
E L S E V I E R Ecological Modelling 94 (1997) 67-80

[llll l

A modular soil and root process simulator

D e n n i s J. T i m l i n ~'*, Y a k o v A. P a c h e p s k y ~'b

d USDA-ARS, Systems Research Laboratory, Building 007, Room 008, BARC-W, 10300 Baltimore Avenue, Beltsville,
MD 20705, USA

bDuke University Phytotron, Department of Botany, Durham, NC 27710, USA

Abstract

The ability to build models for various crop management scenarios can be enhanced by using modules correspond-
ing to soil, root atmosphere and management processes. In this paper we describe the design of a generic modular soil
and root process simulator (2DSOIL) for use in crop modelling. Coded in Fortran 77, it uses a three-level hierarchy
to organize soil processes and their parameters into a modularized structure. Decoupling of processes and
re-arrangement of boundary condition formulations are used to facilitate independence of modules and the
encapsulation of information is consistently implemented. Variable time steps are selected using restrictions imposed
by non-linearity of models. The use of this modular design allows modellers to reuse well-tested codes, and results in
a decrease of effort in input data preparation and in expandability to encompass various management practices. The
modular design of 2DSOIL allows it to be readily modified and easily incorporated into crop models. © 1997 Elsevier
Science B.V. All rights reserved

Keywords: Soil modeling; Modularity; Encapsulation; Generic simulator; Crop modeling

I. Introduction

Agricultural chemicals represent a serious
threat to surface and ground water supplies,
While it is imperative that researchers find ways
to minimize this risk, it is impossible to directly
test the consequences of a large number of man-
agement practices and techniques under natural
conditions. Crop modelling offers an alternative
that is both efficient and quick and enables re-

* Corresponding author.

searchers to explore a wide range of management
scenarios to assess their potential without risk to
the environment.

To date, the emphasis in agricultural modelling
has been primarily on crop productivity. As a
result, plant simulators typically have been devel-
oped with comprehensive descriptions of plant
processes such as leaf and canopy photosynthesis,
growth, nutrient uptake, light relations in
canopies, and respiration (e.g. Baker et al., 1983;
Reynolds and Acock, 1985; Thornley and John-
son, 1990; Acock and Trent, 1991; Hodges et al.,

0304-3800/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
PII S0304-3800(96)01929-1

68 D.J. Timlin, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67-80

1992). On the other hand, soil processes per se
have often been treated in an overly simplistic
manner. It is now clear that, in order to use crop
models to explore management scenarios that
consider both crop productivity and the fate and
distribution of chemicals, comprehensive descrip-
tions of key soil processes are also needed.

There are several comprehensive soil simulators
available that reflect the state-of-art in soil sci-
ence, e.g. Ahuja et al. (1991); Hutson and Wa-
genet (1992), and S~miinek et al. (1994). These
models, however, are complex stand-alone models
that were not designed to be expanded and/or
interfaced with plant simulators. There is a need
to design and implement soil simulators that can
easily be incorporated into crop models.

The design of a framework that will enable us
to interface comprehensive soil simulators with
crop models must be guided by two important
factors. First, is the ability to choose a particular
soil model from the large number available. The
existence of a multitude of mathematical models
for each soil process reflects differences in scien-
tific concepts and available data. There is no way
to ascertain which model will perform better with-
out testing them against independent data. More-
over, a model of a particular soil process usually
can not be tested independently of models of
other processes because of interactions. The sec-
ond guiding factor is the ability to model a range
of management practices and easily add new ones.
Therefore, the design of a generic soil simulator
should emphasize: (1) replaceability of sub-models
of soil and management processes; and (2) ex-
pandability. The availability of generic software
with these properties would have other advan-
tages for the development of complex simulation
models as well.

It is neither practical to develop ad hoc models
for each question of interest nor is it possible to
build a single, all-purpose model to answer all
questions (Acock and Reynolds, 1989, 1990;
Reynolds et al., 1993). Reynolds et al. (1989)
suggested that the goal should be to build a suite
of models that are based on general principles
derived from structures and behaviours that are
fundamentally similar in different plants and
ecosystems. To accomplish this, they proposed the

development of 'generic' models that have a well
defined and uniform modular structure. These
generic models also use similar modules, some of
which may be used in several models with appro-
priate parameter changes. In a generic, modular
structure, related processes are grouped in sub-
model components, and the function of each
module and the variables are explicitly defined.
Numerous advantages are potentially realized in-
cluding improved understanding and mainte-
nance, reduced duplication of efforts, and easier
inclusion of experimentalists in modelling (also
see Reynolds and Acock, 1997).

The objective of this work was to develop a
generic soil simulator that is based on the princi-
ples of modularity. The generic soil simulator is
not a single model but rather represents an ap-
proach that establishes the basis for a suite of
sub-modules that can incorporate various descrip-
tions of soil processes and management practices.

2. Conceptual development

2. I. Modular design

Three considerations governed the design of the
generic simulator:
(1) it should represent existing scientific concepts

of the processes and their interactions;
(2) As software under development, it should be

designed as a system of interacting pieces that
can be independently tested and provide intel-
lectual control of the development (Mills,
1980);

(3) As software subject to modifications by users,
it should be malleable (Witt et al., 1994), i.e. it
should facilitate adaptation to changing end-
user requirements. As pointed out by Kirk
(1990), we have to optimize ease of compre-
hension, ease of development by teams, and
ease of extension.

The use of a modular structure allows us to
satisfy these requirements.

