
Scalable Water Network Sensor Placement via
Aggregation

Jonathan W. Berry∗ Robert D. Carr∗ William E. Hart∗

Cynthia A. Phillips∗

Abstract

Sensor placement problems for municipal water distribution networks usually in-
volve detecting a series of scenarios. The number of scenarios needed to accurately
model a full set of possible events based on season, special events, and type of contami-
nation can grow much faster than the size of the network. We introduce two new meth-
ods for reducing the problem size. Scenario aggregation introduces no new approxima-
tions and can reduce problems size and reduce running time regardless of the solution
method. Witness aggregation is a technique well suited for integer-programming-based
solution methods. We give two variants of witness aggregation. We present preliminary
experimental results for a moderate network and enriched set of scenarios. Applying
both scenario and witness aggregation gave a solution within 1% of optimal in two
orders of magnitude less time than not using aggregation.

1 Introduction

A key shortfall of most published water sensor placement methods to date is their inability to
handle truly rich ensembles of injection events, encompassing many different contaminants,
different seasonal flow patterns, etc. When such large ensembles are considered, the problems
grow too large to handle, even on the most powerful workstations. We address this issue via
new aggregation techniques that are quite different from skeletonization.

Sensor placement problems for municipal water networks usually involve the placement
of a fixed number of sensors to minimize the expected impact of a set of contamination event
scenarios. The size and difficulty of these instances depend upon total number of witness
events, that is, the number of possible network locations where a sensor could observe an
event, summed over all events. Thus the size and difficulty grows with the number of scenar-
ios and the size of the network, and is heavily influenced by demand patterns. Many events
that can spread through a significant portion of a network dramatically increase problem

∗Discrete Algorithms and Math Department, Sandia National Laboratories, Mail stop 1318, P.O. Box
5800, Albuquerque, NM, 87185-1318, USA. {jberry, rdcarr, wehart, caphill}@sandia.gov. Sandia is a
multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States
Department of Energy’s National Nuclear Security Admininstration under contract DE-AC04-94AL85000.

1



size. The quality of the sensor placement depends upon how well the set of scenarios repre-
sents the set of possible contamination events. Demand patterns, and hence contamination
transport, can vary considerably based on the season or day of the week. Event impact
depends upon the nature of the contaminant. Thus a full scenario set may be very large.

One general way to reduce the size of an instance is through aggregation. Researchers
have previously considered skeletonization[7]. Skeletonization is available in commericial
codes such as the H2OMAP Skeletonizer [3] and Skelebrator by Bentley Systems. Skele-
tonization typically has four operations. The first operation merges dead-end branches into
a main branch. If one thinks of the network as a graph, this merge leaves into their parents.
A second drops all pipes whose diameter is below a threshold. The third operation merges
serial pipes (removes degree-two nodes). And the last merges parallel pipes. One can adjust
parameters of the new pipes (diameter, roughness) that represent serial or parallel merges so
that the new system is hydraulically equivalent to the first. However, the second operation
can alter flows in the network and the first operation merges water demands. Skeletoniza-
tion can decrease the size of the network, making simulations more manageable and making
sensor location problems smaller. However, the smaller system is an approximation of the
original, since some flow patterns may be altered. Also, it’s not clear how to map a sensor
placement on the skeletonized network back to locations in the more refined network. There
is likely no single location that will perform as well as a single “aggregated” sensor covering
the whole region.

We consider two types of aggregation that work with an all-pipes model, or the maxi-
mum refinement available for the network. Witness aggregation combines possible witness
locations for a single scenario based upon their witness quality, not based on geography. Sce-
nario aggregation replaces a set of scenarios with a single representative scenario. Because
the number of scenarios could be much larger than the number of network nodes, reducing
the number of scenarios while approximately maintaining scenario coverage will likely be
critical for scalability.

This paper considers the value of these two types of aggregation for integer programs
(IPs). An integer program is the optimization (maximization or minimization) of a linear
objective function subject to linear constraints and nonlinear integrality constraints on some
or all of the variables. Integer programming solvers can give solutions to IPs with instance-
specific provable bounds. So IPs add no more error than that already present in modeling
approximations. However, IPs are computationally demanding. Therefore, size reduction is
particularly important for IP-based approximation methods. However, even pure heuristic
methods will have size problems for rich events sets, especially on a standard PC.

Witness aggregation changes the structure of the underlying sensor placement problem
by creating groups of equivalent network locations. It is particularly valuable for integer-
programming-based methods for sensor placement, since integer programming can easily
handle the extra complexity. Scenario aggregation should benefit any optimzation method,
since it makes the problem smaller without changing its fundamental structure.

