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Abstract

MARS is one of the AES �nalists. The up-to-date analysis of MARS

includes the discovery of weak keys, and Biham's estimation that a 12-

round variant of MARS is breakable. This estimation was partly founded

based on a 7-round impossible di�erential of the core of MARS. However,

no such attack was presented to-date. In this paper we present two new

longer impossible di�erentials of 8 rounds.

1 Introduction

MARS[5] is a block cipher designed by IBM as a candidate for the Advanced
Encryption Standard selection process, and was accepted as one of the �ve
�nalists.

The up-to-date analysis of MARS includes weak keys, and Biham's estima-
tion that MARS reduced to 12 rounds can be attacked[2]. This estimate was
partially based on the existence of a 7-round impossible di�erential of MARS[1]
(see [3, 4, 6] for more details on attacks using impossible di�erential ). In this
paper we introduce two 8-round impossible di�erentials of MARS' core.

2 An 8-Round Impossible Di�erential

We denote binary numbers with a subscript b, and a 32-bit binary numbers
whose all bits except of bit i are all zero, and only bit i is one by �i = 031�i110ib
(i.e., 1<<i in C). We also denote a string of 0's (and 1's) of variable lengths
(including zero length) by 0�b (and 1�b) and the complement of a bit-value x by
�x (�x = 1� x).
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The 7-round impossible wordwise (truncated) di�erential of MARS is of the
form

(0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0)

1 round

!= (0; 0; 0;W )
3 rounds
! (Z; 0; 0; 0)

where W , X, Y , and Z are non-zero, all pairs with di�erences of the form
(0; 0; 0; X) must have di�erences of the form (Y; 0; 0; 0) after 3 rounds, and
similarly the di�erences (0; 0; 0;W ) always cause di�erences (Z; 0; 0; 0) after 3
rounds. However, there are no pairs with di�erences (Y; 0; 0; 0) such that the
di�erences become (0; 0; 0;W ) after one round.

We observe that an extension of this impossible di�erential shows that when
W = �31 the intermediate one-round impossible di�erential can be replaced by

a two-round impossible di�erential (Y; 0; 0; 0)
2 rounds

!= (0; 0; 0; �31), for some
values of Y , leading to the following 8-round impossible di�erential for some
values of X

(0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0)

2 rounds

!= (0; 0; 0; �31)
3 rounds
! (�31; 0; 0; 0):

In the following we describe the 3-round di�erentials with probability 1.
Then, we describe why the 2-round intermediate di�erential is impossible, and
for which values of Y . The conjunction of the various di�erentials to the 8-round
impossible di�erentials is described at the end of this section.

2.1 The 3-Round Di�erentials with Probability 1

We denote additive di�erence by �, and XOR-di�erences by �xor. In every
round of MARS' core, every single 32-bit input word B, C and D inuences
only one 32-bit output word (on A, B and C respectively). Thus if we take
the input di�erence of one of the foregoing to be non-zero (e.g., �B 6= 0) and
all others including �A to be 0 (e.g., �A = �C = �D = 0), then we receive
the output di�erence with only one non-zero di�erence. In particular, if we
take some input di�erence (0; 0; 0; X) where X is non-zero, we get the di�erence
(0; 0; X1; 0) for some non-zero X1 after one round, then the di�erence becomes
(0; X2; 0; 0) for some non-zero X2 after the next round. Finally, the di�erence
becomes (Y; 0; 0; 0) for some non-zero Y after the third round. In total we get
a 3-round truncated di�erential (0; 0; 0; X)! (Y; 0; 0; 0) with probability 1.

Note that, if the least signi�cant bits of X have the form 1 0::0
|{z}

i

(i � 0), then

the least signi�cant bits of Y have the same form. It follows from the fact that
the least signi�cant bits of such form are preserved in both additive and XOR
di�erences.

