Results Obtained from Reconnaissance-Level and Detailed Reservoir Characterization Methods Utilized for Determining Hydraulic Property Distribution Characteristics at Mountaineer AEP #1

FA. Spane ⁽¹⁾, PD. Thorne ⁽¹⁾, N. Gupta ⁽²⁾, P. Jagucki ⁽²⁾, TS. Ramakrishnan ⁽³⁾, and N. Mueller ⁽³⁾

- (1) Pacific Northwest National Laboratory
- (2) Battelle Memorial Institute
- (3) Schlumberger-Doll Research

March 21, 2006 PNNL-SA-48622

> Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Presentation Outline

- **Background Information**
- Hydraulic Property Characterization Methods
 - Reconnaissance-Level
 - **Detailed Test Techniques**
- Test Results/Examples
 - Open Borehole
 - Reservoir Zones
 - (Sandstone) - Rose Run
 - Copper Ridge (Dolomite)
- Summary/Conclusions

Mountaineer/Ohio River Valley CO₂ **Storage Project Participants/Sponsors**

- DOE/NETL
- American Electric Power
- **Battelle Memorial Institute**
- Schlumberger
- Pacific Northwest National Laboratory
- BP
- The Ohio Coal Development Office

Borehole Location

Legend

Power Plants

- Coal
- Nat. Gas
- Oil

Planned Power Plants

- Coal
- Nat. Gas

Other Industrial Plants

- Ammonia
- Cement
- Ethylene & Ethylene Oxide
- Gas processing
- Hydrogen
- Iron & steel
- Refineries

Borehole History/Testing Background

Background Information:

- Borehole drilled between May - July 2003
- Open-borehole section: 6,285 to 9,190 ft
 - 293 ft of core
 - 23 side-wall cores
- Borehole hydrologic testing:
 - March April 2004
 - October 2005

Borehole As-Built/General Stratigraphy

Open Borehole Reconnaissance-Level Techniques

- **General Characteristics**
 - Can scan large formation sections rapidly
 - Provides qualitative/quantitative information on permeability distribution
 - Small-scale of investigation
 - Affected by formation damage/well skin effects

AEP #1 Reconnaissance-Level Techniques Cont'.

- Reconnaissance Characterization Techniques
 - Wire-Line Methods
 - Nuclear Magnetic Resonance
 - CMR (Combined Magnetic Resonance)
 - **Dynamic Fluid Flow Tests**
 - Flowmeter
 - Fluid Temperature/Conductivity
 - Core Profile-Permeability Scan
 - Sequential/Composite Borehole Slug/DST Tests

Open Borehole: Dynamic Fluid Flow Test Results

General Findings:

- Little formation fluid inflow below 8,320 ft
- Significant inflow/outflow zones within the Copper Ridge and Rose Run **Formations**

Open Borehole: CMR and Composite Slug Test Results

General Findings:

- Relative correspondence between composite slug tests and converted summation CMR results
- Correspondence lends credence to the continuous vertical distribution depicted by the CMR survey

Reservoir: Detailed Hydraulic Characterization Methods

- General Characteristics
 - Test interval isolated using straddle-packer system
 - Multiple-test methods provide a range of investigation scale from small to large
 - Provides detailed quantitative information on reservoir permeability
 - Formation damage/well skin effects can be identified/quantified

Detailed Hydraulic Test Methods Cont'.

- Characterization Test Methods
 - Slug/DST
 - Constant-Drawdown/Rate Tests
 - Drawdown Phase Analysis
 - Recovery Phase Analysis
 - Test History Match
 - Laboratory Core Permeability

Detailed Characterization: Rose Run

Detailed Characterization: Air-Lift Recovery Test Analysis

Detailed Characterization: Test History Match

Comparison of Rose Run Core Profile K Scan, CMR, and Detailed Hydraulic Test Results

General Findings:

- Relatively close correspondence between converted core and CMR permeability results
- Correspondence between detailed hydraulic test results lends credence to the continuous vertical distribution depicted by the core probe scan and CMR survey

Regional Occurrence of Permeability Zone Within Copper Ridge

- Open borehole fluid dynamics logging suggested significant inflow production zones occurring from the Copper Ridge Dolomite
- Permeable "B" Zone within the Copper Ridge appears to occur over a limited 4-state region

Permeability Characteristics Within Copper Ridge Dolomite

- Wireline surveys suggest the presence of multiple thin dissolution layers, which may represent zones of significant permeability/ porosity within the formation
- Detailed hydraulic testing indicates moderate formation damage/well skin (+48)

•
$$S_k = In(r_{sk}/r_w) \times (k/k_{sk} - 1)$$

Comparison of Copper Ridge CMR and Detailed Hydraulic Test Results

- Formation damage is likely variable within the formation
- Less correspondence between CMR and average detailed hydraulic test results
- CMR may not provide a complete permeability distribution within the formation

Summary

Use of reconnaissance-level and detailed hydraulic characterization methods have been instrumental in identifying two candidate reservoir zones for carbon injection/sequestration at AEP #1

- Rose Run Sandstone
- Copper Ridge Dolomite
- Hydraulic property results obtained using these methods are consistent with reported regional values and observations for these two characterized reservoir zones

Summary

- Reconnaissance-level hydraulic characterization methods provided representative vertical distributions of permeability for open borehole sections and within reservoir zones not significantly impacted by formation damage/well skin effects
- For reservoirs exhibiting formation damage, care should be exercised in using permeability distributions obtained with these methods