These aggregation methods generally have a tradeoff between problem size (and runtime)
vs the quality of the solution. We measure solution quality relative to the value of the optimal
solution to the non-aggregated IP problem. We describe two types of witness aggregation.
Percent-of-maximum-range (PMR) aggregation can guarantee a maximum formulation size,
but does not provide any guarantee on the quality of the approximation, except in a special



no-error case. Ratio aggregation can guarantee a bound on the solution quality, but generally
does not provide any guarantee on the problem size. In this paper we consider only a special
case of scenario aggregation that guarantees no error. In particular, it should work well for
events that differ only in contamination properties.

We present preliminary computational results for a moderate-sized network using a suite
of scenarios that includes multiple contaminants, a synthetic set of demands to model mul-
tiple “seasons,” and multiple times of day and injection points. We show that even when we
allow no additional error for the aggregation, that is, even if the optimal value of the IP is
not changed, witness aggregation and scenario aggregation can significantly reduce problem
size and runtime. For this instance, we show that witness aggregation that provably bounds
solution quality is significantly better than witness aggregation that bounds instance size.
Combining scenario aggregation with ratio witness aggregation can give a solution within
1% of optimal in two orders of magnitude less time than using the full unaggregated data
set.

The remainder of the paper is organized as follows. In Section 2, we give the basic, non-
aggregated IP for sensor placement and describe our modeling assumptions. In Section 3, we
describe PMR and ratio witness aggregation. In Section 4, we describe an error-free form of
witness aggregation. In Section 5 we describe our experiments and our data. In Section 6,
we present and discuss our experimental results. Finally, in Section 7, we discuss future work
and related work witness aggregation work.

2 The Basic Model

In this section we describe the model of the sensor placement problem presented in [2, 1].
This is the (non-aggregated) problem we wish to solve as quickly and as well as possible. We
describe the model for completeness, and discuss particular modeling choices for this paper.

We assume a fixed budget of p sensors. We can place sensors at any feasible junction in a
distribution network. Some junctions are infeasible due to cost, accessibility issues, etc. We
do not consider installation of sensors on pipes because we rely on water quality simulations
that cannot provide this information. We assumed that sensors are capable of detecting
contaminants at any concentration level, and we assume that a general alarm is raised when
contaminant is first detected by a sensor, and this alarm prevents any further consumption
of contaminated water.

We model a water distribution network as a graph G = (V, E), where vertices in V rep-
resent junctions, tanks, or other sources, and edges in E represent pipes, pumps, and valves.
In higher-granularity (i.e., skeletonized) network models, each vertex may represent an en-
tire neighborhood or other geographic region. We assume that demands follow a small set
of patterns, e.g., one pattern holding per hour throughout the day. Each pattern represents
the demand during a particular time interval on a “typical” day.

Because we do not know a priori where a contamination event will occur, we place sensors
to provide a compromise solution across a set of weighted event scenarios. Each contam-
ination scenario is defined by an origin node, a start and stop time, type of contaminant,
concentration, and injection rate. For a given contamination scenario, we use water quality
anlysis software (e.g., EPANET [6]) to compute the contaminant concentration at each junc-



tion in the network for a regularly spaced set of time intervals during a simulation horizon.
For example, we may ask EPANET to simulate the movement of contaminant for each sce-
nario for a typical 3-day period, reporting the contaminant concentrations every 5 minutes.
For this paper, we consider only one injection site and one type of contaminant per event,
though all our methods extend to any scenario that can be simulated by EPANET or an
equivalent system.

One can measure damage from water contamination in a number of ways: mass of con-
taminant released to the network, length of pipes contaminated, etc. Watson et al [8] describe
a number of such measures. Because we are considering a scenario set that includes different
types of contaminants, we wish to use a measure that suitable for any contamination type.
Thus for this paper, we measure impact by population exposed. This is the number of people
exposed to a potentially-harmful dose of contamination.

For each scenario, we use EPANet to compute the time at which a contaminant plume
first arrives at each location. We also compute, given information about the nature of the
contaminant, population distribution, consumption patterns, etc, the total network-wide
impact of each contamination scenario at each time. Given a specific sensor placement, we
assume that event a is detected at the first time that its plume arrives at some node i occupied
by a sensor. We say that node i witnesses event a, since it is the first sensor to observe it and
raise the alarm. We also add a single dummy location, which can “witness” any event with
impact equal to the maximum possible impact. The dummy location represents a failure to
detect an event with a real sensor within the simulation horizon.