In the particular case X = �31 we always get Y = �31: We start with the
following di�erence (0; 0; 0; �31), i.e., �A0 = �B0 = �C0 = 0;�D0 = �31. Since
�A0 = 0, the mixings to B, C, and D have zero di�erences. Since the di�erence
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Figure 1: 3-round di�erential
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Figure 2: Round i in forward mode on MARS core

in �D is only in the most signi�cant bit, this di�erence remains only in the most
signi�cant bit independently of whether the mixing operation is performed by
addition or by XOR. Therefore, we get the di�erence (�A1;�B1;�C1;�D1) =
(0; 0; �31; 0) after one round with probability 1. This can be repeated three
times, and we get the di�erence (�31; 0; 0; 0) with probability one after 3 rounds,
as shown in Figure 1. Notice, that this di�erential holds in all the rounds of the
core including the forward mode, the backward mode and even on the boundary
of both.

2.2 The 2-Round Impossible Di�erential

In this section we describe the 2-round impossible di�erential of MARS core.
Let (�A0;�B0;�C0;�D0) = (Y; 0; 0; 0), where Y is an unknown value and

(�A2;�B2;�C2;�D2) = (0; 0; 0; �31). We want to �nd the values of Y that
give impossible di�erential on a 2-round MARS core. We look for these values
separately in the cases of forward and backward modes.

2.2.1 Forward Mode

Figure 2 outlines one round of the forward mode.
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Figure 3: Round i backward mode on MARS core

� We know that Ri = ((Ai�1 <<< 13) �K) <<< 10 = (Di �K) <<< 10,
where K is an unknown subkey. Because, the key used in this stage is odd
and �D2 = �31, we have that �xorR2 = �9.

� We have �xorR2 = �9 and �C2 = �xorC2 = 0, so �xorD1 = �9. Thus,
we receive �xorA0 = �28.

� �xorA0 = �28 ) �A0 = aaa1 0::0
|{z}

28

b, where a is either 0 or 1 (i.e., �A0 =

��28).

In total, we get that all values of Y , with possible exception of ��28, give
impossible di�erentials on a 2-round MARS core in the forward mode.

2.2.2 Backward Mode

The Figure 3 outlines the backward mode round.

� �D2 = �31 ) �xorD2 = �31 ) �xorA1 = �18:

� �B0 = 0 ) �xorB0 = 0; Together with �xorA1 = �18 we get that
�xorR1 = �18:

� Ri = ((Ai�1 <<< 13) � K) <<< 10 = (Di � K) <<< 10, so �xor(Di �
K) = �xorRi >>> 10. So �xor(D1 � K) = �18 >>> 10 = �8, and
�(D1 �K) = �D1 �K = ��8. Because, the key used in this stage is odd,
we have two important conclusions:

1. �D1 has 10::0
| {z }

9

b as a 9 least signi�cant bits.

2. We may look at this as (�D1=2
8)�(K mod 224) = �1. So the 24 least

signi�cant bits of the key are equal to the inverse of �(�D1=28) mod
224.
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� On the other hand:

L2 = (S[9 least signi�cant bits of (A1+K+)]�(R2 >>> 5)�R2) <<< (5
least signi�cant bits of R2),

where K+ is an unknown subkey.

{ �xorA1 = �18 so the 9 least signi�cant bits of �A1 are 0, then �(9
least signi�cant bits of (A1+K

+)) = 0, so �S = 0 and thus �xorS =
0.

{ As in forward mode, we get �xorR2 = �9, so �xor(R2 >>> 5) = �4.

{ �xor(S � (R2 >>> 5)�R2) = 0::0
|{z}

22

1000010000b.

{ A variable rotation is performed on L2 by a number of bits derived
from the 5 least signi�cant bits of R2. Because �xorR2 = �9 both
rotations are by the same number of bits (denoted by rl), so we have:

�xorL2 = 0::0
|{z}

22

1000010000b <<< rl:

{ After the rotation, the result is always of the form:

�xorL2 = 0::0
|{z}

30�i�j

1 0::0
|{z}

j

1 0::0
|{z}

i

b;

where j = 4 or 26, and i = 0::30� j.

{ Thus we have �L2 = b::b
|{z}

30�i�j

�a a::a
|{z}

j

1 0::0
|{z}

i

b, where a,b are unknown

bit values.

� Because �L2+�D1 = �C2 = 0, we have that �D1 = �b::�b
|{z}

30�i�j

a �a::�a
|{z}

j

1 0::0
|{z}

i

b.

