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Abstract 

The ability to build models for various crop management scenarios can be enhanced by using modules correspond- 
ing to soil, root atmosphere and management processes. In this paper we describe the design of a generic modular soil 
and root process simulator (2DSOIL) for use in crop modelling. Coded in Fortran 77, it uses a three-level hierarchy 
to organize soil processes and their parameters into a modularized structure. Decoupling of processes and 
re-arrangement of boundary condition formulations are used to facilitate independence of modules and the 
encapsulation of information is consistently implemented. Variable time steps are selected using restrictions imposed 
by non-linearity of models. The use of this modular design allows modellers to reuse well-tested codes, and results in 
a decrease of effort in input data preparation and in expandability to encompass various management practices. The 
modular design of 2DSOIL allows it to be readily modified and easily incorporated into crop models. © 1997 Elsevier 
Science B.V. All rights reserved 
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I. Introduction 

Agricultural chemicals represent a serious 
threat to surface and ground water supplies, 
While it is imperative that researchers find ways 
to minimize this risk, it is impossible to directly 
test the consequences of  a large number  of  man- 
agement practices and techniques under natural 
conditions. Crop modelling offers an alternative 
that is both efficient and quick and enables re- 
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searchers to explore a wide range of management  
scenarios to assess their potential without risk to 
the environment. 

To date, the emphasis in agricultural modelling 
has been primarily on crop productivity. As a 
result, plant simulators typically have been devel- 
oped with comprehensive descriptions of  plant 
processes such as leaf and canopy photosynthesis, 
growth, nutrient uptake, light relations in 
canopies, and respiration (e.g. Baker et al., 1983; 
Reynolds and Acock, 1985; Thornley and John- 
son, 1990; Acock and Trent, 1991; Hodges et al., 
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1992). On the other hand, soil processes per se 
have often been treated in an overly simplistic 
manner. It is now clear that, in order to use crop 
models to explore management scenarios that 
consider both crop productivity and the fate and 
distribution of chemicals, comprehensive descrip- 
tions of key soil processes are also needed. 

There are several comprehensive soil simulators 
available that reflect the state-of-art in soil sci- 
ence, e.g. Ahuja et al. (1991); Hutson and Wa- 
genet (1992), and S~miinek et al. (1994). These 
models, however, are complex stand-alone models 
that were not designed to be expanded and/or 
interfaced with plant simulators. There is a need 
to design and implement soil simulators that can 
easily be incorporated into crop models. 

The design of a framework that will enable us 
to interface comprehensive soil simulators with 
crop models must be guided by two important 
factors. First, is the ability to choose a particular 
soil model from the large number available. The 
existence of a multitude of mathematical models 
for each soil process reflects differences in scien- 
tific concepts and available data. There is no way 
to ascertain which model will perform better with- 
out testing them against independent data. More- 
over, a model of a particular soil process usually 
can not be tested independently of models of 
other processes because of interactions. The sec- 
ond guiding factor is the ability to model a range 
of management practices and easily add new ones. 
Therefore, the design of a generic soil simulator 
should emphasize: (1) replaceability of sub-models 
of soil and management processes; and (2) ex- 
pandability. The availability of generic software 
with these properties would have other advan- 
tages for the development of complex simulation 
models as well. 

It is neither practical to develop ad hoc models 
for each question of interest nor is it possible to 
build a single, all-purpose model to answer all 
questions (Acock and Reynolds, 1989, 1990; 
Reynolds et al., 1993). Reynolds et al. (1989) 
suggested that the goal should be to build a suite 
of models that are based on general principles 
derived from structures and behaviours that are 
fundamentally similar in different plants and 
ecosystems. To accomplish this, they proposed the 

development of 'generic' models that have a well 
defined and uniform modular structure. These 
generic models also use similar modules, some of 
which may be used in several models with appro- 
priate parameter changes. In a generic, modular 
structure, related processes are grouped in sub- 
model components, and the function of each 
module and the variables are explicitly defined. 
Numerous advantages are potentially realized in- 
cluding improved understanding and mainte- 
nance, reduced duplication of efforts, and easier 
inclusion of experimentalists in modelling (also 
see Reynolds and Acock, 1997). 

The objective of this work was to develop a 
generic soil simulator that is based on the princi- 
ples of modularity. The generic soil simulator is 
not a single model but rather represents an ap- 
proach that establishes the basis for a suite of 
sub-modules that can incorporate various descrip- 
tions of soil processes and management practices. 

2. Conceptual development 

2. I. Modular design 

Three considerations governed the design of the 
generic simulator: 
(1) it should represent existing scientific concepts 

of the processes and their interactions; 
(2) As software under development, it should be 

designed as a system of interacting pieces that 
can be independently tested and provide intel- 
lectual control of the development (Mills, 
1980); 

(3) As software subject to modifications by users, 
it should be malleable (Witt et al., 1994), i.e. it 
should facilitate adaptation to changing end- 
user requirements. As pointed out by Kirk 
(1990), we have to optimize ease of compre- 
hension, ease of development by teams, and 
ease of extension. 

