

UCG-- Country Status

Asia Pacific Partnership On Clean Development and Climate

Dr. D. M. Kale

1

Coal

Gods Gift

Ancient Sunlight

Coal Gasification

Coal gasification - Controlled combustion of coal to obtain syn gas.

Underground Coal Gasification (UCG)

Surface Coal Gasification (SCG)

UCG - Products

ओएनजीसी

ongc

making tomorrow brighter

Underground Coal Gasification (UCG)

A process for converting Coal deposits into Gas insitu.

UCG - Potential

UN MINEABLE COAL RESOURCES : 210.14 Billion tons UN MINEABLE LIGNITE RESOURCES : 32.76 Billion tons TOTAL UNMINEABLE RESOURCES : 242.90 Billion tons PERCENTAGE OF COAL AMENABLE TO UCG : 30 % COAL RESERVES AMENABLE TO UCG : 72.87 Billion tons UCG GAS (considering 2700 m3/ton) : 196.749 Trillion m³ NATURAL GAS EQUIVALENT : 19.67 Trillion m³ CALORIFIC VALUE OF PRODUCED GAS $: 3-5 MJ/m^{3}$

UCG - Potential

UCG - Potential Gujarat

Coal Reserves estimated by ONGC in Gujarat :

Patan Tharad block

:60 Billion tons

Ahmedabad Mehsana block :63 Billion tons

Natural Gas Equivalent of UCG

 Gas from one block 6 Billion tons (10%) of coal Reserves : 1.5 Trillion M³

Indian Natural Gas reserves 1 Trillion M³

 Two boreholes are drilled into the coal seam

 Coal is ignited, combustion is maintained by injecting air or oxygen and steam

 The resulting gases are brought to surface by the second bore hole

Coal Lignite fields in INDIA

Two boreholes are drilled into the coal seam

Coal is ignited, combustion is maintained by injecting air or oxygen and steam

The resulting gases are brought to surface by the second bore hole

INFORMATION WELLS

	UCG-1	UCG-2	
Spud Date	25-6-1986	16-3-1990	
Drilling completed	30-8-1986 22-5-1990		
Location	12Km NE MC	300m MC-2	
Drilled depth	1005m	5m 1159.9m	
Coring length	345.50m 265.25m		
Targeted coal seam	Sobhasan –I Sobhasan -III		
Interval	855 - 872m	1013.5-1026m	
Thickness	16.5m 12.5m		

UCG-1

- Hydrological
 - Coal samples : 57 boxes,
 - Non-coal samples
 : 180 boxes,

: 14 objects,

- Petrophysical, Chemical and Analytical studies:
 - KDMIPE, Dehradun; Coal Survey Lab, RRL; CMPDIL, Ranchi;
- Subsidence studies: CMRS, Dhanbad.

Proximate Analysis Coal samples of Gujarat

	S-1	<mark>S-2</mark>	<mark>S-3</mark>	<mark>S-4</mark>	<mark>S-5</mark>
Moisture	3.84	4.38	4.84	3.26	4.34
Ash	1.88	3.68	5.51	1.37	3.00
Volatiles	47.63	50.07	48.05	50.24	50.23
F-Carbon	46.65	41.87	41.60	45.13	42.43
CV cal/gm	7129	6792	6769	7382	7065

Hydrogeological Section of Tertiary Aquifersie

ओएनजीसी

m a k i n o

tomo

Esteemed Partners

◆ ONGC + CIL + NLC ♦ SCCL ◆ GIPCL ✤ GMDC + GSPC

Demonstrated Expertise & Strength

Expertise in:

- Drilling
- In-Situ Combustion
- 3-D Seismic
- Geological Mapping
- Capability of Handling High Pressures
 CONSULTANTS, LABORATORY BACK-UP
 - UCG Expertise from Skochinsky Institute of Mining
 - IIT, Bombay; IICT, Hyderabad; CMRI, Dhanbad.

Experience in:

- Ignition, Tracking Combustion Front
 - More than 50 air injectors
- Compression & Injection of Oxygen/ Air/ Steam:

Air injection @ 2 million m3/day is already going on in Balol & Santhal field

Similar facilities may be required for UCG

• Flue gas utilisation:

Flue gases producing from heavy oil areas are comparable with the UCG gases

Schematic of a UCG Project

Typical composition of UCG Dry Syn Gas

Calorific Value 2600 Kcal / sm³ With no CO2 capture Calorific Value 4000 Kcal / sm3 With CO₂ capture

UCG - Utility

SYN GAS

Power

Nitrogenous Fertilizers

Petrochemicals (MTO, MTP technology)

Liquid Fuels (GTL technology)

UCG – Project Timeline

UCG - Road Map

PROPOSED WORK PLAN FOR ENTERPRISE UCG CREATION

UCG - Advantage

 Facilitates exploitation of deep / unminable coal reserves

 Higher efficiency coupled with low capital costs than conventional coal-fired station

Eliminates SO₂ emission

UCG - Advantage

- Environmentally friendly
 - Significant reduction in CO2, SOx, NOx emissions
 - No Waste disposal (Ash Trapped Underground)
 - Reduced emission of Green House Gases by CO₂ Sequestration
- Short Construction and Commissioning Time

UCG - Advantage

 Replacing underground mines under complicated, risky conditions of operation.

Environmental protection.

 Augment and replace dwindling valuable fuels as oil and gas

UCG – Policies

Decision requiring attention

- Royalty for coal in case of UCG need be nominal since without UCG resource can not be exploited.
- Initially low tariffs to encourage investments.
- Power generation from UCG needs special fiscal regime.
- Deploying UCG / SCG syn-gas towards chemical feedstock and for liquefaction needs R&D as well as high incentives.

Annual Global CO₂ emissions of 24 Gt CO₂ emissions in India are 900 MMt

 Global concern on rising concentration of CO₂
 Increased from 280 to 370 ppm

Carbon Sequestration

ओएनजीसी

onec

m a k i n e

tomo

