under the GPL and is designed to be interconnect-independent.
SLURM is running on LC I/O Testbed systems, with plans for roll-out on ALC in
the near future.

On capacity clusters, DPCS relies on NQS to shepherd jobs. In contrast to ca-
pability clusters where whole nodes are usually allocated to jobs, capacity clusters
run multiple jobs per node. DPCS monitors resource utilization in real time and
uses this information to make scheduling decisions. Although it is difficult to con-
clusively determine the future resource needs of running jobs, this method does
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achieve high utilization of capacity resources and in practice rarely oversubscribes
the nodes.

Some capability systems pose unique resource management challenges. These
challenges can be addressed because LC controls the development of DPCS and
SLURM. For example, compute nodes on some visualization systems are equipped
with specialized hardware that factors into scheduling decisions. Some nodes may
be connected to a Power Wall, some may be connected to user display devices,
and others may have specialized rendering hardware. Visualization applications
requiring a mixture of these capabilities (such as a specific Power Wall and some
number of rendering nodes) need sophisticated resource management algorithms.
This particular problem is being addressed in SLURM and DPCS.

5.6 Authentication and Access Control

Users authenticate to cluster login nodes using LC’s One-Time Password (OTP)
system, or if on-site, with passwordless ssh (via personal RSA keys). Authentica-
tion and access control policy are managed on Linux using PAM, which restricts
access to the various node types within the cluster based on group membership and
resource manager allocations. Account and password management occurs outside
the cluster, and authentication-related files are propagated between cluster nodes
using rdist. Within the cluster, users may use the Berkeley r-commands (rsh, rlogin,
rcp) without passwords between nodes, subject to PAM-enforced access restric-
tions. R-command authentication will soon be replaced with MUNGE, a scalable
intra-cluster authentication service.

A “pam otp” module exists in the PAM stack of login nodes to allow users to
authenticate using an LC OTP password when coming in via ssh. The ssh con-
figuration forces users to authenticate through the PAM stack (and therefore type
their OTP) when originating off-site; otherwise, they may authenticate using their
personal RSA keys without typing a password. The authentication policy for other
service nodes is the same, except that access is restricted via the “pam access”
module to members of a particular UNIX group populated with support team mem-
bers. All external access to the cluster is with ssh.

On capability clusters, a PAM module called “pam rms”
(http://www.llnl.gov/linux/pam rms) allows users to log in to compute nodes RMS
has allocated to them and check the progress of long-running applications, while
prohibiting users from hijacking resources on compute nodes not allocated to
them. A similar strategy is used by SLURM. System support staff are exempted
from this restriction by the “pam access” module.

Password and group files are managed externally by the LC Hotline. A peri-
odic export from the Hotline’s account database is used to regenerate the “user”
portion of a master password and group file on the management node. The “sys-
tem” portions of these files, which contain local passwords for root accounts and
other accounts needed by software subsystems, are managed using native Linux
commands on the management node. The master copies are propagated to the rest
of the nodes periodically using rdist.
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PAM is configured to enable the Berkeley r-commands to work intra-cluster
without passwords, subject to access restrictions described above. The r-commands,
used by pdsh (and in some cases by RMS) to remotely execute concurrent pro-
cesses, are more attractive for this use than sophisticated remote shell facilities
such as ssh, because their lightweight protocol enhances performance. They are,
however, built on an aging, unsafe code base, they have to be setuid root to ob-
tain access to a privileged socket, they are prone to various well-known attacks,
and they are limited in scalability because each connection requires a privileged
socket.15 The MUNGE scalable authentication service, currently nearing com-
pletion, authenticates users to services using a lightweight protocol involving a
shared secret known to root on each node. MUNGE will become the authentication
scheme of choice between cluster nodes and will be used by the “m-commands,”
drop-in replacements for the Berkeley r-commands that use MUNGE authentica-
tion, and by SLURM.

5.7 Parallel File Systems

A parallel file system is required on capability systems that implement the Liv-
ermore Model (described in Section 2). The file system must provide a POSIX
interface, perform well, and be stable at all times. LC’s file system strategy is fo-
cused on Lustre.