Modularity is an acknowledged principle of
computer software design (Radice and Philips,
1992; Witt et al., 1994; Blum, 1992; Parnas, 1972).
There is general agreement about desirable at-

D.J. Tirnlin, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67-80 69

tributes of modules: modules have to be indepen-
dently testable, modules must have high internal
cohesion (i.e. represent one logical self-contained
task) and finally, modules must have loose inter-
unit coupling. Loose coupling is characterized by
having a single entry point and a single exit point
in the computer code, a limited number of well-
defined interfaces, and a minimum of data pass-
ing. However, there is no unique recipe of how to
subdivide a system into modules. One general
guideline is to divide 'large aggregates of compo-
nents into units having loose inter-unit coupling
and high internal cohesion... ' (Witt et al., 1994).

From this point of view, models of the various
soil and root processes can be seen as natural
candidates to be coded in separate modules. It is
easy to assign correspondence between model and
system processes where the process is used to
define the structure and activity of a component
of the system being modeled. Our modular design
is based on a representation of the system as a set
of 'cooperating elements' where elements repre-
sent major soil and plant processes (Kirk, 1990).
One element, for example would be water uptake
by roots, another would be water flow. In this
way, the system requirements are analyzed to
produce a non-hierarchical logical model of the
system in terms of these elements. In addition to
process modules there are control modules that
oversee the activities of the process modules and
manage common tasks.

2.2. Implementation of the modular design

To satisfy the requirements for information ex-
change and independence, the soil-root system is
represented as a non-hierarchical system of ob-
jects or elements corresponding to real processes
that belong to one of the following groups:

(a) transport processes, e.g. water flow, heat
movement, nitrate transport, and oxygen move-
ment;
(b) atmosphere processes, e.g. surface evapora-
tion, nitrogen influx with precipitation;
(c) root processes, e.g. water uptake, NH4 up-
take, root respiration;
(d) management processes, e.g. subsoil irriga-
tion, tillage, nitrogen fertilizer application;

(e) interphase exchange processes, e.g. re-
versible C a - M g - N a exchange;
(f) biotransformation processes, e.g. denitrifica-
tion, CO2 production.

Each process listed above is represented by a
process module. We did not use instances (multi-
ple appearances) of modules in this structure. For
example, to simulate transport of several solutes
we repeat calculations sequentially for each solute
in the single solute transport module (instead of
creating a separate module for each solute). Simu-
lation of the activity of several root systems in
one soil domain is done in a single module, i.e.
there are not separate modules for each root
system. Furthermore, each process module opens
and reads its own data file or files, there are no
input routines that read and manage a global pool
of data read from one or more files.

The design requirements for modules as out-
lined above do not require a special programming
language (Blum, 1992), although they are more
easily implemented using an object oriented pro-
gramming (OOP) language. In OOP, an object
(module) contains specific information (data) and
is coded to perform certain operations (methods).
Our design, coded in Fortran 77, follows OOP
precepts, but within the constraints of Fortran.
We used Fortran because the majority of existing
plant models use this language, and we wanted to
use code from available and tested soil and root
process models.

The simulator uses a three-level hierarchy to
structure the components (Fig. 1). This hierarchy
determines the structure of the data fields in order
to facilitate encapsulation of information. Encap-
sulation, a characteristic of OOP, is the grouping
into a single module of both the data and the
operations that modify or use the data (Wirfs-
Brock et al., 1990). At the highest level is the
program itself: the simulation model that has been
assembled to represent a particular system. The
second level is represented by process modules
that are implemented as subroutines. The arrange-
ment of the process modules is non-hierarchical,
i.e. all process modules are on the same level. No
one process module (subroutine) will call another
process module. Each process module may con-
tain one or more sub-modules, however. These

70 D.J. Timlin, Y..4. Pachepsky / Ecological Modelling 94 (/997) 67 -80

Simulat ion Model Shell

Process Module

@
@

Sub-module

@

@

@

@

GLOBAL PUBLIC DATA:

• temporal/spatial discretization
• soil and root state variables
• boundary values

LOCALLY PUBLIC DATA OF A MODULE

• coeff ic ients o f the gove rn ing
equations of the model

PRIVATE DATA OF A MODULE

• state var iables f rom the
previous time step

,parameters
• numerical process parameters

PRIVATE DATA OF A SUBMODULE

• state variables from the
previous time step

*parameters
• numerical process parameters

Fig. I. Three-level d a t a s t ruc ture tha t faci l i tates da ta encapsula t ion .

sub-modules, which represent the third level of
the hierarchy, may include algorithms to calculate
coefficients for particular equations to represent a
model in a process module.

Neither data nor equations that are contained
in these sub-modules are available to other pro-
cess modules. These data and operations, encap-
sulated in a single module, can be hidden from the
developer of other program units. An example is a
sub-module in the water transport module that
contains equations to calculate soil water content
as a function of matric potential. This sub-module
receives matric potentials from the water trans-
port module and returns water contents. It reads
its own data file that contains parameters for the
equations to calculate water content for a particu-
lar soil type. I f a programmer desires to use a
different method to make these calculations he or
she only need to replace the submodule and its
data file, no other changes in other modules, in
other data files or in the water transport module
are necessary.

2.3. Sharing data in the context of modularity

The minimum data set available to all modules
has to be independent of the model or algorithms

used to represent the processes. These data must
also be sufficient to describe the state of the
system at any particular time. Soil and root pro-
cesses in the soil-plant-atmosphere system are
characterized by the volumetric contents of sub-
stances (e.g. water content, bulk density, oxygen
concentration, root length density, etc.). Poten-
tials of physical fields and related physical values
are also used, e.g. matric potential, temperature,
etc. These values are state variables of the soi l -
roo t -a tmosphere system. The state variables are
subject to changes caused by fluxes of energy and
matter into or out of the system. Internal point
fluxes are known as sources or sinks depending on
their direction. Distributed rates of transport of
substances through boundaries (Fig. 2) are re-
ferred to as boundary fluxes. These include fluxes
of heat, solutes, water and gases, and rates of
carbon and nutrient exchange.

Modules interact by sharing data, therefore, the
framework must be designed to provide a means
to share data and maintain loose coupling and
high internal cohesion. Loose-coupling requires
that the amount of data available to all modules
be minimized and represented consistently.