The MIP formuation uses the following input parameters:

• A, the set of event scenarios,

• p, the number of sensors,

• L ⊆ V , a set of feasible sensor placement locations,

• αa, the probability (or weight) of scenario a ∈ A,

• La, the subset of vertices in L ∪ {q} hit (and possibly contaminated by) scenario a.
The dummy location is in La for all events a.

• dai, the impact of event a if it is witnessed by a sensor at location i.

The MIP uses two types of variables. Binary variables si, for each i ∈ L is 1 if we place
a sensor on location i and 0 otherwise. And variable xai (for a ∈ A and i ∈ L is 1 if a sensor
at location i witnesses event a and 0 otherwise. These variables are always binary if the si

are, so in practice, one need not explicitly designate these as integer variables.
The sensor placement problem, called BSP, for Basic Sensor Placement, is as follows:

(DSP) minimize
∑
a∈A

αa

∑
i∈La

daixai

where



∑
i∈La

xai = 1 ∀a ∈ A
xai ≤ si ∀a ∈ A, i ∈ La∑

i∈L si ≤ p
si ∈ {0, 1} ∀i ∈ L
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La



The objective minimizes the average (weighted) impact of the set of scenarios (event). The
first set of constraints assures that exactly one sensor is credited with raising the alarm for
each contamination event. This might be the dummy sensor if no real sensor witnesses the
event. The second set forbids a location from raising an alarm if there is no sensor installed
there. The last constraint enforces the limit on the total number of sensors. Consider an
optimal solution to BSP (binary choices for si). If the impacts are all non-negative, then for
scenario a, the set of locations i such that xai > 0 all have the same (minimum) impact.

The BSP model is identical to the well-known p-median facility location problem [5]. In
the p-median problem, p facilities (e.g., central warehouses) are to be located on m potential
sites such that the sum of distances daj between each of n customers (e.g., retail outlets)
a and the nearest facility j is minimized. There is an equivalence between (1) sensors and
facilities, (2) contamination scenarios and customers, and (3) contamination impacts and
distances. There has been considerable work on p-median computations in the literature.
The structure of the data in facility location problems can differ in practice from that in
sensor placement problems For example, frequently distances satisfy the triangle inequality
and any customer can use any facility. However, many of the general ideas for the p-median
problem can apply to this context.

‘

3 Witness Aggregation

In this section we give an expanded notion of witness aggregation first used in [1]. We first
describe the basic notion of witness aggregation and then give two specific ways to select
which witnesses can be grouped to reduce problem size, sometimes at the expense of solution
quality.

Berry et. al. [1] observed that for any given contamination scenario a, there are often
many total impacts daj that have the same value. If the contaminant reaches two junctions
at approximately the same time, then these two junctions could witness the contamination
event with the same impact values. For example, this occurs frequently when using a coarse
reporting time-step with the water quality simulation. Any set of locations that has the
same impact value for event a are equivalent in their quality as witnesses for event a.

Motivated by this observation, Berry et. al modified the BSP formulation so witness
variables are associated with an impact value for a particular event rather than a location.
In [1], they consider locations equivalent only if they are precisely equal impact values. We
generalize this to allow merging of locations that are not precisely equal. Specifically, let
L̂ai ⊆ La be the ith set of grouped locations for event a. We call this the ith superlocation
for event a. We denote the set of superlocations for event a by L̂a. Let d̂ai be the largest
impact value for event a if witnessed by any location in d̂ai (that is, dai = maxi∈L̂ai

dai). And

let xai be a binary variable that is 1 if event a is witnessed by some location in L̂ai.
Then the IP for the witness-aggregated sensor placement problem is as follows:



(WASP) minimize
∑
a∈A

αa

∑
i∈L̂a

d̂aixai

where



∑
i∈L̂a

xai = 1 ∀a ∈ A
xai ≤

∑
i∈Lai

si ∀a ∈ A, i ∈ L̂a∑
i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

This is related to the BSP, but now in addition to selecting a superlocation to witness
an event, the IP must also select an actual sensor from the superlocation. The locations
grouped in a superlocation for an event are not necessarily located physically close in the
network. The contamination for event a reaches them at approximately the same time.

