# $B_c$ Results from CDF II

# **Satyajit Behari** (For the CDF Collab.) Johns Hopkins Univ., Baltimore, USA

23<sup>rd</sup> Jul. 2005

HEP2005 Europhysics Conference, Lisboa, Portugal

### Contents

### Introduction

- $\oplus$  Interests in B<sub>c</sub> Meson
- Measurements
  - **4** Mass in fully reconstructed  $B_c \rightarrow J/\Psi \pi$  decay
  - **4** Cross-section×BR ratio in  $B_c \rightarrow J/\Psi \mu v_{\mu}$  decay

♣ Cross-section×BR ratio in B<sub>c</sub> → J/Ψ ev<sub>e</sub> decay

### Summary

### Heavy Flavor Physics at Tevatron



Since  $\sigma(bb) \ll \sigma(pp) \Rightarrow$  Events have to be selected with specific triggers

**Trigger requirements:** 

large bandwidth, background suppression, deadtimeless

23rd July 2005

# Triggers for B<sub>c</sub> Analyses

For Signal and Control Sample

- Di-muon trigger
  - **↓** p<sub>T</sub>>1.5GeV, |η|<0.6</li>
    **↓** p<sub>T</sub>>2GeV, 0.6
    **↓** η|<1</li>
  - $\phi$  < 2.5° and Muon ID cuts
  - Yields higher than Run I (low p<sub>T</sub> threshold, increased acceptance)



For particle ID studies

#### Two track trigger

4 2 opposite charged displaced tracks

**↓** p<sub>T</sub> > 2 GeV, 120μm < |IP| < 1mm

 $D^* \rightarrow D^0 \pi, \Lambda \rightarrow p \pi$ 

#### Single electron trigger

- A track matched to a central electron cluster
- **↓** p<sub>T</sub> > 8 GeV

**↓**γ → e e

23rd July 2005

# What is interesting about ${\sf B}_{\sf c}$

- The B<sub>c</sub> is a ground state 5c meson, first experimentally observed by CDF I (PRL 81, 1998). The measured mass is less precise than theoretical prediction.
  ⇒ Test of lattice QCD and potential models
- Unlike quarkonia it carries flavor
  Probes heavy quark dynamics in new territories
- ◆ Spectroscopy of excited states
  ⇒ Possible observation, test of models
- Production rate can shed light on fragmentation mechanism
  - 🖊 Gluon fusion diagram dominant

Recent cross-section calculation 7.4 nb [Saleev et al, Phys. Lett. B605, 311 (2005)]



### Interests in B<sub>c</sub> Continued..

- ⊕ No annihilation decay channel for
   $B_c \rightarrow$  hadrons via gluons
  - ⇒ Only weak decays, large lifetime

$$\Gamma_{B_c} = \Gamma_b (\approx 25\%) + \Gamma_c (\approx 65\%) + \Gamma_w$$

### Long term...

- $B_c$  as a source of (lepton) tagged  $B_s \Rightarrow B_s$  mixing
- CP asymmetry measurement in  $\overline{D}^{0}D_{S^{+}}$  decay mode



# CDF Run I B<sub>c</sub> Measurements



 $B_c \rightarrow J/\psi \pi^{\pm} Search$ 

#### Pros:

- Exclusive mode; Precise mass measurement possible
- ♣ Same topology well known normalization mode:  $B^+ \rightarrow J/ψ$  K<sup>+</sup>

#### Cons:

 B<sub>c</sub> lifetime is shorter than light bmesons (charm decay dominates)

 $\Rightarrow$  Need aggressive secondary vertex resolution

Expected signal > 10 times smaller than the signal in the semileptonic decay.

### Analysis method:

- Reconstruct  $\mu^+\mu^-$  vertex, Constrain  $\mu^+\mu^-$  to  $J/\psi$  mass
- Attach a third track w/ p<sub>T</sub> threshold
- Event-by-event primary vertex



Primary vertex



# **Cut Optimization**

### Blind analysis:

- Search range: 6.4 ± 2 σ = [5.6 to 7.2] GeV/c<sup>2</sup>
- Use MC for: optimizing cuts, estimate sensitivity, relative to B<sup>+</sup>

### Cut optimization:

Score function: (for 3σ search)

$$\Sigma = \frac{S}{1.5 + \sqrt{B}}$$

- Signal from MC and background from data
- Tight vertex requirements using 3D χ<sup>2</sup>, 2D decay length significance, pointing angle, impact parameter etc.