But we know that �D1 has 10::0
| {z }

9

b as the 9 least signi�cant bits, so only

a single possibility remains:

�D1 = �b::�b
|{z}

18

a �a::�a
|{z}

4

1 0::0
|{z}

8

b:

Observation: �D1 may have four possible values:

{ 0::0
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b and 1::1
|{z}

18

0 1::1
|{z}

4

1 0::0
|{z}

8

b (i.e., � 0::0
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b).

{ 0::0
|{z}

18

0 1::1
|{z}

4

1 0::0
|{z}

8

b and 1::1
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b (i.e., � 0::0
|{z}

19

1::1
|{z}

4

1 0::0
|{z}

8

b).
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We have two pairs of possible values for �D1, and thus there are only two
possible values (one for each pair) for the 24 least signi�cant bits of the key
used in �rst round for multiplication (according to the conclusion in the
beginning of this section(2.2.2)). These key values in hexadecimal form
are f07c1fx (for �D1 = � 0::0

|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b) and ef7bdfx (for �D1 =

� 0::0
|{z}

19

1::1
|{z}

4

1 0::0
|{z}

8

b).

� It is known that sequences of the form 01�1b or of the form 10�1b in the
additive di�erence (�) are translated to the sequence of the form either
100�1�1b or 01�1b in the corresponding XOR di�erence (�xor)1. Thus we
have two options:

1. �xorD1 = 0�1�
|{z}

18

100�1�
| {z }

5

1 0::0
|{z}

8

b

2. �xorD1 = 0�1�
|{z}

18

01::1
| {z }

5

1 0::0
|{z}

8

b

� �xorA0 = �xorD1 >>> 13, so there are two possible values for �xorA0:

1. �xorA0 = 00�1�
| {z }

4

1 0::0
|{z}

8

0�1�
|{z}

18

1b

2. �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

18

0b

� In the �rst case, �xorA0 is odd, so the �A0 is odd too, and we cannot
show that this case is impossible. In the second case, �xorA0 is even so the
�A0 is even too, and therefore we can divide this case in two sub-cases:

1. There is at least one 1 in 0�1�
|{z}

18

b, so we have 10b as two least signi�cant

bits in �xorA0 and �A0. This sub-case is impossible (see Appendix A
for a detailed proof).

1For checking this fact, look at di�erent cases of such sequence with and without carry
from previous bits. For example, we take �I = 10::01b, i.e., I

1 � I
2 = 10::01b. Then either:

1. The least signi�cant bit of I
1 is 1: then the least signi�cant bit of I

2 must be 0, and
thus there is no carry to the next bit. On the other hand, the next bit in the di�erence
is 0. Combining these together we conclude that the next bit in I1 and the next bit in
I
2 must be equal. Continuing in this way we get that �xorI = 10::01b.

2. The least signi�cant bit of I1 is 0: then the least signi�cant bit of I2 must be 1, and
thus there is a carry to the next bit. On the other hand, the next bit in the di�erence
is 0. Combining these together we conclude that the next bit in I1 and the next bit in
I
2 have di�erent values. Continuing in this way we get that the corresponding bits in

I
1 and in I

2 are di�erent till either: 1) in some bit I
1 has 1 and in I

2 has 0, or 2) we
reach the most signi�cant bits with di�erence 1 and, due to existence of a carry from
the previous bits, this bit in I

1 and I
2 must have the same value. So �xorI is equal

either to 100�1�11b or to 01::11b.

6



2. There are no 1's in 0�1�
|{z}

18

b, so �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

27

b, and �A0 has

1 0::0
|{z}

27

b as 28 least signi�cant bits. For this sub-case, we cannot show

that it is impossible.

Thus, we have a 2-round impossible di�erential for any even Y whose 28
least signi�cant bits are not 10::0

| {z }

28

b. For other Y 's we cannot say anything

whether there exist impossible di�erentials. However, if the di�erentials are not
impossible for some Y , then the 24 least signi�cant bits of the multiplication
key used in the �rst round of the di�erential are either f07c1fx or ef7bdfx.