For each event, we consider a list of locations in La sorted by impact. We consider
superlocations are continguous sublists in this sorted list. Generally, we group two witnesses
if their impact values meet a given threshold. In general, it is hard for a user to determine
a good threshold without carefully exploring the data. We We now describe two ways to
create superlocations. Each method accepts a parameter valued between 0 and 1 inclusive.
Depending on the value of this parameter, the groups vary from totally aggregated (one
witness per event) to the no-error aggregation used in [1].

PMR Witness aggregation: PMR aggregation accepts a parameter 0 ≤ ρ ≤ 1. Let D
be the maximum value, taken over all events, of the difference in impact between the best
possible witness and the dummy (failure to detect). For every superlocation, the difference
between the best witness (lowest impact) in a superlocation and the worst witness (highest
impact) in a superlocation is no more than ρD. For PMR witness aggregation, we passed
through the list of witnesses for an event starting with the highest-impact event (dummy),
adding locations to the current location as long as the threshold is obeyed. Because D is set
according to the maximum impact difference over all events, every event will have no more
than d1/ρe superlocations. Thus if ρ = 1, there is only 1 superlocation and the error for
each witness event can be as bad as D. If ρ = 0, then there is no error, but there are as
many superlocations for an event as there are possible impact values for it.

Ratio: Ratio aggregation accepts a parameter 0 ≤ r ≤ 1. For every superlocation, the
ratio of highest impact to lowest impact is no more than 1/r. If r = 1, then the impacts have
to be equal, and we again have the no-error case from [1]. If r = 0, then the ratio is infinite
and all possible witnesses are merged to a single superlocation for each event. The optimal
solution to a problem with level-r ratio aggregation is guaranteed to be an r-approximation
for the original problem. That is, the optimal sensor placement for the aggregated problem
will have an true impact provably at most r times larger than the true optimal value.

We also consider aggregation where we force at least 2 witnesses per event. We call this
a distinguish-detection option. When the thresholds or ratios become large, some smaller
events may drop out (drop to one witness). If there are many such events, this can lead to
a lot of error. Forcing the dummy to be in a superlocation by itself encourages the IP to
detect as many events as possible.



4 Scenario Aggregation

In this section, we consider scenario aggregation: replacing a pair or a group of scenarios
with a single new scenario that is equivalent.

Consider two events. Suppose event 1 has weight α1 and k possible witnesses: `11, `12, . . . , `1k

with impacts d11, d12, . . . , d1k respectively. Note that d1k is the impact of a failed detection.
Similarly suppose event 2 has weight α2 and j ≤ k possible witnesses `21, `22, . . . , `2j with
impacts d21, d22, . . . , d2j, respectively. We assume that if two witnesses have the same im-
pact for an event, they are sorted within the list for that event by some unique ID. Suppose
`1i = `2i for all i = 1, . . . , k. That is, suppose the ordered witness list for event 1 is a prefix
of the ordered list for event 2. For any given sensor placement, events 1 and 2 always have
the same best witness. So we can create a new event (event 3) with weight α3 = (α1 + α2)
and the same witness list as event 1. Impact d3i = (α1d1i + α2d2i)/(α1 + α2) for i = 1 . . . j
and d3i = (α1i + α2j)/(α1 + α2) for i > j. Essentially, we pad out the witness list for event
2 with the dummy (failed detection) witness. Then event 3 is the average of the two events.
This combined event has the (common) best witness for the two previous events with the
same effect on the objective function.

We expect scenario aggregation will be particularly powerful for pairs of contamination
events that differ only in the nature of the contaminant. The contaminants should travel in
the same pattern. If they differ only in decay, so that after a specific time, one contaminant
is gone, then we expect the witness lists to agree. This is particularly true of events that do
not travel through a large number of network locations.

5 Experimental Design/Data

In this section, we describe our preliminary experiments. We used a single real-world network
with 3358 nodes. We consider an event at 3am, 9am, 3pm, and 9pm for each of the 1621
non-zero demand nodes. We consider 2 types of contaminants, a biological contaminant and
a chemical contaminant. Finally, we have a real set of demands, which we associate with a
“normal,” winter pattern. We created a plausible set of demands for a “summer” pattern
where water use is generally higher. In particular, water use at night increases as residents
water their lawns (e.g. in desert climates). For our data set, demands ranged from near
zero to about 350. Our normal patterns varied by the hour. We created a new pattern of
EPANET multipliers for all nodes with demands between 5 and 30. Specifically, we increased
the 3 lowest-demand hours by a factor 5, to represent night-time watering. For each of the
two peaks of demand during the day, we increased multiplier for the top (local mode) by an
additive 0.1 and each of the time periods on either side of the mode by an additive 0.05.