The use of a modular structure allows us to 
satisfy these requirements. 

Modularity is an acknowledged principle of 
computer software design (Radice and Philips, 
1992; Witt et al., 1994; Blum, 1992; Parnas, 1972). 
There is general agreement about desirable at- 
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tributes of  modules: modules have to be indepen- 
dently testable, modules must have high internal 
cohesion (i.e. represent one logical self-contained 
task) and finally, modules must have loose inter- 
unit coupling. Loose coupling is characterized by 
having a single entry point and a single exit point 
in the computer code, a limited number of well- 
defined interfaces, and a minimum of data pass- 
ing. However, there is no unique recipe of how to 
subdivide a system into modules. One general 
guideline is to divide 'large aggregates of compo- 
nents into units having loose inter-unit coupling 
and high internal cohesion... '  (Witt et al., 1994). 

From this point of view, models of the various 
soil and root processes can be seen as natural 
candidates to be coded in separate modules. It is 
easy to assign correspondence between model and 
system processes where the process is used to 
define the structure and activity of a component 
of the system being modeled. Our modular design 
is based on a representation of the system as a set 
of  'cooperating elements' where elements repre- 
sent major soil and plant processes (Kirk, 1990). 
One element, for example would be water uptake 
by roots, another would be water flow. In this 
way, the system requirements are analyzed to 
produce a non-hierarchical logical model of the 
system in terms of these elements. In addition to 
process modules there are control modules that 
oversee the activities of the process modules and 
manage common tasks. 

2.2. Implementation of the modular design 

To satisfy the requirements for information ex- 
change and independence, the soil-root system is 
represented as a non-hierarchical system of  ob- 
jects or elements corresponding to real processes 
that belong to one of  the following groups: 

(a) transport processes, e.g. water flow, heat 
movement, nitrate transport, and oxygen move- 
ment; 
(b) atmosphere processes, e.g. surface evapora- 
tion, nitrogen influx with precipitation; 
(c) root processes, e.g. water uptake, NH4 up- 
take, root respiration; 
(d) management processes, e.g. subsoil irriga- 
tion, tillage, nitrogen fertilizer application; 

(e) interphase exchange processes, e.g. re- 
versible C a - M g - N a  exchange; 
(f) biotransformation processes, e.g. denitrifica- 
tion, CO2 production. 

Each process listed above is represented by a 
process module. We did not use instances (multi- 
ple appearances) of modules in this structure. For  
example, to simulate transport of several solutes 
we repeat calculations sequentially for each solute 
in the single solute transport module (instead of 
creating a separate module for each solute). Simu- 
lation of the activity of several root systems in 
one soil domain is done in a single module, i.e. 
there are not separate modules for each root 
system. Furthermore, each process module opens 
and reads its own data file or files, there are no 
input routines that read and manage a global pool 
of data read from one or more files. 

The design requirements for modules as out- 
lined above do not require a special programming 
language (Blum, 1992), although they are more 
easily implemented using an object oriented pro- 
gramming (OOP) language. In OOP, an object 
(module) contains specific information (data) and 
is coded to perform certain operations (methods). 
Our design, coded in Fortran 77, follows OOP 
precepts, but within the constraints of Fortran. 
We used Fortran because the majority of existing 
plant models use this language, and we wanted to 
use code from available and tested soil and root 
process models. 

The simulator uses a three-level hierarchy to 
structure the components (Fig. 1). This hierarchy 
determines the structure of the data fields in order 
to facilitate encapsulation of information. Encap- 
sulation, a characteristic of OOP, is the grouping 
into a single module of both the data and the 
operations that modify or use the data (Wirfs- 
Brock et al., 1990). At the highest level is the 
program itself: the simulation model that has been 
assembled to represent a particular system. The 
second level is represented by process modules 
that are implemented as subroutines. The arrange- 
ment of the process modules is non-hierarchical, 
i.e. all process modules are on the same level. No 
one process module (subroutine) will call another 
process module. Each process module may con- 
tain one or more sub-modules, however. These 
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Simulat ion  Model  Shell  

Process  Module  

@ 
@ 

Sub-module 

@ 

@ 

@ 

@ 

GLOBAL PUBLIC DATA: 

• temporal/spatial discretization 
• soil and root state variables 
• boundary values 

LOCALLY PUBLIC DATA OF A MODULE 

• coeff ic ients  o f  the gove rn ing  
equations of the model 

PRIVATE DATA OF A MODULE 

• state var iables  f rom the 
previous time step 

,parameters 
• numerical process parameters 

PRIVATE DATA OF A SUBMODULE 

• state variables from the 
previous time step 

*parameters 
• numerical process parameters 

Fig. I. Three-level  d a t a  s t ruc ture  tha t  faci l i tates da ta  encapsula t ion .  

sub-modules, which represent the third level of  
the hierarchy, may include algorithms to calculate 
coefficients for particular equations to represent a 
model in a process module. 