LC parallel file systems, which include IBM’s GPFS on SP systems and HP’s
PFS on Sierra systems, are normally mounted on all compute and login nodes
within a cluster. They are used to store large files such as application data files and
restart dumps. Because of the size of these data sets, which can be multiple ter-
abytes, the onus of backups is placed on users, who are provided with a high-speed
communication path from the cluster to the LC storage archive and visualization
systems.

Parallel file systems achieve performance targets by striping data across multi-
ple I/O servers, each of which has access to some high-performance storage such
as RAID devices on a FibreChannel SAN, local ATA RAID controllers, or NAS
devices. The striping allows the file system to deliver performance to a parallel
application that is not bounded by the I/O performance of a single server node,
a single client, or a single network adapter. Ideally, performance would scale lin-
early until a maximum aggregate performance is reached and then “flat line” at the
maximum.

There are several parallel file systems currently available for Linux, includ-
ing PvFS (http://parlweb.parl.clemson.edu/pvfs/) from Clemson University (which
performs well but suffers from design limitations that inhibit its scalability), GFS
(http://www.sistina.com/products gfs.htm) from Sistina (which assumes all nodes

15 Privileged sockets are in the range of 0 to 1023, and the rresvport function used by the r-
commands allocates reserved sockets in the 512-1023 range. Because each rsh command
requires two sockets, one for stdin/stdout, one for stderr/control, at most 256 simultane-
ous rsh commands can run on a system, assuming no other r-commands are running.
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mounting the file system have SAN access to the underlying storage), and GPFS
(http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html) from IBM
(which is not open source and is only supported on IBM hardware). Because of
these limitations, and also because a partnership was being sought that could en-
able other LC goals, such as building a distributed, parallel file system that could
be used across the entire data center, LC did not attempt to join any of the existing
Linux parallel file system efforts.

In April 2001 an ASCI PathForward RFP for an SGS (scalable, global, secure)
file system led to the signing of a contract[10] with Cluster File Systems, Inc. to
develop Lustre, an open source, distributed, object-based file system with a design
informed by the Intermezzo, Coda, and GPFS file systems. The first major Lustre
deliverable is Lustre Lite, an implementation with less scalability and lower meta
data replication requirements, suitable for intra-cluster use.

Lustre uses OSTs to implement its object storage protocol. LLNL has part-
nered with BlueArc Corporation and Data Direct Networks to build storage ap-
pliances that embed the OST protocol. A Linux cluster node with direct-attached
storage may also serve as an OST. During the development of Lustre, both BlueArc
OSTs and Linux-hosted OSTs directly attached to DDN disks are being used for
testing.

Lustre Lite nears production readiness and is currently being tested at scale on
MCR using BlueArc OSTs and on ALC using Linux OSTs. At the time of this
writing, a production deployment schedule for Lustre Lite is being worked out.

5.8 Application Development Environment

As described previously, the Livermore Model seeks to provide a common appli-
cation programming framework across all LC production systems. Different OSs
and architectures may constrain this goal, in which case the focus shifts to pro-
viding the required functionality even if the actual tools differ from platform to
platform.

Table 7 highlights some of the tools that are available on the LC Linux clusters.
LC’s Development Environment Group (DEG) is tasked with identifying, deploy-
ing, and supporting the tools that comprise this common application programming
framework. An in-depth discussion of these tools is beyond the scope of this paper.

5.9 Software Support Strategy

The CHAOS support strategy is for system administrators, local developers, and
industrial partners to work together to resolve software problems. Trouble tickets
and software defects are tracked with automated systems. Software fixes of an
urgent nature may be installed in production, although bug fixes are deferred until
a future CHAOS release whenever possible to avoid unnecessary drift between
releases. When appropriate, fixes are pushed back to the authors of software to
minimize the number of patches that have to be maintained locally.
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Table 7. Application development tools

Tool Description Vendor

Intel compilers C, C++, Fortran compilers (preferred) Intel
PGI compilers C, C++, Fortran compilers PGI
GNU compilers C, C++, Fortran compilers Open source
Quadrics MPI MPI derived from MPICH 1.2.4 Quadrics (Open source)
TotalView Debugger Etnus
PAPI Hardware counter tool U of Tenessee (Open source)
Valgrind Memory correctness tool Open source
VGV, Vampirtrace Parallel profiling tool KAI (Intel), Pallas
MKL Math Kernel Library Intel