Thus our final data set had 4 event times per day for each of 2 contaminants for each of
2 seasons for each non-zero demand node.

We expected that the witness lists of chem and bio events for the same (time, loca-
tion, season) triple would generally fit the requirements for zero-error scenario aggregation.
However, for events that traveled through a large number of network locations, this was
not the case. This did not meet our expectations for the perfect simulator world, probably
due to numerical issues in EPANET (thresholds for propagating through pipes). However,



ρ max # DD # # # runtime IP true gap
witness variables constraints nonzeros (seconds) value value (%)

none N/A N/A 16854011 16850654 67334870 79504 1186 1186 0
0 N/A N/A 2506339 2502982 23770968 22415 1186 1186 0

0.125 8 no 31323 27966 12169827 722 24.78 2060 73.7
0.125 8 yes 75151 71794 16477404 1262 191 1665 40.4
0.25 4 no 18025 14668 9842434 322 6.19 2743 131
0.25 4 yes 63460 60103 16442331 1417 140 2382 101
0.5 2 no 7179 3822 3416662 17 0.166 9302 684
0.5 2 yes 57035 53678 16423056 1157 97.6 2411 103

Table 1: Results using PMR aggregation. No scenario aggregation. DD = distinguish
detection. IP value is the optimal value for the aggregated integer program. True value is
the actual average impact for the full set of scenarios for the sensor placement returned by
the IP. The gap is a relative error between the true value of the solution to the aggregated
IP and the value of the optimal sensor placement.

it does provide a richer data set that plausibly models events where sensor performance is
concentration-specific. Perhaps the sensors for one type of contaminant are more sensitive
than that for the other. Even though we did not have this idealized data set, scenario
aggregation still reduced the size of many problems as detailed in the next section.

6 Results and Discussion

In this section, we present the results of witness and scenario aggregation for the data set
presented in Section 5. We ran the non-scenario-aggregated cases on a system with four
2Ghz AMD processors, Fedora core 3 64bit operating system, and 64Gb of RAM. We used
cplex 10.0, a commercial integer programming code which did not take advantage of the
extra processors. We ran the scenario-aggregated cases using the same version of cplex on a
2-processor dual-core machine with 3.6Gz Xeon processors, 8Gb of RAM, and 20Gb of swap
space.

Table 6 gives the results of PMR aggregation with no scenario aggregation for various
values of ρ with and without the distinguish-detection option. It also gives the sizes and
runtime information for the no-error witness aggregation case (ρ = 0) and for the case
where we do no aggregation. We repeat these is subsequent tables for ease of comparison.
Though the problem sizes and runtimes decrease with increasing value of ρ (aggregation
threshold relative to the maximum range), the solutions from these aggregated IPs are poor,
becoming a factor of two off when the threshold is 0.25. Distinguishing detection gives better
approximation values, but at the cost of larger sizes and runtimes.

Table 6 shows the results for several values of ratio-based witness aggregation. The
approximation values are much better than those for PMR-based witness aggregation. In
fact, when the worst impact in a superlocation can be 50% greater than the best, the solution
returned by the IP is optimal, and with the ratio can be as large as 2, the solution to the



r max ratio # # # runtime IP true gap
high/low variables constraints nonzeros (seconds) value value (%)

none N/A 16854011 16850654 67334870 79504 1186 1186 0
0 N/A 2506339 2502982 23770968 22415 1186 1186 0

0.66 1.5 208659 205302 14397000 4083 979 1186 0
0.5 2 153410 150053 13123912 1850 845 1195 .76

0.25 4 104713 101356 10056556 905 597 1242 4.7
0.125 8 87057 83700 6622042 404 440 1477 24.5

Table 2: Results using ratio aggregation with no scenario aggregation. We did not use the
distinguish detection for this test set. IP value is the optimal value for the aggregated integer
program. True value is the actual average impact for the full set of scenarios for the sensor
placement returned by the IP. The gap is a relative error between the true value of the
solution to the aggregated IP and the value of the optimal sensor placement.

aggregated IP had less than 1% error.
Tables 6 and 6 give similar results when we add no-error scenario aggregation. The

number of constraints is reduced via sceneario aggregation, usually by 25–30%. Scenario
aggregation did not reduce the number of nonzeros in the constraint matrix by a significant
amount. This implies that the aggregated scenarios generally had short witness lists. The
running time is usually significantly smaller. However, because we ran these tests of some-
what different machines, we will need to do further experimentation to determine the precise
runtime benefit of scenario aggregation. Since it costs nothing in solution quality, it seems
a worthwhile optimization.