Neither data nor equations that are contained 
in these sub-modules are available to other pro- 
cess modules. These data and operations, encap- 
sulated in a single module, can be hidden from the 
developer of  other program units. An example is a 
sub-module in the water transport  module that 
contains equations to calculate soil water content 
as a function of matric potential. This sub-module 
receives matric potentials from the water trans- 
port module and returns water contents. It reads 
its own data file that contains parameters for the 
equations to calculate water content for a particu- 
lar soil type. I f  a programmer desires to use a 
different method to make these calculations he or 
she only need to replace the submodule and its 
data file, no other changes in other modules, in 
other data files or in the water transport  module 
are necessary. 

2.3. Sharing data in the context of  modularity 

The minimum data set available to all modules 
has to be independent of  the model or algorithms 

used to represent the processes. These data must 
also be sufficient to describe the state of  the 
system at any particular time. Soil and root pro- 
cesses in the soil-plant-atmosphere system are 
characterized by the volumetric contents of  sub- 
stances (e.g. water content, bulk density, oxygen 
concentration, root length density, etc.). Poten- 
tials of  physical fields and related physical values 
are also used, e.g. matric potential, temperature, 
etc. These values are state variables of  the soi l -  
roo t -a tmosphere  system. The state variables are 
subject to changes caused by fluxes of  energy and 
matter  into or out of  the system. Internal point 
fluxes are known as sources or sinks depending on 
their direction. Distributed rates of  transport  of  
substances through boundaries (Fig. 2) are re- 
ferred to as boundary fluxes. These include fluxes 
of  heat, solutes, water and gases, and rates of  
carbon and nutrient exchange. 

Modules interact by sharing data, therefore, the 
framework must be designed to provide a means 
to share data and maintain loose coupling and 
high internal cohesion. Loose-coupling requires 
that the amount  of  data available to all modules 
be minimized and represented consistently. 

Values of  the soil and root state variables are 
recorded and calculated for specific locations 
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within a soil profile, and these locations have to 
be the same for all modules. A grid is used for the 
spatial reference of soil state variables and 
boundary fluxes. The grid is a polygonal geomet- 
ric structure representing either a vertical profile 
of  the soil for the one-dimensional mapping of 
soil variables or a vertical plane cross section for 
the two-dimensional case. A two-dimensional grid 
is illustrated in Fig. 3. In this example, triangular 
and rectangular elements were used together to 
approximate a soil surface with a ridge. The spa- 
tial locations, at the intersections of  the grid lines, 
where values of state variables and fluxes are 
known are called nodes (Fig. 3). The nodes 
provide the necessary spatial reference for interac- 
tions among soil and root proccsses, and for the 
boundary interface with plant and atmosphere 
models. The nodal coordinates, therefore, have to 
be available to all modules. A control module 
manages the input of nodal coordinates and loca- 
tions of boundary coordinates. 

2.4. Data structure 

We used the concept of  encapsulation of  infor- 
mation to facilitate independence of  modules and 
the data structure follows the three-level hierarchy 
of the simulator (Fig. 1). The variables are divided 

Soil - atmosphere boundary 

Shoot-root boundary 

Soil-root boundary 
I 

Fig. 2. Information exchange consists of transfer of  informa- 
tion across these boundaries of the components of a soil- 
plant - atmosphere- management system. 
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Fig. 3. An illustration of a spatial grid that includes an uneven 
soil surface in the form of a ridge and furrow. The soil domain 
includes the area delineated by the x and y-axes. The nodes 
are indicated by the filled circles. 

into public and private fields. Variables that are 
public are available to two or more modules and 
may be global public or local public. Global 
public variables (highest level) are available to all 
process modules and include variables such as soil 
state variables, nodal coordinates, and boundary 
fluxes. If a process module must initialize a partic- 
ular state variable or any other variable, it opens 
and reads the data from its own file. Generally, 
initialization and/or input of a variable is carried 
out by the module that first modifies that vari- 
able. Local public variables (level two) are shared 
between a process module and one of its sub- 
modules. These include matrices passed to a sub- 
module to solve a system of simultaneous 
equations, or the coefficients for a model equa- 
tion, such as thermal conductivities, for a heat 
transport equation. The private data field (level 
three) is not available to other modules and in- 
cludes, for example, control variables to read or 
output data, and state variables and fluxes from 
the previous time step. If a module or sub-module 
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requires data to fill its private data file, it opens 
and reads it's own data file. 

As a part of  its specification, each process 
module has a precisely defined list of  global public 
variables that it can change during invocation. To 
do so, a process module may use any of  the 
available global variables (and, of  course its pri- 
vate variables) (Fig. 1). Similarly, the list of  the 
process module's locally public variables to be 
changed is defined for each submodule in this 
module. Finally, there are no limitations on which 
available private data a submodule may use. 