Values of the soil and root state variables are
recorded and calculated for specific locations

D.J. Timlin, Y.A. Pachepsky ~l Ecological Modelling 94 (1997) 67 gO 71

within a soil profile, and these locations have to
be the same for all modules. A grid is used for the
spatial reference of soil state variables and
boundary fluxes. The grid is a polygonal geomet-
ric structure representing either a vertical profile
of the soil for the one-dimensional mapping of
soil variables or a vertical plane cross section for
the two-dimensional case. A two-dimensional grid
is illustrated in Fig. 3. In this example, triangular
and rectangular elements were used together to
approximate a soil surface with a ridge. The spa-
tial locations, at the intersections of the grid lines,
where values of state variables and fluxes are
known are called nodes (Fig. 3). The nodes
provide the necessary spatial reference for interac-
tions among soil and root proccsses, and for the
boundary interface with plant and atmosphere
models. The nodal coordinates, therefore, have to
be available to all modules. A control module
manages the input of nodal coordinates and loca-
tions of boundary coordinates.

2.4. Data structure

We used the concept of encapsulation of infor-
mation to facilitate independence of modules and
the data structure follows the three-level hierarchy
of the simulator (Fig. 1). The variables are divided

Soil - atmosphere boundary

Shoot-root boundary

Soil-root boundary
I

Fig. 2. Information exchange consists of transfer of informa-
tion across these boundaries of the components of a soil-
plant - atmosphere- management system.

E
O

0

20

40

60

80

100

120

140

160

180

200

220

IIIII I
illII I
IIIII £
IIiII I
IIIII I

fill

fill

I
I
I

I

I
I

l

I
I

A

I
£ I
I

A

1 1 I l I

0 10 20 30 40

Distance from Row (cm)

Fig. 3. An illustration of a spatial grid that includes an uneven
soil surface in the form of a ridge and furrow. The soil domain
includes the area delineated by the x and y-axes. The nodes
are indicated by the filled circles.

into public and private fields. Variables that are
public are available to two or more modules and
may be global public or local public. Global
public variables (highest level) are available to all
process modules and include variables such as soil
state variables, nodal coordinates, and boundary
fluxes. If a process module must initialize a partic-
ular state variable or any other variable, it opens
and reads the data from its own file. Generally,
initialization and/or input of a variable is carried
out by the module that first modifies that vari-
able. Local public variables (level two) are shared
between a process module and one of its sub-
modules. These include matrices passed to a sub-
module to solve a system of simultaneous
equations, or the coefficients for a model equa-
tion, such as thermal conductivities, for a heat
transport equation. The private data field (level
three) is not available to other modules and in-
cludes, for example, control variables to read or
output data, and state variables and fluxes from
the previous time step. If a module or sub-module

72 D.J. Timlin, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67-80

requires data to fill its private data file, it opens
and reads it's own data file.

As a part of its specification, each process
module has a precisely defined list of global public
variables that it can change during invocation. To
do so, a process module may use any of the
available global variables (and, of course its pri-
vate variables) (Fig. 1). Similarly, the list of the
process module's locally public variables to be
changed is defined for each submodule in this
module. Finally, there are no limitations on which
available private data a submodule may use.

Components of the so i l - root -a tmosphere sys-
tem are separated by boundaries (Fig. 2) and
information exchange concerns mass and energy
exchange across these boundaries. This informa-
tion includes boundary fluxes. An atmosphere
module provides values of potential atmospheric
boundary fluxes such as precipitation, evapora-
tion, heat flux, etc. The plant module may provide
a value of carbon available for root growth to the
root module. The soil and root modules also
provide soil and root state variables, i.e. vertical
(and in the 2D case, lateral) distribution of water
content, concentration of solutes and gases, tem-
perature, and root densities. In practice, the atmo-
sphere module using information on plant status
(leaf area index, height, etc.) supplies the value of
potential root water uptake and the plant module
supplies the value of the potential carbon supply
to roots. The root and soil modules return the
actual water and nutrient uptake together with
actual carbon use to the plant module which then
uses this information to determine stresses.

The potential values of boundary fluxes are
supplied by a specific module and are generally
constant over a time step. The potential values are
passed to the soil and root modules where they
are adjusted based on soil or plant conditions.
Transport modules do not read data on atmo-
spheric boundary fluxes or concentrations, etc.
These values are supplied by the atmosphere or
management modules as public variables that can
be used by the transport modules. Modularity is
enhanced by keeping the source of the value
separate from the module where the value is
modified or used. For example, several models are
available to calculate potential evapotranspiration

(PET). By maintaining the code to calculate PET
in a separate atmosphere module only changes to
that module have to be made if a new model of
PET is chosen. The water flow code which uses
PET to calculate actual evaporation does not
have to be modified. Potential values of fluxes
may also be given as a function of a state vari-
able. i.e. q = - a y +b where y can be a matric
potential, solute concentration, temperature or
gas content and q can be flux of water, solute,
heat or gas, respectively; and a and b are coeffi-
cients that do not depend on y. In this case, the
coefficients of the flux equation, a and b, (and not
the value of q) are passed to the transport process
module.

2.5. Time synchronization

Modules have to be synchronized to calculate
state variables and fluxes for simulated times that
are the same for all modules. This synchroniza-
tion is provided for by control modules. The
process modules are invoked using a sequential
iteration approach (Yeh and Tripathi, 1991). The
processes are numerically decoupled from each
other and process modules execute sequentially,
always in the same order. This design uses a
specific sequence of module invocation as shown
in Fig. 4. This sequence reflects the method by
which transport processes and intra-soil interac-
tions are decoupled during a time increment. For
time step calculations, transport processes use val-
ues of sources and sinks from the previous, or
'old', time level. Intra-soil and surface interactions
may use values of soil state variables from both
the current, or 'new' time level or from the old
time level. It is for this reason transport calcula-
tions precede any calculations of intra-soil inter-
actions (Fig. 4). There is also a specific sequence
of transport module invocation. The water trans-
port module must be called first because it pro-
duces the information that other transport
modules require such as water flow velocities.