2.3 Conjunction to the 8-Round Impossible Di�erentials

Wewant now to check what values ofX give the 8-round impossible di�erentials.
We describe the two cases in which the two middle rounds work in forward mode
and in backward mode.

For forward mode, we have a 2-round impossible di�erential for any value of

Y , except of��28. Because in (0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0) the relation between

X to Y passes through two additions and one exclusive-or operation, the 29
rightmost bits remains 1 0::0

|{z}

28

b and the 3 most signi�cant bits may get any value.

So, we have the 8-round impossible di�erentials (0; 0; 0; X)
8 rounds

!= (�31; 0; 0; 0)
for all X, except of those with 10::0

| {z }

29

b as the 29 least signi�cant bits.

For backward mode, we have a 2-round impossible di�erential for any even
Y , except of those with 10::0

| {z }

28

b as 28 least signi�cant bits. As in forward mode,

in (0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0) the 28 least signi�cant bits remains 10::0

| {z }

28

b and

the 4 most signi�cant bits may get any value. So we have the 8-round impossible

di�erentials (0; 0; 0; X)
8 rounds

!= (�31; 0; 0; 0) for any even X, except of those with
10::0
| {z }

28

b as the 28 least signi�cant bits.

3 Another 8-Round Impossible Di�erential

There is another 8-round impossible di�erential on MARS' core:

(0; 0; 0; �31)
3 rounds
! (�31; 0; 0; 0)

3 rounds

!= (0; 0; X; �31)
2 rounds
! (Y; �31; 0; 0);

7



where the 3 middle round are in backward mode, and X,Y are non-zero val-
ues such that X must have 0::0

|{z}

24

b as the least signi�cant bits, and the 8 most

signi�cant bits of X may have any value (except of all zeroes). Thus, as was
shown in the previous section, Y must have 0::0

|{z}

24

b as the least signi�cant bits,

and the 8 most signi�cant bits may have any value (except of all zeroes). The
explanation for this di�erential is similar to the explanation described earlier.
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A Impossible di�erential for Y , with 10b as least

signi�cant bits, in backward mode on MARS

core.

In this appendix we show that the sub-case of backward mode where �xorA0 =
1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

17

10b, mentioned in section 2.2.2, is impossible.

� As in forward mode �D2 = �31 ) �xorR2 = �9.

� �xorR2 ��xorB1 = �xorA2 = 0, so �xorB1 = �xorR2 = �9.

� �xorB1 = �9 ) �B1 = a::a
|{z}

22

1 0::0
|{z}

9

b, where a is unknown bit value.

� �C0+�M1 = �B1 = a::a
|{z}

22

1 0::0
|{z}

9

b. Because �C0 = 0, �M1 = a::a
|{z}

22

1 0::0
|{z}

9

b.

� �M1 = a::a
|{z}

22

1 0::0
|{z}

9

b ) �xorM1 = 0�1�
|{z}

22

1 0::0
|{z}

9

b.

� We know that Mi = (Ai�1 +K) <<< (low 5 bits of (Ri >>> 5)).
However, because �xorR1 = �18, both rotations are by the same number
of bits (denoted rm), and because �K = 0 we have

�M1 = �A0 <<< rm

or
�A0 = �M1 >>> rm:

� We know that �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

17

10b. It gives us that �A0 =

x
|{z}

4

�a a::a
|{z}

9

z
|{z}

17

10b, where x; z are unknown binary word and a is unknown

bit value.

� The �A0 has 10b as 2 least signi�cant bits, so the only one possibility
for rm to be 8. Thus �xor(M1 >>> 8) = 0::0

|{z}

8

0�1�
|{z}

22

10b, and therefore,

�(M1 >>> 8) = b::b
|{z}

8

y
|{z}

22

10b, where b is an unknown bit value and y is

unknown binary word.

� Now we have �(M1 >>> 8) = b::b
|{z}

8

y
|{z}

22

10b and �A0 = x
|{z}

4

�a a::a
|{z}

9

z
|{z}

17

10b.

These must be equal. However, the bit 26th of the later di�er than bit
27th, while bits 26th and 27th of the former are equal. This contradicts
the fact that both values must be equal.
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