Components of  the so i l - root -a tmosphere  sys- 
tem are separated by boundaries (Fig. 2) and 
information exchange concerns mass and energy 
exchange across these boundaries. This informa- 
tion includes boundary fluxes. An atmosphere 
module provides values of  potential atmospheric 
boundary fluxes such as precipitation, evapora- 
tion, heat flux, etc. The plant module may provide 
a value of  carbon available for root growth to the 
root module. The soil and root modules also 
provide soil and root state variables, i.e. vertical 
(and in the 2D case, lateral) distribution of  water 
content, concentration of solutes and gases, tem- 
perature, and root densities. In practice, the atmo- 
sphere module using information on plant status 
(leaf area index, height, etc.) supplies the value of 
potential root water uptake and the plant module 
supplies the value of the potential carbon supply 
to roots. The root and soil modules return the 
actual water and nutrient uptake together with 
actual carbon use to the plant module which then 
uses this information to determine stresses. 

The potential values of boundary fluxes are 
supplied by a specific module and are generally 
constant over a time step. The potential values are 
passed to the soil and root modules where they 
are adjusted based on soil or plant conditions. 
Transport modules do not read data on atmo- 
spheric boundary fluxes or concentrations, etc. 
These values are supplied by the atmosphere or 
management modules as public variables that can 
be used by the transport modules. Modularity is 
enhanced by keeping the source of the value 
separate from the module where the value is 
modified or used. For example, several models are 
available to calculate potential evapotranspiration 

(PET). By maintaining the code to calculate PET 
in a separate atmosphere module only changes to 
that module have to be made if a new model of 
PET is chosen. The water flow code which uses 
PET to calculate actual evaporation does not 
have to be modified. Potential values of  fluxes 
may also be given as a function of a state vari- 
able. i.e. q =  - a y  +b where y can be a matric 
potential, solute concentration, temperature or 
gas content and q can be flux of  water, solute, 
heat or gas, respectively; and a and b are coeffi- 
cients that do not depend on y. In this case, the 
coefficients of  the flux equation, a and b, (and not 
the value of q) are passed to the transport process 
module. 

2.5. Time synchronization 

Modules have to be synchronized to calculate 
state variables and fluxes for simulated times that 
are the same for all modules. This synchroniza- 
tion is provided for by control modules. The 
process modules are invoked using a sequential 
iteration approach (Yeh and Tripathi, 1991). The 
processes are numerically decoupled from each 
other and process modules execute sequentially, 
always in the same order. This design uses a 
specific sequence of  module invocation as shown 
in Fig. 4. This sequence reflects the method by 
which transport processes and intra-soil interac- 
tions are decoupled during a time increment. For 
time step calculations, transport processes use val- 
ues of  sources and sinks from the previous, or 
'old', time level. Intra-soil and surface interactions 
may use values of  soil state variables from both 
the current, or 'new' time level or from the old 
time level. It is for this reason transport calcula- 
tions precede any calculations of  intra-soil inter- 
actions (Fig. 4). There is also a specific sequence 
of transport module invocation. The water trans- 
port module must be called first because it pro- 
duces the information that other transport 
modules require such as water flow velocities. 

Time stepping is synchronized to meet the re- 
quirements of all modules, although some mod- 
ules may not have any limitations on the time 
step. For  example, an equilibrium interphase ex- 
change module can calculate a new equilibrium 
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between solid and liquid phases that results from 
changes of concentration in solution. The changes 
can be independent of  the time interval during 
which the changes have occurred. Some modules 
that use a time step, like water flow, usually make 
some restrictions on the time step to provide for 
convergence of non-linear numerical calculations. 
It is desirable to decrease time steps to enhance 
convergence of iterations or to increase time step, 
when the convergence is achieved quickly. The 
number of iterations required for convergence is 
used to alter the time step. Further details are 
given in Pachepsky et al. (1993a,b). Modules that 
simulate management- or weather-related events, 
like tillage, require the event to occur at a specific 
time. 

Control modules form the backbone of the 
generic simulator and are used to oversee the 

[ 

I Grid and ccvordinate system module 

Time control / output modules 

I 

Soil transport process modules 
t 

Soil-atmosphere boundary modules 

Water & chemical ulqtake ] 
by roots modules 

J 

Chemical interaction modules J 
. . . . . .  

r i 
I Bio-transformation modules I 

1 Management modules J 
L - -  

Fig. 4. Sequence of operations when the process and control 
modules are combined to form a simulation model. 

operations of the program. These modules remain 
the same for any selection of process modules. 
Control modules manage the spatial discretization 
of the soil domain (i.e. the area delineated by the 
x and y coordinates in Fig. 3), types of boundary 
conditions and locations of  boundary nodes, in- 
formation on soil layering, and calculation of  time 
steps. 

2.6. Structure o f  a process module 

At the uppermost level of the hierarchy, global 
public variables are passed to process modules 
(subroutines) in Fortran COMMON blocks; no 
arguments are used in CALL statements for pro- 
cess level modules. The same CO MMO N  blocks 
are placed in all process modules. Errors are 
minimized by the use of INCLUDE statements, 
to insert a file containing a list of  named COM- 
MON blocks into each process module. If it is 
desirable to transfer some private variable into a 
public field, only the insert file referenced in the 
INCLUDE statement has to be changed. Local 
public variables, i.e. variables shared between pro- 
cess modules and their submodules, are passed in 
CALL statements. 