Time stepping is synchronized to meet the re-
quirements of all modules, although some mod-
ules may not have any limitations on the time
step. For example, an equilibrium interphase ex-
change module can calculate a new equilibrium

D.J. Timlin. Y.A. Pachepsky ;' Ecological Modelling 94 (1997) 67 -80 73

between solid and liquid phases that results from
changes of concentration in solution. The changes
can be independent of the time interval during
which the changes have occurred. Some modules
that use a time step, like water flow, usually make
some restrictions on the time step to provide for
convergence of non-linear numerical calculations.
It is desirable to decrease time steps to enhance
convergence of iterations or to increase time step,
when the convergence is achieved quickly. The
number of iterations required for convergence is
used to alter the time step. Further details are
given in Pachepsky et al. (1993a,b). Modules that
simulate management- or weather-related events,
like tillage, require the event to occur at a specific
time.

Control modules form the backbone of the
generic simulator and are used to oversee the

[

I Grid and ccvordinate system module

Time control / output modules

I

Soil transport process modules
t

Soil-atmosphere boundary modules

Water & chemical ulqtake]
by roots modules

J

Chemical interaction modules J
.

r i
I Bio-transformation modules I

1 Management modules J
L - -

Fig. 4. Sequence of operations when the process and control
modules are combined to form a simulation model.

operations of the program. These modules remain
the same for any selection of process modules.
Control modules manage the spatial discretization
of the soil domain (i.e. the area delineated by the
x and y coordinates in Fig. 3), types of boundary
conditions and locations of boundary nodes, in-
formation on soil layering, and calculation of time
steps.

2.6. Structure o f a process module

At the uppermost level of the hierarchy, global
public variables are passed to process modules
(subroutines) in Fortran COMMON blocks; no
arguments are used in CALL statements for pro-
cess level modules. The same CO MMO N blocks
are placed in all process modules. Errors are
minimized by the use of INCLUDE statements,
to insert a file containing a list of named COM-
MON blocks into each process module. If it is
desirable to transfer some private variable into a
public field, only the insert file referenced in the
INCLUDE statement has to be changed. Local
public variables, i.e. variables shared between pro-
cess modules and their submodules, are passed in
CALL statements.

Fortran COMMON blocks are also used to
store private variables within a module or sub-
module. The primary reason for using COM-
MON blocks for private variables is to save the
values of private variables between invocations of
the subroutine. Any particular COMMON block
containing private information is present in only
one module. Because there is no reference to this
block in other program units, the information
remains hidden.

The general sequence of operations is similar
for all process level modules. The operations be-
gin by reading the time-independent data and/or
initial data. Next, logic statements are used to
determine whether it is lime to execute, and if it is
time to execute, the module carries out it's desig-
nated operations. These include reading the time-
dependent data, changing certain public variables
and private variables, calculating the requirements
for time increments, and writing output data.
Some steps may be absent. It also includes the
user's interface which, in our case, is the list of

74 D.J. Tirnlin, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67- 80

input and output variables either in CALL
statements or COMMON blocks.

3. Representative example of the
simulator-2DSOIL

In this section we present an example of the
application of the modular design to build a
model of solute movement in row and interrow
zones of a soybean crop. The example also illus-
trates how a model can be expanded to include a
management practice through the addition of a
module. The objective is to illustrate the influence
of root systems on chemical transport. The roots
of a crop planted in rows will dry the soil under
the rows more rapidly than between the rows by
nature of the uneven root distribution. If the soil
is more wet between the rows than in the row
zone, the wetting front during infiltration will
penetrate deeper in the interrow zone than in the
row zone. As a result, there will also be higher
solute fluxes in the interrow zone than in the row
zone.

In order to simulate the processes in this exam-
ple we needed to assemble a crop model and
atmosphere boundary interface with the soil and
root process modules. Some modules were
adapted from existing (Fortran) code and some
developed by us. The adapted modules were rear-
ranged to fit into the data encapsulation structure
illustrated in Fig. 1.

A list of modules included in the representative
simulator, called 2DSOIL, is presented in Table 1.
We used a two-dimensional representation of the
soil to model crop row-interrow processes and a
finite element representation of the governing
equations (Simfinek et al., 1994). We chose the
atmosphere simulator described by Acock and
Trent (1991). This simulator derives hourly poten-
tial fluxes of water, solutes, and heat at the soil
surface from the weather parameters (radiation,
precipitation, minimum and maximum daily air
temperature, and wind speed) and surface shading
governed by the plant height, plant row orienta-
tion and row spacing. To provide shoo t - roo t
interactions, we used a simple shoot imitator that
calculates plant height and available carbon from

an index of soil water availability and plant age.
This simplified shoot module can be easily re-
placed by a comprehensive plant model. Both
boundary interfaces are described in Pachepsky et
al. (1993b). The global public variables that are
modified by process modules in 2DSOIL are
shown in Table 2. The information in this table
demonstrates that the connection between process
modules is loose since each module modifies only
a small part of the public data. All modules are
tl~oroughly described in the documentation
(Pachepsky et al., 1993b) which is available upon
request.

The new chemical application module Mngrn is
shown in Fig. 5. The structure of the module
shown in Fig. 5 corresponds to the general struc-
ture for process modules listed and to the data
structure of Fig. 1. The module does not have
time-independent auxiliary variables nor does it
read initial distributions of state variables. The
variable Nodes__WhereApplied is private. When
in operation, the module changes a public vari-
able (conc), using its private data and other public
variables. The addition of this module did not
require any changes in other modules of 2DSOIL.