When a problem is encountered on a production system (typically reported by
an end user or system administrator), the system administrator performs the initial
problem determination and attempts to fix the problem. If the problem stems from a
software defect, a trouble ticket is generated for the CHAOS development team for
further analysis. If a developer verifies that the problem is indeed in the software,
a bug report is entered into the project defect tracking system. The development
team pursues root cause analysis, interacting with the system administrator and/or
end user to assist in problem isolation and recreation if necessary. When possible,
an attempt is made to recreate the bug on one of the testbed systems, allowing
ongoing debugging and testing of candidate fixes to proceed without affecting the
production systems.

If the problem is in software that is maintained by industrial partners (e.g.,
in software distributed by Red Hat or Quadrics), the CHAOS developers engage
these partners in pursuing a fix. At this stage, the problem is often fairly well
characterized, and a simple “reproducer” is available.

Every effort is made to avoid allowing untested functionality to be installed
in production. When a fix is available, a decision is made as to whether there is
an urgent need for the fix to be pushed out immediately. Bugs with significant
impact on system security, stability, usability and/or performance might qualify;
otherwise, fixes are deferred to the next CHAOS release. If urgent, then the fix
is usually made against the version currently running in production as well as
against the current development version, with branches created in the CVS source
code control system as appropriate. An RPM is built for the fixed software, which
is tested on the I/O Testbed facility. Testing may consist of rerunning the entire
CHAOS regression suite or simple unit testing, depending on the nature of the bug
and the relationship of the affected software to the rest of CHAOS. Once validated,
the RPM is installed in production.

Minimizing the number and scope of local modifications is a key element of
the supportability of CHAOS. Each local modification must be reapplied to each
new release, which introduces more opportunities for a patch/modification to be
accidentally reverted or broken. When defects are discovered in software owned
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by Red Hat or other collaborators, the fixes are, when possible, pushed “upstream”
with the hope that they will appear in a subsequent release and no longer need to
be reapplied.

6 Lessons Learned

While the deployment of these Linux clusters within LC has been a success, it
was not without learning some lessons. Most of these lessons have been learned
the hard way, but they provide valuable insight on how to build and manage large
HPC Linux clusters.

It is important to communicate even the most basic aspects of the desired
system design and integration requirements to the vendor and avoid making as-
sumptions about how they will assemble the cluster hardware. When integrating a
70-node cluster, about one-third of the nodes failed to install the OS image. The
failure was eventually determined to be caused by miscabling of the IDE devices
in the nodes. Some nodes correctly had the hard drive on IDE channel 0 and the
CD-ROM drive on IDE channel 1; other nodes had this reversed. Thus, when the
installation software attempted to install an OS image on the hda partition, on some
nodes this was the CD-ROM drive instead of the hard drive. It is difficult to spec-
ify system requirements clearly enough to avoid problems during the integration;
however, with careful consideration and clearly stated expectations, problems can
be minimized, if not prevented entirely.

During the initial testing of LC’s first production HPC Linux clusters, some
nodes produced wrong answers. After much experimentation and testing, the prob-
lem was isolated to a subset of nodes, and the primary cause of the problem deter-
mined to be uncorrectable memory errors. On some motherboards, Linux ignores
these errors and continues. Understanding these errors led to the inclusion and
planning for ECC error detection on current and future systems.

When integrating a small, single rack cluster, an overly simplistic specification
of a 19-inch rack was used. The provided rack was too shallow for the nodes that
were to be racked in it. LC system administrators spent quite some time trying
to make this rack work before finally giving up and locating another rack. This
experience resulted in careful specifications for racks for subsequent systems.

When MCR was being integrated, some applications had unpredictable per-
formance. Jobs were unexpectedly slow some of the time. Again, it took time to
determine that, because of high processor temperatures, the Pentium Xeon proces-
sors were dropping to a reduced clock duty cycle. Following this discovery, the
p4therm kernel module was developed and has been deployed on all LC produc-
tion systems using Xeon processors.