Fortran COMMON blocks are also used to 
store private variables within a module or sub- 
module. The primary reason for using COM- 
MON blocks for private variables is to save the 
values of  private variables between invocations of  
the subroutine. Any particular COMMON block 
containing private information is present in only 
one module. Because there is no reference to this 
block in other program units, the information 
remains hidden. 

The general sequence of operations is similar 
for all process level modules. The operations be- 
gin by reading the time-independent data and/or 
initial data. Next, logic statements are used to 
determine whether it is lime to execute, and if it is 
time to execute, the module carries out it's desig- 
nated operations. These include reading the time- 
dependent data, changing certain public variables 
and private variables, calculating the requirements 
for time increments, and writing output data. 
Some steps may be absent. It also includes the 
user's interface which, in our case, is the list of 
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input and output variables either in CALL 
statements or COMMON blocks. 

3. Representative example of the 
simulator-2DSOIL 

In this section we present an example of  the 
application of  the modular design to build a 
model of solute movement in row and interrow 
zones of  a soybean crop. The example also illus- 
trates how a model can be expanded to include a 
management practice through the addition of a 
module. The objective is to illustrate the influence 
of  root systems on chemical transport. The roots 
of a crop planted in rows will dry the soil under 
the rows more rapidly than between the rows by 
nature of the uneven root distribution. If the soil 
is more wet between the rows than in the row 
zone, the wetting front during infiltration will 
penetrate deeper in the interrow zone than in the 
row zone. As a result, there will also be higher 
solute fluxes in the interrow zone than in the row 
zone. 

In order to simulate the processes in this exam- 
ple we needed to assemble a crop model and 
atmosphere boundary interface with the soil and 
root process modules. Some modules were 
adapted from existing (Fortran) code and some 
developed by us. The adapted modules were rear- 
ranged to fit into the data encapsulation structure 
illustrated in Fig. 1. 

A list of  modules included in the representative 
simulator, called 2DSOIL, is presented in Table 1. 
We used a two-dimensional representation of the 
soil to model crop row-interrow processes and a 
finite element representation of  the governing 
equations (Simfinek et al., 1994). We chose the 
atmosphere simulator described by Acock and 
Trent (1991). This simulator derives hourly poten- 
tial fluxes of water, solutes, and heat at the soil 
surface from the weather parameters (radiation, 
precipitation, minimum and maximum daily air 
temperature, and wind speed) and surface shading 
governed by the plant height, plant row orienta- 
tion and row spacing. To provide shoo t - roo t  
interactions, we used a simple shoot imitator that 
calculates plant height and available carbon from 

an index of soil water availability and plant age. 
This simplified shoot module can be easily re- 
placed by a comprehensive plant model. Both 
boundary interfaces are described in Pachepsky et 
al. (1993b). The global public variables that are 
modified by process modules in 2DSOIL are 
shown in Table 2. The information in this table 
demonstrates that the connection between process 
modules is loose since each module modifies only 
a small part of  the public data. All modules are 
tl~oroughly described in the documentation 
(Pachepsky et al., 1993b) which is available upon 
request. 

The new chemical application module Mngrn is 
shown in Fig. 5. The structure of  the module 
shown in Fig. 5 corresponds to the general struc- 
ture for process modules listed and to the data 
structure of  Fig. 1. The module does not have 
time-independent auxiliary variables nor does it 
read initial distributions of state variables. The 
variable Nodes__WhereApplied is private. When 
in operation, the module changes a public vari- 
able (conc), using its private data and other public 
variables. The addition of  this module did not 
require any changes in other modules of  2DSOIL. 

In simulations, the soil consisted of  two layers 
and the soil texture was a sandy loam over a 
loam. The grid shown in Fig. 3 was used. The 
initial chemical concentration was zero through- 
out the profile, and there was no movement of 
chemical across the left or right boundaries. The 
bottom boundary was impermeable to both chem- 
ical and water. The plant seed was placed at the 
left end of the grid at x =  0 cm, and 5 cm deep. 
Soybean root parameters were used. Simulated 
time began at day 1 and ran a total of 57 days. 
The chemical was a non-reactive tracer similar in 
properties to bromide. Chemical was applied on 
day 44 at a rate of  300 mg cm-2.  During the 
preceding 44 days, 18 cm of  rainfall was applied 
and evapotranspiration was 30 cm. This simulates 
a moderately dry period. Immediately after chem- 
ical application 3 cm of  water was applied. 