In simulations, the soil consisted of two layers
and the soil texture was a sandy loam over a
loam. The grid shown in Fig. 3 was used. The
initial chemical concentration was zero through-
out the profile, and there was no movement of
chemical across the left or right boundaries. The
bottom boundary was impermeable to both chem-
ical and water. The plant seed was placed at the
left end of the grid at x = 0 cm, and 5 cm deep.
Soybean root parameters were used. Simulated
time began at day 1 and ran a total of 57 days.
The chemical was a non-reactive tracer similar in
properties to bromide. Chemical was applied on
day 44 at a rate of 300 mg cm-2. During the
preceding 44 days, 18 cm of rainfall was applied
and evapotranspiration was 30 cm. This simulates
a moderately dry period. Immediately after chem-
ical application 3 cm of water was applied.

The water content and root distribution before
chemical application and water distribution after
rainfall are shown in Fig. 6. The root distribution
is concentrated in the soil under the plant. It can
be seen that values of water content are lowest

D.J. Timlin, Y.A. Pachepsky / Ecological Modelling 94 0997) 67.-80 75

Table 1
Soil state variables, boundary fluxes, and control variables
available to all modules of the 2DSOIL simulator

Variable Module ~ that
modifies the variable

Grid geometry
Transverse coordinates of nodal D
points
Vertical coordinates of nodal D
points
Numbers of corner nodes for ev- D
cry element

Nodal values
Nodal pressure heads W
Nodal water contents W
Nodal concentrations of solutes S
in soil solution
Nodal temperature values H
Nodal gas contents in soil air G
Number of soil layer in which D
nodes occur

Element values
Water extraction rates tor ele- R
ments
Solute extraction rates for ele- R
ments
Gas extraction rates for elements R
Root mass in the elements (soil R
cells)

Boundary values
Nodal numbers of boundary D
nodes at seepage faces
List of nodal numbers for D
boundary nodes
Width of strips associated with D
boundary nodes
Codes of boundary condition for D
water movement
Same as above for the solute D
movement
Same as above for the heat D
movement
Same as above for the gas move- D
ment

Boundary pressure heads
Or components of the water flux A,E
equation

Boundary concentrations
Or components of the solute flux A,E
equation

Boundary temperatures
Or components of the heat flux A,E
equation

Boundary gas contents
Or components of the gas flux A,E
equation

Shoot-related values
Potential and actual transpiration P
Carbon available for the root P
growth
Nutrients supplied for the plant R
grows

Time control values
Switch to show if initial data T
have to be read
Time of the beginning of calcula- T
tions
Current value of the time step T
end time
Current time step T,W
Time of the next event (soil-at- A,E~O,P,M
mosphere boundary update, time-
dependent boundary_ conditions
update, root extraction update,
output of results)
Maximum next time steps al- W.S,H,G
lowed by transport modules
Time of the end of calculations T

A, atmosphere module; B, Biotransformation; C, chemical
transformation module; D, discretization module; E, engi-
neered boundaries module; G, gas transport module; H, heat
transport module; M, management modules; O, output mod-
ule; P. plant shoot module; R, root uptake module; S, solute
transport module; T, time control module; W, water trans-
port module

under the plant where the root concentrations are
high. Water content increases with depth and
horizontal distance from the plant. After rainfall
the water contents are still highest in the interrow
zone (Fig, 6). The chemical concentration directly
below the plant row (at x = 0) and under the
interrow position (x = 35) at day 56 are shown in
Fig, 7. There is more chemical in the soil under
the row position than the interrow position. Fur-
thermore, the chemical concentrations near the
surface are still rather high in spite of two rainfall
events after chemical application. Evaporation
and transpiration act to move the water with
chemical towards the soil surface and towards the
plant. This results in accumulation of chemical in
the soil under the plant and depletion of chemical
in the interrow zone. These results are in qualita-
tive agreement with the results of Timlin et ai.,
1992.

76 D.J. Timlin, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67 80

Table 2
Process modules used in the example of the 2DSOIL simulator

Module (module name) Source

Water transport (WaterMover)
1. Finite-element solution of the Richards' equation for two-dimensional Darcian water flow in

variably saturated soil
2. Finite-difference solution of the Richards' equation for one-dimensional Darcian flow in variably

saturated soil

Solute transport (SoluteMover)
I. Finite-element solution of the convective-dispersive equation for two-dimensional transport of Simiinek et al., 1994;

several solutes in variably saturated soil lstok, 1989;
2. Finite-difference solution of the convective-dispersive equation for one-dimensional transport of Pachepsky, 1990

several solutes in variably saturated soil

Heat transport (HeatMover)
1. Finite-element solution of the convective-dispersive equation for two-dimensional transport of the SImiinek et al., 1994

heat in variably saturated soil

Gas transport (GasMover)
I. Finite-element solution of the molecular diffusion equation for two-dimensional gas transport in

air-filled pore space

Root water uptake (RootUptake)
1. Root water uptake based on the trade of carbon and water between shoot and root. Root growth Acock and Trent, 1991

dependent on soil water and oxygen contents, soil temperature and root-shoot carbon balance
2. Water uptake by a permanent root system based on the partitioning of the transpiration demand

between roots in soil cells according the root mass, and calculating the actual uptake as a fraction
of the potential uptake depending on soil-water potential

Macroelement equilibrium chemistry (MacroChem)
I. Cation exchange C a - M g - N a , dissolution precipitation of gypsum and carbonates, speciation in Pachepsky, 1990

solution and dissociation of carbonic acid and water

Nitrogen transformation (NitroChem)
1. Mineralization'immobilization of organic matter in soil. Nitrification and denitrification. Bergstr6m et al., 1991

Simiinek et al., 1994

Scherbakov et al., 1981

Pachepsky et al., 1993b

Wesseling and Brandyk,
1985

4. Conclusions

The support of code extension and code reuse is
a major advantage of the modular structure and
application, 2DSOIL, described here. Since each
module manages its own data, and the functions
and data are kept together within the module, the
design makes the modules highly independent. A
library of modules can be easily accumulated.
Several water transport and solute transport mod-
ules listed in Table I represent an initial step in
this direction. Since the data only have to be
prepared for modules for a particular application,
it also reduces the effort needed to compile and
prepare data sets. As in the example, 2DSOIL,
shown here, it is very easy to add new modules

for specific cases using the modular structure de-
veloped in this paper.