After MCR was delivered, it became evident that despite careful planning by
experienced facilities designers, LC had not provided adequate cooling. At one
point, an engineering team was called in to diagnose a “hot spot” in MCR. Several
small groups of nodes were overheating despite ample CRAC capacity. A detailed
analysis revealed that air exhausing out of the tops of the racks was creating eddy
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currents that caused this air to be redirected to the intake of the top nodes in the
racks. A number of solutions were evaluated, and the problem was eventually re-
solved by using the false ceiling as a return plenum to the air handlers on the
perimeter of the room.

Terminal server specifications have also been a problem for LC. When ALC
was being integrated, system administrators discovered that the baud rate config-
ured on the terminal servers was causing lost and corrupted data when logging on
all ports of the terminal servers. The vendor asserted that the ports could be run at
115,200 baud with flow control, but it was subsequently discovered that enabling
flow control led to kernel instability when there was excessive terminal server ac-
tivity. Upgrading the memory in the terminal servers improved the situation and
ultimately a setting of 38,400 baud without flow control was deemed acceptable.

It is also important to ensure that Linux-based tools are available for upgrad-
ing BIOSes and changing CMOS settings for the nodes. When ALC was being
installed, the integration personnel actually used DOS boot floppies to flash the
BIOSes on all 960 nodes of the cluster. This included some of the nodes being
flashed multiple times as the correct BIOS release was determined and necessary
settings found. Needless to say, this would have been completely unacceptable if
LC staff had been required to do this. Fortunately, IBM was already developing
Linux-based tools for handling this, and they provided a beta release of them be-
fore LLNL needed to change CMOS settings or BIOS levels across the cluster.

These are only a few of the situations that have been encountered by LC while
deploying and managing HPC Linux clusters. However, they represent a variety of
the problems that can be encountered and show how LC has learned from mistakes
and adapted to deal with them.

7 Conclusions

LC has successfully deployed the 11 systems listed in Table 8 using the strategies
discussed above. These clusters range in size from an 8-node development cluster
to the 1154-node MCR. Three CHAOS releases have been installed on these sys-
tems, with a fourth release on the way. The systems have proved to be manageable
in a demanding production environment and have and a total cost of ownership
(TCO) that compares favorably to that of proprietary clusters. The success of these
systems demonstrates that world-class HPC compute resources can be built and
maintained using COTS hardware and open source software.

7.1 System Manageability

LC Linux clusters exhibit high levels of manageability, usability, and reliability.
This result was achieved with careful attention to hardware choices and integra-
tion details and robust system software. The MCR cluster is a particularly good
example of these successes, both in comparison to a similarly sized proprietary
system, ASCI White (http://www.llnl.gov/asci/platforms/white/), and another sim-
ilarly sized Linux cluster from another vendor, ALC.
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Table 8. LC clusters

System No. Nodes Vendor Integrator Architecture Chip Set Interconnect

Production Systems
Adelie 128+1 LNXI SGI Dual 1.7-GHz Xeon Intel 860 Quadrics
Emperor 96+1 LNXI SGI Dual 1.7-GHz Xeon Intel 860 Quadrics
Pengra 16+1 Acme LLNL Dual 2.2-GHz Xeon Intel E7500 Quadrics
ILX 45+1 Acme LLNL Dual 2.4-GHz Xeon Intel E7500 none
PVC 70+1 Acme LLNL Dual 2.4-GHz Xeon Intel E7500 / Intel 860 Quadrics
MCR 1152+2 LNXI LNXI Dual 2.4-GHz Xeon Intel E7500 Quadrics
ALC 960+2 IBM IBM Dual 2.4-GHz Xeon Serverworks GCLE Quadrics

Development Systems
Dev 20+1 LNXI SGI Dual 1.7/3.0-GHz Xeon Intel 860 / E7501 Quadrics
Mdev 26+2 LNXI LNXI Dual 2.2-GHz Xeon Intel E7500 Quadrics
Adev 16+2 IBM IBM Dual 2.4-GHz Xeon Serverworks GCLE Quadrics
Toad 8+2 LNXI LLNL Dual 1.0-GHz PIII Serverworks SSIII/LE Quadrics

ASCI White, delivered to LLNL in 2000, is a 512-node, 8192-processor IBM
SP cluster running AIX and the Parallel System Support Program (PSSP) software
stack for cluster system management. Although the node and processor counts
are not identical to the 1154-node, 2308-processor MCR cluster, the two systems
achieved similar LINPACK results and can be viewed as similarly sized systems
for the purposes of this comparison.