The water content and root distribution before 
chemical application and water distribution after 
rainfall are shown in Fig. 6. The root distribution 
is concentrated in the soil under the plant. It can 
be seen that values of  water content are lowest 



D.J. Timlin, Y.A. Pachepsky / Ecological Modelling 94 0997) 67.-80 75 

Table 1 
Soil state variables, boundary fluxes, and control variables 
available to all modules of the 2DSOIL simulator 

Variable Module ~ that 
modifies the variable 

Grid geometry 
Transverse coordinates of nodal D 
points 
Vertical coordinates of nodal D 
points 
Numbers of corner nodes for ev- D 
cry element 

Nodal values 
Nodal pressure heads W 
Nodal water contents W 
Nodal concentrations of solutes S 
in soil solution 
Nodal temperature values H 
Nodal gas contents in soil air G 
Number of soil layer in which D 
nodes occur 

Element values 
Water extraction rates tor ele- R 
ments 
Solute extraction rates for ele- R 
ments 
Gas extraction rates for elements R 
Root mass in the elements (soil R 
cells) 

Boundary values 
Nodal numbers of boundary D 
nodes at seepage faces 
List of nodal numbers for D 
boundary nodes 
Width of strips associated with D 
boundary nodes 
Codes of boundary condition for D 
water movement 
Same as above for the solute D 
movement 
Same as above for the heat D 
movement 
Same as above for the gas move- D 
ment 

Boundary pressure heads 
Or components of the water flux A,E 
equation 

Boundary concentrations 
Or components of the solute flux A,E 
equation 

Boundary temperatures 
Or components of the heat flux A,E 
equation 

Boundary gas contents 
Or components of the gas flux A,E 
equation 

Shoot-related values 
Potential and actual transpiration P 
Carbon available for the root P 
growth 
Nutrients supplied for the plant R 
grows 

Time control values 
Switch to show if initial data T 
have to be read 
Time of the beginning of calcula- T 
tions 
Current value of the time step T 
end time 
Current time step T,W 
Time of the next event (soil-at- A,E~O,P,M 
mosphere boundary update, time- 
dependent boundary_ conditions 
update, root extraction update, 
output of results) 
Maximum next time steps al- W.S,H,G 
lowed by transport modules 
Time of the end of calculations T 

A, atmosphere module; B, Biotransformation; C, chemical 
transformation module; D, discretization module; E, engi- 
neered boundaries module; G, gas transport module; H, heat 
transport module; M, management modules; O, output mod- 
ule; P. plant shoot module; R, root uptake module; S, solute 
transport module; T, time control module; W, water trans- 
port module 

under the plant where the root concentrations are 
high. Water content increases with depth and 
horizontal distance from the plant. After rainfall 
the water contents are still highest in the interrow 
zone (Fig, 6). The chemical concentration directly 
below the plant row (at x = 0 )  and under the 
interrow position (x = 35) at day 56 are shown in 
Fig, 7. There is more chemical in the soil under 
the row position than the interrow position. Fur- 
thermore, the chemical concentrations near the 
surface are still rather high in spite of two rainfall 
events after chemical application. Evaporation 
and transpiration act to move the water with 
chemical towards the soil surface and towards the 
plant. This results in accumulation of  chemical in 
the soil under the plant and depletion of  chemical 
in the interrow zone. These results are in qualita- 
tive agreement with the results of Timlin et ai., 
1992. 
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Table 2 
Process modules used in the example of the 2DSOIL simulator 

Module (module name) Source 

Water transport (WaterMover) 
1. Finite-element solution of the Richards' equation for two-dimensional Darcian water flow in 

variably saturated soil 
2. Finite-difference solution of the Richards' equation for one-dimensional Darcian flow in variably 

saturated soil 

Solute transport (SoluteMover) 
I. Finite-element solution of the convective-dispersive equation for two-dimensional transport of Simiinek et al., 1994; 

several solutes in variably saturated soil lstok, 1989; 
2. Finite-difference solution of the convective-dispersive equation for one-dimensional transport of Pachepsky, 1990 

several solutes in variably saturated soil 

Heat transport (HeatMover) 
1. Finite-element solution of the convective-dispersive equation for two-dimensional transport of the SImiinek et al., 1994 

heat in variably saturated soil 

Gas transport (GasMover) 
I. Finite-element solution of the molecular diffusion equation for two-dimensional gas transport in 

air-filled pore space 

Root water uptake (RootUptake) 
1. Root water uptake based on the trade of carbon and water between shoot and root. Root growth Acock and Trent, 1991 

dependent on soil water and oxygen contents, soil temperature and root-shoot carbon balance 
2. Water uptake by a permanent root system based on the partitioning of the transpiration demand 

between roots in soil cells according the root mass, and calculating the actual uptake as a fraction 
of the potential uptake depending on soil-water potential 

Macroelement equilibrium chemistry (MacroChem) 
I. Cation exchange C a - M g - N a ,  dissolution precipitation of gypsum and carbonates, speciation in Pachepsky, 1990 

solution and dissociation of carbonic acid and water 

Nitrogen transformation (NitroChem) 
1. Mineralization'immobilization of organic matter in soil. Nitrification and denitrification. Bergstr6m et al., 1991 

Simiinek et al., 1994 

Scherbakov et al., 1981 

Pachepsky et al., 1993b 

Wesseling and Brandyk, 
1985 

4. Conclusions 

The support of  code extension and code reuse is 
a major advantage of the modular structure and 
application, 2DSOIL, described here. Since each 
module manages its own data, and the functions 
and data are kept together within the module, the 
design makes the modules highly independent. A 
library of modules can be easily accumulated. 
Several water transport and solute transport mod- 
ules listed in Table I represent an initial step in 
this direction. Since the data only have to be 
prepared for modules for a particular application, 
it also reduces the effort needed to compile and 
prepare data sets. As in the example, 2DSOIL, 
shown here, it is very easy to add new modules 

for specific cases using the modular structure de- 
veloped in this paper. 