The modular design presented here was mainly
developed as a framework for crop modellers to
interface their plant and atmosphere codes with
reliable soil code. To do this, the crop modeller
needs to concentrate only on the boundary inter-
face. He or she must: (a) assign potential
boundary fluxes of water, solutes, heat and gases
from their atmosphere module to the nodal
boundary fluxes; (b) receive actual boundary flux
values from the soil transport process modules to
use them as needed; (c) pass carbon flux values
from their shoot module to the root module; (d)
receive actual transpiration, water and nutrients
fluxes from the root module and to use them as

D.J. Tim/in, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67- 80 77

Subroutine Mngm ()

thclude 'Public.ins' Global public variables are in 'Public ins'
Common/I~NG/ Application_time,

& Chemical_Mass in_a_Node Afler_Application,
& Number_of_Nodes_Where_Applied,
& Nodes Where Applied(Max Number of Boundary_nodes), &
Number_of_ThisModule

Private information is declared and stored in the COMMON field MNG

If (llnput.eq 1) then
Open (40, file='Param_Mdat')
Read (40,',Err=20) Application time,

& Chemical_Mass in a_Node Afler_Apl~ication,
& Number_of_Nodes_Where Applied

Read (40,',Err=20)
& (Nodes_where Applied(n), n=
1,Number_of_Nodes Where Applied)

Close(40)

Initialization of the private information; I lnput is the global public
variable which is equal to 1 until all modules and submodules are
invoked one t ime

Global_Number=Global_Number+l The module gets its sequence number in the current configuration and
Number_of_This_Module=Global_Number keeps it as private information. Global_Number is the global counter

of modules

tEvent(Number_of_This_Module)=AppLication Time tEvent is the global array of times when events require to end a time
Endif step. tEvent of this module is set to application time.

If (Abs(Time-tEvent(1 t)).LT.Q1 "Step) then Check whether it is time to operate using simulated time Time and
current time increment, Step.

Do n=t,Number_of Nodes Where Applied The module changes public globaL variable Cone which represents
Conc(Nodes_Where_ADplied(n),l)= nodal concentrations of chemicals; second subscript shows that

& ChemicaLMass_in_a_Node_After Application/ chemical #1 is applied To calculate concentrations, nodal mess is
& Water_Content(Nodes_Where_ApDl~ed(n)) divided by the nodal water content, represented by the public variable

Enddo Water_ Content

tEvent(Number .ol_This_Module)=1.0E+32 The next time to for this module to execute instructions is set to
Endif 1.0E+32 because the module will no longer be needed and therefore
Return will not impose requirements on time steps anymore

20 Stop Management data error'
End

Fig. 5. Computer code that illustrates the sequence of operations in a process module. This example is a management module to
simulate an application of instantaneously soluble chemical such as a fertilizer.

needed; and (e) provide simulated times when the
shoot and atmosphere simulators will be ready to
exchange information. All variables needed for
this exchange are global public, and no code has
to be changed in other modules. If some other soil
variables are used by the shoot and atmosphere
simulator, they are accessible through the global
C O M M O N block since all global public data for
the boundary interface are available here. If some
private root variables are needed by the shoot
module, they can be made accessible by inserting
a local public C O M M O N block of the root mod-
ule into the boundary interface. Finally, if the
crop modeller wants to use his or her own root
module, the module must be rearranged to fit into
the data structure described here.

The example simulator demonstrated in this

paper, 2DSOIL, illustrates code reuse. We used
significant pieces of code written by others and
were able to combine them as necessary for a
particular task. The modularity was a necessary
precondition of this and we took full advantage of
the fact that the codes we used were well-tested,
robust and secure: necessary features for code that
is to be reused (Radice and Philips, 1992).

The proposed three-level architecture of the
generic simulator design (Figs. 1 and 5) represents
a compromise between a modeller 's and a soft-
ware developer's views on modularity. The most
fundamental criteria in module selection is that
each module should be testable (Maynard, 1972).
We could satisfy this criteria by generating public
information needed by a module with the help of
specially written 'stubs" or fictitious modules.

78 D.J. Timlin, Y.A. Pachepsky / Ecological Modelling 94 (1997) 67- 80

Soil Wate r C o n t e n t
Root D ens i ty (cm3 cm'3)

(gcm "3) Before Rain After Rain

0 20 40 0 20 40 0 20 40

45

65 ~ °

85

W i d t h (cm

Fig. 6. Vertical and horizontal distributions of simulated root
density and soil water content before and after a chemical
application followed by rain.

The design of the generic simulator and its
current implementation, 2DSOIL, has several dis-
advantages, however. The modules in 2DSOIL
belong to the category of 'external coupled mod-
ules ~, i.e. they reference a global public data block
(Einbu, 1991). Global data areas used as a com-
munication between modules are known to be a
source of errors (Einbu, 1991). However, the
present arrangement together with numerical de-

t..

50

100

150

200

M a s s (g m cm "3)

0 10 20 30 40 50 60 70 80

o Row zone

• Interrow zone

Fig. 7. Simulated mass of chemical in the upper 2 m of soil as
a function of soil depth in the row zone (x = 0.01 m) and in
the interrow zone (x=0 .35 m) after a chemical application
followed by rain.

coupling to allow each process module to be
executed in sequence makes the connection
among modules loose. Therefore the public field is
relatively small, and the data are mostly encapsu-
lated. If the use of public data by a module is
thoroughly documented in its specification, and
connections between modules are loose as they
are in this design, the danger of errors is reduced.