MCR has been significantly easier to manage than ASCI White. Some of the
advantages of MCR are due to better cluster management tools. For example, a par-
allel “hostname” command executed across all 1154 nodes of MCR using LLNL’s
pdsh tool takes 1.57 seconds. A similar command across all 512 nodes of ASCI
White using the PSSP dsh tool takes over 5 minutes. A reboot of MCR, including
mounting NFS file systems, starting the RMS batch system, and mounting Lustre
file systems, takes approximately 30 minutes. A reboot of ASCI White, including
starting the SP switch, mounting NFS file systems, starting the LoadLeveler batch
system, and mounting GPFS file systems, takes about 5 hours.16 A complete re-
install of MCR using YACI, including installation of the management node and
image setup, takes about 80 minutes. A complete reinstall of ASCI White was re-
cently performed, including a migration upgrade of the control workstation. This
upgrade took almost one week. Because of the speed and simplicity of cluster re-
installations using YACI, major CHAOS upgrades are typically accomplished by
a reinstall rather than an RPM update. A reinstall has the additional advantage of
cleaning up any file system “cruft” (stray log files, core dumps, etc.) as well as
eliminating accumulated local disk fragmentation.

Comparing MCR to ASCI White is perhaps an “apples to oranges” comparison
given the substantial differences in both the hardware and software environment.
A comparison of MCR to ALC shows how subtle hardware differences can affect
overall system manageability. All COTS Linux clusters are not created equally.

16 A collaborative effort by Pacific Northwest National Laboratory, LLNL, and the National
Centers for Environmental Prediction to improve SP boot time achieved a reduction of
over one hour for large systems[11]. However, IBM declined to accept the proposed
software changes into the PSSP product.
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ALC is a 962-node Linux cluster from IBM. MCR is an 1154-node Linux clus-
ter from Linux NetworX. Both clusters use dual 2.4-GHz Intel Xeon processors,
4-GB DDR memory and 120-GB IDE hard drives. The IBM nodes are primar-
ily 1U xSeries 335 servers utilizing the Serverworks GC-LE chip set on an IBM
motherboard, Broadcom NICs, and IBM’s BIOS. The Linux NetworX nodes are
primarily 0.8U Evolocity servers using the Intel E7500 chip set on a Supermi-
cro motherboard, Intel NICs, and LinuxBIOS. ALC uses MRV terminal servers
for console management and IBM’s proprietary RSA hardware for power manage-
ment. MCR uses proprietary ICE Box hardware from Linux NetworX for both con-
sole and power management. Both clusters use identical Cisco network switches
and the Quadrics Elan3 high-speed interconnect.

In cases where the cluster hardware is not a factor, MCR and ALC behave
very similarly. A pdsh of the “hostname” command across all 962 ALC nodes
takes 1.14 seconds. The time to reinstall ALC using YACI is very similar to MCR.
The cluster reboot time on ALC is slightly longer due to the overhead incurred by
using the vendor BIOS as opposed to LinuxBIOS on MCR, but because the reboot
occurs in parallel on all nodes, this overhead is fairly negligible.

When dealing with software components that interface with the motherboard
chip set, as well as with power management functions, the differences between
MCR and ALC become more noticeable and, for ALC, manageability suffers. Un-
availability of chip set programming information for ALC’s Serverworks GC-LE
chip set means a number of important system management functions cannot be
supported on this platform using existing CHAOS tools. The ECC kernel module,
LM sensors utility, and MTD flash device all require chip set specific information
that is obtainable for Intel chip sets but not for Serverworks. Porting LinuxBIOS
to the IBM xSeries servers is not possible for the same reason. On ALC, a BIOS
setting allows a system reset to be performed in the event of an uncorrectable
memory error; however, this method fails to provide a console message indicating
the cause of the crash, as would be generated by the ECC module. Additionally,
correctable memory errors cannot be tracked on the ALC nodes. Recently, IBM
provided a set of beta tools to gather sensor data from the service processor in the
xSeries nodes, as well as to allow CMOS parameter manipulation and BIOS flash
operations from Linux. Although these tools appear to provide acceptable func-
tionality, they are closed source and thus will require an ongoing reliance on IBM
for support.