The modular design presented here was mainly 
developed as a framework for crop modellers to 
interface their plant and atmosphere codes with 
reliable soil code. To do this, the crop modeller 
needs to concentrate only on the boundary inter- 
face. He or she must: (a) assign potential 
boundary fluxes of  water, solutes, heat and gases 
from their atmosphere module to the nodal 
boundary fluxes; (b) receive actual boundary flux 
values from the soil transport process modules to 
use them as needed; (c) pass carbon flux values 
from their shoot module to the root module; (d) 
receive actual transpiration, water and nutrients 
fluxes from the root module and to use them as 
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Subroutine Mngm ( ) 

thclude 'Public.ins' Global public variables are in 'Public ins' 
Common/I~NG/ Application_time, 

& Chemical_Mass in_a_Node Afler_Application, 
& Number_of_Nodes_Where_Applied, 
& Nodes Where Applied(Max Number of Boundary_nodes), & 
Number_of_ThisModule 

Private information is declared and stored in the COMMON field MNG 

If (llnput.eq 1) then 
Open (40, file='Param_Mdat') 
Read (40,',Err=20) Application time, 

& Chemical_Mass in a_Node Afler_Apl~ication, 
& Number_of_Nodes_Where Applied 

Read (40,',Err=20) 
& (Nodes_where Applied(n), n= 
1,Number_of_Nodes Where Applied) 

Close(40) 

Initialization of the private information; I lnput  is the global public 
variable which is equal to 1 until all modules and submodules are 
invoked one t ime 

Global_Number=Global_Number+l The module gets its sequence number in the current configuration and 
Number_of_This_Module=Global_Number keeps it as private information. Global_Number is the global counter 

of modules 

tEvent(Number_of_This_Module)=AppLication Time tEvent is the global array of times when events require to end a time 
Endif step. tEvent  of this module is set to application time. 

If (Abs(Time-tEvent(1 t)).LT.Q1 "Step) then Check whether it is time to operate using simulated time Time and 
current time increment, Step. 

Do n=t,Number_of Nodes Where Applied The module changes public globaL variable Cone which represents 
Conc(Nodes_Where_ADplied(n),l)= nodal concentrations of chemicals; second subscript shows that 

& ChemicaLMass_in_a_Node_After Application/ chemical #1 is applied To calculate concentrations, nodal mess is 
& Water_Content(Nodes_Where_ApDl~ed(n)) divided by the nodal water content, represented by the public variable 

Enddo Water_ Content 

tEvent(Number .ol_This_Module)=1.0E+32 The next time to for this module to execute instructions is set to 
Endif 1.0E+32 because the module will no longer be needed and therefore 
Return will not impose requirements on time steps anymore 

20 Stop Management data error' 
End 

Fig. 5. Computer code that illustrates the sequence of operations in a process module. This example is a management module to 
simulate an application of instantaneously soluble chemical such as a fertilizer. 

needed; and (e) provide simulated times when the 
shoot and atmosphere simulators will be ready to 
exchange information. All variables needed for 
this exchange are global public, and no code has 
to be changed in other modules. If some other soil 
variables are used by the shoot and atmosphere 
simulator, they are accessible through the global 
C O M M O N  block since all global public data for 
the boundary interface are available here. If  some 
private root variables are needed by the shoot 
module, they can be made accessible by inserting 
a local public C O M M O N  block of the root mod- 
ule into the boundary interface. Finally, if the 
crop modeller wants to use his or her own root 
module, the module must be rearranged to fit into 
the data structure described here. 

The example simulator demonstrated in this 

paper, 2DSOIL, illustrates code reuse. We used 
significant pieces of code written by others and 
were able to combine them as necessary for a 
particular task. The modularity was a necessary 
precondition of this and we took full advantage of  
the fact that the codes we used were well-tested, 
robust and secure: necessary features for code that 
is to be reused (Radice and Philips, 1992). 

The proposed three-level architecture of  the 
generic simulator design (Figs. 1 and 5) represents 
a compromise between a modeller 's and a soft- 
ware developer's views on modularity. The most 
fundamental criteria in module selection is that 
each module should be testable (Maynard,  1972). 
We could satisfy this criteria by generating public 
information needed by a module with the help of  
specially written 'stubs" or fictitious modules. 
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Soil  Wate r  C o n t e n t  
Root D ens i ty  ( cm3 cm'3) 

(gcm "3) Before Rain After Rain 
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Fig. 6. Vertical and horizontal distributions of simulated root 
density and soil water content before and after a chemical 
application followed by rain. 