In our example, numerical decoupling of inter-
related processes (e.g. example solute transport
from water flow) did not present a problem since
the only strong non-linearity in time dependent
modules was encountered in the water transport
module. However, in general, it may be necessary
to iterate over all equations if several nonlinear
equations with explicit dependence on time step
will be involved. This problem has to be studied
in future.

In the application of the modular design,
2DSOIL, the modules were organized around
processes primarily because the structures of the
existing programs that were incorporated into
2DSOIL were already based on processes, and
this kind of structure was suited to Fortran. A
modular soil simulator could also be organized on
the level of a soil cell (Dubois-Pelerin et al., 1992).
Here a cell is defined as a polygonal element with
a boundary as shown in Fig. 2. Calculations for
mass transport, root growth, and transformations
can be encapsulated in a cell module. This type of
structure is much more easily implemented in an
OOP language such as Smalltalk than in Fortran.
Soil cell objects (modules) will have methods
(functions) depending on their role in the p lant -
soil system. New types of cells could easily be
derived from a base class, for example cells with
macropores, or boundary cells. However, the need
for variable time steps and iterations may pre-
clude a consistent implementation of OOP. This
problem was discussed by Dfibois-Pelerin et al.
(1992) who could not achieve a fully OOP-consis-
tent structure in their pilot attempt of finite-ele-
ment programming in Smalltalk because of the
necessity to iterate within a time step. This prob-
lem is also discussed by Acock and Reddy (1997)
and Lemmon and Chuk (1997).

The process modules in our simulator are non-
hierarchical relative to one another. The processes

D.J. Timlin, Y.A. Padlepsky ' Ecological Modelling 94 (1997) 67-80 79

can be grouped in other arrangements and then
be partitioned recursively into objects. Each ob-
ject is then internally partitioned into lower level
objects (for example a transport process module
that contains solute transport and water flow as
submodules). The result will be a multilevel hier-
archy. There is an opinion, however, that a single
level of objects is adequate for most purposes
(Kirk, 1990). Our experience with 2DSOIL shows
that this is true for a generic soil and root process
simulator since the cohesion within processes is
relatively stronger than between processes. Our
objective was to design a simulator that could be
expanded and modified by users. Therefore we
gave the priority to information hiding at the
expense of hierarchy development. As a result, a
user can work with modules without detailed
knowledge of their internal structure.

Since the coding of soil models has been done
mostly in Fortran we used this language for the
development of modules. Fortran 90, however,
includes some OOP capabilitics. As mentioned by
D6bois-Pelerin et al. (1992), the really successful
implementation of OOP can be achieved by 'ex-
panding the existing OOP environment', i.e. using
existing classes and objects. The extension of the
OOP environment of Fortran 90 can be a promis-
ing way of embedding existing computationally
efficient and well-tested codes into an OOP simu-
lator of soil and root processes.

Developers of agricultural and ecosystem mod-
els generally think of their models as integrated
scientific knowledge and rarely consider the coded
model as software. Since models are software, and
as the number of models grows rapidly, software
engineering issues are becoming more and more
important in modelling. Modularity is one such
issue. Our experience with 2DSOIL convinced us
that more efficient simulators can be built for
particular objectives if recommendations and
methods of software engineering are used. In cur-
rent and future applications of this modular struc-
ture we hope to demonstrate that modularity
enhances the usefulness of models as scientific
tools because it simplifies experimentation with
different concepts. Current applications include
modelling competition between two root systems
(Caldwell et al., 1994), modelling evapotranspira-

tion in a desert environment (Kemp et al., 1997)
and the incorporation of the potato model, SIM-
POTATO (Hodges et al., 1992) into 2DSOIL. We
also hope that the modularity as illustrated by
2DSOIL will widen the potential ring of soil
model users by making a particular process mod-
eller independent of specialists in other processes.

References

Acock, B. and Reddy, V.R.. 1997. Designing an object-ori-
ented structure for crop models. Ecol. Model., 94: 33-44.

Acock, B. and Reynolds, J.F., 1989. The rationale for adopt-
ing a modular generic structure for crop simulators. Acta
Hortic., 248: 391-396.

Acock, B. and Reynolds, J.F., 1990. Model structure and
database development. In: R.K. Dixon, R.S. Meldahl,
G.A. Ruark and W.G. Warren ~Editors), Process Mod-
elling of Forest Growth Responses to Environmental
Stress. Timber Press, Portland, Oregon, pp. 169-179.

Acock, B. and Trent, A., 1991. The soybean simulator,
GLYCIM. Documentation for the modular version 91.
Agric. Exp. Stn. Univ. Idaho, Moscow, ID.

Ahuja, L.R., Decoursey, D.G., Barnes, B.B. and Rojas, K.W.,
1991. Characteristics and importance of preferential
macropore transport studied with the ARS root zone water
quality models. Proc. Nat. Syrup. Preferential Flow. Amer.
Soc. Agric. Eng. Publ. 9. Chicago, IL, pp. 32 42.

Baker, D.N., Lambert. J.R. and McKinion, J.M., 1983.
GOSSYM: A simulator of cotton crop growth and yield.
S.C. Agric. Exp. Sta. Tech. Bull., 1089: 1-134.

Bergstr6m, L., Johnson, H. and Torstensson, G., 1991. Simu-
lation of soil nitrogen dynamics using the SOILN model.
In: J.J.R. Groot, P. de Willigen and E.L.J. Verberne
(Editors), Nitrogen turnover in the soil-crop system. Clu-
ver Academic Publishers, Dordrecht, pp. 181 -188.

Blum, B.I., 1992. Software Engineering: A Holistic View.
Oxford Univ. Press, New York, 588 pp.