7 Future and Related Work

In this section, we outline some directions for future work. First, however, we will discuss
some related witness aggregation work due to Church [4]. Church gave three methods of
witness aggregation in the context of the p-median facility location problem. The first
method does not apply to the sensor placement because it assumes that every facility can
service every customer. This is equivalent to saying every location can witness every event,
which is not true. The second method of witness aggregation aggregates all witnesses into
a single supernode if their impact is sufficiently close to the dummy. Thus each event may
have a superlocation, but only one at the end of its list. Finally, Church observed that if a
single location can witness events 1 and 2, and the set of better witnesses (in any order) is
identical for both events, then we can aggregate just that pair of witness variables. This is
something one could do in addition to the aggregation techniques we describe in this paper.

There was considerable value to allowing witness aggregation that introduced error (ap-
proximation). In future work, we will consider scenario aggregation that introduces some
error. We will consider how these methods interact with skeletonization.



ρ max # DD # # # runtime IP true gap
witness variables constraints nonzeros (seconds) value value (%)

none N/A 16854011 16850654 67334870 79504 1186 1186 0
0 N/A N/A 2456286 2452929 23549121 19530 1186 1186 0

0.125 8 no 31264 27907 12142241 375 24.78 2060 73.7
0.125 8 yes 53338 49981 16340277 598 188 1662 40.1
0.25 4 no 17996 14639 9825374 208 6.18 2743 131
0.25 4 yes 41669 38312 16305270 624 137 2367 99.6
0.5 2 no 7173 3816 3409850 14.6 0.17 9159 672
0.5 2 yes 35256 31899 16286031 583 94 2409 103

Table 3: Results using PMR aggregation with no-error scenario aggregation. DD = distin-
guish detection. IP value is the optimal value for the aggregated integer program. True value
is the actual average impact for the full set of scenarios for the sensor placement returned by
the IP. The gap is a relative error between the true value of the solution to the aggregated
IP and the value of the optimal sensor placement.

r max ratio # # # runtime IP true gap
high/low variables constraints nonzeros (seconds) value value (%)

none N/A 16854011 16850654 67334870 79504 1186 1186 0
0 N/A 2506339 2502982 23770968 22415 1186 1186 0

0.66 1.5 178887 175530 14257957 1832 978 1186 0
0.5 2 126185 122828 13003901 795 845 1195 .76

0.25 4 80519 77162 9965360 382 595 1242 4.7
0.125 8 63905 60548 6547852 188 440 1477 24.5

Table 4: Results using ratio aggregation and no-error scenario aggregation. IP value is the
optimal value for the aggregated integer program. We did not use the distinguish detection
for this test set. True value is the actual average impact for the full set of scenarios for the
sensor placement returned by the IP. The gap is a relative error between the true value of
the solution to the aggregated IP and the value of the optimal sensor placement.



References

[1] J. Berry, W. Hart, C. Phillips, J. Uber, and J-P. Watson. Sensor placement in municipal
water networks with temporal integer programming models. Journal of Water Resources
Planning and Management, 132:218–224, 2006.

[2] J. Berry, W. E. Hart, C. A. Phillips, and J. Uber. A general integer-programming-based
framework for sensor placement in municipal water networks. In Proc. World Water and
Environment Resources Conference, 2004.

[3] P. Boulos. H2OMAP Skeletonizer Users’ Guide. MHW Soft, Inc, 300 North Lake Ave,
Suite 1200, Pasadena, CA, 2005. First edition 1996.

[4] R. Church. COBRA: A new formulation of the classic p-median location problem. Annals
of Operations Research, 122:103–120, 2003.

[5] P.S. Mirchandani and R.L. Francis, editors. Discrete Location Theory. John Wiley and
Sons, 1990.

[6] L. A. Rossman. The EPANET programmer’s toolkit for analysis of water distri-
bution systems. In Proceedings of the Annual Water Resources Planning and Man-
agemen �Conference, 1999. Available at http://www.epanet.gov/ORD/NRMRL/wswrd/

epanet.html.

[7] T. Walski, J-L. Daviau, and S. Coran. Effect of skeletonization on transient analysis
results. In Proceedings of the World Water and Environmental Congress, 2004.

[8] J.-P. Watson, H. J. Greenberg, and W. E. Hart. A multiple-objective analysis of sen-
sor placement optimization in wate̊networks. In Proc. World Water and Environment
Resources Conference, 2004.