The design of  the generic simulator and its 
current implementation, 2DSOIL, has several dis- 
advantages, however. The modules in 2DSOIL 
belong to the category of 'external coupled mod- 
ules ~, i.e. they reference a global public data block 
(Einbu, 1991). Global data areas used as a com- 
munication between modules are known to be a 
source of errors (Einbu, 1991). However, the 
present arrangement together with numerical de- 
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• Interrow zone 

Fig. 7. Simulated mass of chemical in the upper 2 m of soil as 
a function of soil depth in the row zone (x = 0.01 m) and in 
the interrow zone (x=0 .35  m) after a chemical application 
followed by rain. 

coupling to allow each process module to be 
executed in sequence makes the connection 
among modules loose. Therefore the public field is 
relatively small, and the data are mostly encapsu- 
lated. If the use of  public data by a module is 
thoroughly documented in its specification, and 
connections between modules are loose as they 
are in this design, the danger of  errors is reduced. 

In our example, numerical decoupling of inter- 
related processes (e.g. example solute transport 
from water flow) did not present a problem since 
the only strong non-linearity in time dependent 
modules was encountered in the water transport 
module. However, in general, it may be necessary 
to iterate over all equations if several nonlinear 
equations with explicit dependence on time step 
will be involved. This problem has to be studied 
in future. 

In the application of the modular design, 
2DSOIL, the modules were organized around 
processes primarily because the structures of  the 
existing programs that were incorporated into 
2DSOIL were already based on processes, and 
this kind of  structure was suited to Fortran. A 
modular soil simulator could also be organized on 
the level of a soil cell (Dubois-Pelerin et al., 1992). 
Here a cell is defined as a polygonal element with 
a boundary as shown in Fig. 2. Calculations for 
mass transport, root growth, and transformations 
can be encapsulated in a cell module. This type of 
structure is much more easily implemented in an 
OOP language such as Smalltalk than in Fortran. 
Soil cell objects (modules) will have methods 
(functions) depending on their role in the p lant -  
soil system. New types of cells could easily be 
derived from a base class, for example cells with 
macropores, or boundary cells. However, the need 
for variable time steps and iterations may pre- 
clude a consistent implementation of  OOP. This 
problem was discussed by Dfibois-Pelerin et al. 
(1992) who could not achieve a fully OOP-consis- 
tent structure in their pilot attempt of  finite-ele- 
ment programming in Smalltalk because of  the 
necessity to iterate within a time step. This prob- 
lem is also discussed by Acock and Reddy (1997) 
and Lemmon and Chuk (1997). 

The process modules in our simulator are non- 
hierarchical relative to one another. The processes 
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can be grouped in other arrangements and then 
be partitioned recursively into objects. Each ob- 
ject is then internally partitioned into lower level 
objects (for example a transport process module 
that contains solute transport and water flow as 
submodules). The result will be a multilevel hier- 
archy. There is an opinion, however, that a single 
level of objects is adequate for most purposes 
(Kirk, 1990). Our experience with 2DSOIL shows 
that this is true for a generic soil and root process 
simulator since the cohesion within processes is 
relatively stronger than between processes. Our 
objective was to design a simulator that could be 
expanded and modified by users. Therefore we 
gave the priority to information hiding at the 
expense of hierarchy development. As a result, a 
user can work with modules without detailed 
knowledge of their internal structure. 

Since the coding of soil models has been done 
mostly in Fortran we used this language for the 
development of modules. Fortran 90, however, 
includes some OOP capabilitics. As mentioned by 
D6bois-Pelerin et al. (1992), the really successful 
implementation of OOP can be achieved by 'ex- 
panding the existing OOP environment', i.e. using 
existing classes and objects. The extension of the 
OOP environment of Fortran 90 can be a promis- 
ing way of embedding existing computationally 
efficient and well-tested codes into an OOP simu- 
lator of soil and root processes. 

Developers of agricultural and ecosystem mod- 
els generally think of their models as integrated 
scientific knowledge and rarely consider the coded 
model as software. Since models are software, and 
as the number of models grows rapidly, software 
engineering issues are becoming more and more 
important in modelling. Modularity is one such 
issue. Our experience with 2DSOIL convinced us 
that more efficient simulators can be built for 
particular objectives if recommendations and 
methods of software engineering are used. In cur- 
rent and future applications of this modular struc- 
ture we hope to demonstrate that modularity 
enhances the usefulness of models as scientific 
tools because it simplifies experimentation with 
different concepts. Current applications include 
modelling competition between two root systems 
(Caldwell et al., 1994), modelling evapotranspira- 

tion in a desert environment (Kemp et al., 1997) 
and the incorporation of the potato model, SIM- 
POTATO (Hodges et al., 1992) into 2DSOIL. We 
also hope that the modularity as illustrated by 
2DSOIL will widen the potential ring of soil 
model users by making a particular process mod- 
eller independent of specialists in other processes. 
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