Caldwell, R., Pachepsky, Y. and Timlin, D., 1994. Current
research status on growth modelling in intercropping.
Proc. Workshop on Nitrogen Dynamics of lntercropping
Systems in the Semi-arid Tropics. Delhi, India.

Dubois-Pelerin. Y., Zimmerman, T. and Bomme, P., 1992.
Object oriented finite element programming. I1. A proto-
type program in Smalltalk. Comput. Methods Appl. Mech.
Eng., 98:361-397.

Einbu, J., 1991. A program architecture for improved main-
tainability in software engineering. Ellis Hoorwood,
Chiehester, UK, 166 pp.

Hodges, T., Johnson, S.L. and Johnson, B.S.. 1992. A modu-
lar structure for crop simulation models: Implementation
in the SIMPOTATO model. Agron. J., 84:911-915.

Hutson, J.T. and Wagenet, R.J., 1992. LEACHM: Leaching
Estimation And Chemistry Model: A process based model

80 D.J. Timlin, Y.,,I. Pachepsky / Ecological Modelling 94 (1997) 67 80

of water and solute movement, transformation, plant up-
take and chemical reactions in unsaturated zone, Version
3. Department of Agronomy, Cornell University, Ithaca,
NY. 89 pp.

Istok, J., 1989. Groundwater modeling by the finite element
method. Water Resources Monograph 13, American
Geophysical Union, Washington, D.C.

Kemp, P.R., Reynolds, J.F., Pachepsky, Y. and Chen,
J.-L., 1997. A comparative modeling study of soil water
dynamics in a desert ecosystem. Water Resour. Res. (in
press).

Kirk, B.R., 1990. Designing Systems with Objects, Processes,
and Modules. SE90: Proc. Software Engineering, 90. Cam-
bridge Univ. Press, Brighton, UK, pp. 387-404.

Lemmon, H. and Chuk, N., 1997. Object-oriented design of a
cotton crop model. Ecol. Model., 94: 45-51.

Maynard, J., 1972. Modular programming. Petrocelli Books,
New York. 100 pp.

Mills, H.D., 1980. Principles of software engineering. IBM
Syst. J., 19: 415-420.

Pachepsky, Y., Acock, B., Lemmon, H., Timlin, D. and Trent,
A., 1993a. 2DSOIL°a new modular simulator to assess the
influence of management practices on water quality. Proc.
Agricultural Research to Protect Water Quality, Min-
neapolis, MN.

Pachepsky, Y., Timlin, D., Acock, B., Lemmon, H. and Trent,
A., 1993b. 2DSOIL-a new modular simulator of soil and
root processes. Release 02, US Deptartment of Agricul-
ture, Beltsville, MD.

Pachepsky, Y.A., 1990. Physico-chemical models in soil sci-
ence. Nauka, Moscow. 187 pp.

Parnas, D., 1972. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15: 1053-1058.

Radice, R.A. and Philips, R.W., 1992. Software Engineering:
An Industrial Approach. Prentice Hall, Englewood Cliffs,
NJ. 315 pp.

Reynolds, J.F. and Acock, B., 1985. Predicting the response of
plants to increasing carbon dioxide: A critique of plant
growth models. Ecol. Model., 29: 107-129.

Reynolds, J.F. and Acock, B., 1997. Modularity and generic-
ness in plant and ecosystem models. Ecol. Model., 94:
7-16.

Reynolds, J.F., Acock, B., Dougherty, R. and Tenhunen, J.D.,
1989. A modular structure for plant growth simulation
models. In: J.S. Pereira and J.J. Landsberg (Editors),
Biomass Production by Fast-Growing Trees. NATO ASI
Series, Applied Science, Kluwer Academic Publishers,
Boston, MA, pp. 135-168.

Reynolds, J.F., Acock, B. and Whitney, R., 1993. Linking
CO 2 experiments and modeling. In: E.-D. Schulze and
H.A. Mooney (Editors), Design and Execution of Experi-
ments on CO2 Enrichment. Report No. 6, Ecosystems
Research Series of Environmental Research Programme,
Commission of the European Communities, Brussels, pp.
93-106.

Scherbakov, R.A., Pachepsky, Y.A. and Kuznetsov, M.Y.,
1981. Transport of ions and chemicals in soils: Water
movement. Ecomodel software series, No 7, USSR
Academy of Sciences, Pushchino, 47 pp.

Slmiinek, J., Vogel, T. and van Genuchten, M.T., 1994. The
SWMS_2D code for simulating water flow and solute
transport in two-dimensional variably saturated media-
Version 1.2. Research Report no. 132, U.S. Salinity Labo-
ratory, USDA-ARS, Riverside, CA.

Thornley, J.H.M. and Johnson, I.R., 1990. Plant and Crop
Modelling. Clarendon Press, Oxford. 669 pp.

Timlin, D.J., Heathman, G.C. and Ahuja, L.R., 1992. Solute
leaching in row vs. interrow zones. Soil Sci. Soc. Am. J.,
56: 384-392.

Wesseling, J.E. and Brandyk, T., 1985. Introduction of the
occurrence of high groundwater level and surface water
storage in computer program SWATRE. Note 1636, Insti-
tute for Land Water Management Research, Wageningen,
The Netherlands. 68 pp.

Wirfs-Brock, R., Wilkerson, B. and Weiner, L., 1990. Design-
ing Object Oriented Software. Prentice Hall, Englewood
Cliffs, N.J. 341 pp.

Witt, B.I., Baker, F.T. and Meritt, E.W., 1994. Software
architecture and design. Principles, Models, and Methods.
Van Nostrand Reinhold, New York, 324 pp.

Yeh, G.T. and Tripathi, V.S., 1991. A model for simulating
transport of reactive multi-species components: Model de-
velopment and demonstration. Water Resour. Res., 27:
3075- 3094.

