Southern Research Station Headquarters - Asheville, NC
Main Logo of Southern Research Station, Stating: Southern Research Station - Asheville, NC, with a saying of 'Science you can use!'
[Images] Five photos of different landscape

Publication Information

Mail this page   Give us your feedback on this publication

Title: Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem
Author(s): Schafer, Karina V.R.; Oren, Ram; Ellsworth, David S.; Lai, Chun-Ta; Herricks, Jeffrey D.; Finzi, Adrien C.; Richter, Daniel D.; Katul, Gabriel G.
Date: 2003
Source: Global Change Biology (2003) 9, 1378-1400
Description: We linked a leaf-level C02 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy C02 uptake (AnC) at the Duke Forest free-air C02 enrichment (FACE) study. Rates of AnC estimated from the 4C-A model agreed well with leaf gas exchange measurements (Anet) in both CO2 treatments. Under ambient conditions, monthly sums of net C02 uptake by the canopy (AnC) were 13% higher than estimates based on eddy-covariance and chamber measurements. Annual estimates of AnC were only 3% higher than carbon (C) accumulations and losses estimated from ground-based measurements for the entire stand. The C budget for the Pinus taeda component was well constrained (within 1% of ground-based measurements). Although the closure of the C budget for the broadleaf species was poorer (within 20%), these species are a minor component of the forest. Under elevated C02, the C used annually for growth, turnover, and resptration balanced only 80% of the AnC Of the extra 700g Cm-2a-1 (1999 and 2000 average), 86% is attributable to surface soil CO2 efflux. This suggests that the production and turnover of fine roots was underestimated or that mnycorrhizae and rhizodeposition became an increasingly important component of the C balance. Under elevated CO2, net ecosystem production increased by 272g Cm-2a-1, 44% greater than under ambient CO2. The majority (87%) of this C was sequestered in a moderately long-term C pool in wood, with the remainder in the forest floor-soil subsystem.
View and Print this Publication (1.8 MB)
Pristine Version: An uncaptured or "pristine" version of this publication is available. It has not been subjected to OCR (Optical Character Recognition) and therefore does not have any errors in the text. However it is a larger file size and some people may experience long download times. The "pristine" version of this publication is available here:

View and Print the PRISTINE copy of this Publication (3.1 MB)

Publication Notes:
  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS Webmaster, srswebmaster@fs.fed.us if you notice any errors which make this publication unuseable.
 [ Get Acrobat ] Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility




Publication Links:

FIA Resource Bulletins

Publications Search


Search for on-line publications
containing the following:

 


(Uncheck this box to search all R&D Publications.)

Small logo of the USDASmall logo of the Forest Service