ALC’s power management solution has also been problematic. The IBM RSA
adapter implements a firmware-based web server that is used to issue power on/off
commands to the nodes on the RSA chain. Each chain consists of approximately
20 nodes using RS-485 connections to the service processors in these nodes. The
RSA web interface has proven to be unreliable, occasionally requiring multiple
commands to power cycle a node. RSA adapters can hang, requiring a power cycle
of the adapter. The onboard service processors have also been known to hang, pre-
venting a remote power cycle and requiring a trip to the machine room to manually
power cycle the affected node. LC developers have been working with IBM to de-
velop a Telnet-based interface to the RSA adapter, which is hoped will alleviate
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some of these problems in the future. While the Linux NetworX ICE Box product
used on MCR is more expensive on a per-node basis, it is a well-integrated solu-
tion with a straightforward interface, enabling easy integration into the CHAOS
tool set (PowerMan, ConMan).

ALC has experienced a significantly higher rate of software crashes due to bugs
in drivers for proprietary chip set functions. The Broadcom tg3 driver caused ex-
tensive instability in the early integration phases of ALC, although a recent driver
update has shown substantial improvement. Another failure mode relates to the
OSB4 driver for the Serverworks South Bridge chip that drives the IDE controller.
The driver sometimes reports it is in an impossible state when the system attempts
to fsck the hard disk after a system crash. When this occurs, the only possible re-
covery is to reinstall the node. The CHAOS development team has reviewed the
OSB4 driver source code but is unable to resolve this problem without chip set
documentation. Investigation by IBM is ongoing.

7.2 Total Cost of Ownership

HPC Linux clusters have a compelling TCO advantage. There is significant cost
savings at time of purchase, and using the hardware and software support strate-
gies detailed earlier in this paper keeps TCO low. Instead of signing expensive
support contracts, LC has hired appropriately skilled staff to support these systems
in house. This includes a staff of six system administrators and eight system devel-
opers. The Linux cluster system administrators have varied backgrounds, including
Tru64 clusters, large SPs (including ASCI White), and Irix systems. The system
administration staff is on par with the number and skill level needed for handling
a similar number of proprietary HPC clusters (like IBM SPs). The expense of the
developers is counterbalanced primarily by the lack of expensive software support
contracts (or much less expensive contracts that augment the support provided by
in-house developers). It is also important to note that by having in-house support,
LC controls the future directions of the software used on LC systems. When deal-
ing with a proprietary system vendor, it is possible that new feature requests, or
even in some cases bug reports, will not be addressed. With in-house support of
open source software, if the bug fix or feature request is a priority to LC, it will be
addressed by the LC Linux development staff.

8 Future Directions

LC continues to develop open source software in a number of areas. One of the
biggest needs for production deployment of large HPC clusters at LC is a reliable
and scalable parallel file system. LLNL is currently partnered with Cluster File
Systems, Inc. to develop Lustre Lite and Lustre. This partnership should provide
parallel file systems for use on LC clusters both in the near term and well into
the future. LC also continues to develop the cluster management tools, installation
tools, kernel, etc., that comprise CHAOS.
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HPC systems are currently encountering the limits of 32-bit microprocessors.
New processor architectures, including Intel IA64 and AMD x86-64, are available,
and LC is evaluating both of these for future clusters.

Interconnect technologies also continue to be a prime area of interest to LC.
While QsNet Elan3 has worked very well for current clusters, LC is evaluating
new interconnect technologies, including Infiniband and QsNet Elan4.

On existing LC clusters, diskfull configurations contribute to overall MTBF.
Exploring and characterizing diskless cluster configurations is another area for
future research.
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