(Prompt  $J/\Psi$  + track from PV)



(bb production from gluon splitting)

### **Peak Search Criteria**

390 data events within mass range

Expected signal:

$$\boldsymbol{S} = \frac{\varepsilon_c}{\varepsilon_u} N_u \boldsymbol{R} = 4 - 30 \text{ events } (\boldsymbol{c} \, \tau \pm 1\sigma)$$

$$\frac{\mathcal{E}_c}{\mathcal{E}_u} = 58.6 \pm 1.8\% \text{ (from MC)}$$

- Yellow: Toy MC with no signal, corresponding to 0.1% prob. of background fluctuation
- **Blue**: Toy MC for N<sub>sig</sub>=30 events

```
\Rightarrow Score function threshold: \Sigma > 3.5
```



### **Peak Evaluation**

- A sliding fit is performed in the search region and the score function is estimated. Σ<sub>max</sub> = 3.6
- Probability for the background to give a peak at Σ<sub>max</sub> = 3.6 is estimated from Toy MC as 0.27%.
- As a consistency check compare partially reconstructed B<sub>c</sub> yield with that for B<sup>+</sup>
  - Study impact parameter of the pion with J/Ψ vertex
  - Yield difference between upper and lower sidebands consistent with B<sup>+</sup>



### B<sub>c</sub> Mass Measurement

 Unbinned likelihood fit w/ width fixed in 6.180 < M < 6.480</li>



S.Behari, Bc Results from CDF II, HEP2005

360 pb<sup>-1</sup>

under peak

Mass = 6.2870±0.0048 GeV/c<sup>2</sup>

Resolution (fixed) = 15.5 MeV/c<sup>2</sup> Signal: 18.9 ± 5.7 events

Mean exp. backgd.: 10.0±1.4 evts

CDF Run II Preliminary

 $J/\psi \pi^+$ 

# $\sigma \times BR$ Ratio in $B_c \rightarrow J/\psi \mu \nu$

- Analysed ~360 pb<sup>-1</sup>
- ↔ Normalization mode: B<sup>+</sup>→ J/ψ K<sup>+</sup>
- Basic cuts:
  - **4** Good muons:  $\chi^2 < 9$
  - 🜲 |Μ(μμ) Μ(J/ψ)| < 50 MeV
  - **4** J/ψ mass constrained, Prob( $\chi^2$ )> 1%,  $c\tau$  > 60μm
  - **4** Third muon  $p_T > 3 \text{ GeV}$
  - ♣ Remove B<sup>+</sup>→ J/ψ K<sup>+</sup> within M<sub>B</sub> ± 50 MeV

#### Backgrounds:

- Fake muons from decay-in-flight of K,π,p
  - Estimated by assigning muon probabilities to the third track, obtained from PID quantities, dE/dx and ToF



Predicted background: 16.3±2.9 events

### **Background Predictions**



### σ×BR Ratio Results



# $\sigma \times BR$ Ratio in $B_c \rightarrow J/\psi e v$

- ⊕ 360 pb-1 data,
  Normalization mode: B<sup>+</sup>→ J/ψ K<sup>+</sup>
- Basic cuts:
  - Similar J/ψ selection as muon mode
  - Soft electron identification:
    - Good quality tracks, p<sub>T</sub> > 1 GeV, matched to central strip chambers and EM calorimeter
    - Cut on a likelihood ratio variable constructed from 10 electromagnetic and tracking variables P<sub>e</sub> < 0.7</p>
    - Additional cut on specific ionization, dE/dx:

$$Z_{e} = \log\left(\frac{dE / dx_{measured}}{dE / dx_{predicted}}\right) \quad Z_{e} / \sigma_{z} > -1.$$



### Backgrounds

- Fake electrons from decay-inflight of K,π,p
- ✤ From bb fragmentation
- From fake J/ψ
- Conversion electrons:
  - Removed during J/ψ e sample selection
  - Residual conversion electrons are found by pairing electron candidates with tracks, w/o electron requirement

$$N_{resid} = N_{conv} \times \frac{1 - \varepsilon_{conv}}{\varepsilon_{conv}}$$



### σ×BR Ratio Result



#### For $p_T(B_c) > 4 \text{ GeV}$ , $|\eta(B_c)| < 1$

 $\frac{\sigma_{B_c} \cdot BR(B_c \rightarrow J/\psi e \nu)}{\sigma_{B^{\pm}} \cdot BR(B^{\pm} \rightarrow J/\psi K^{\pm})} = 0.282 \pm 0.038(stat.) \pm 0.035(yield) \pm 0.065(acc.)$ 

### Summary

Φ A precise B<sub>c</sub> mass measurement in B<sub>c</sub> → J/Ψ π decay is in agreement with lattice QCD.

Φ σ\*BR ratios of B<sub>c</sub> measured in Bc → J/Ψ μ,e v decays improve upon CDF Run I measurements.

Opdate of mass and BR ratio measurements using high statistics (~ 1 fb<sup>-1</sup>) are underway.

Lifetime and other studies to follow..

### Backup-1 DØ Run II (ICHEP2004)



### $B_c \rightarrow J/\psi \mu v$ : 95 ± 12 ± 11 signal events

Lifetime:  $(0.45^{+0.12}_{-0.10} \pm 0.12)$  ps Mass:  $(5.95^{+0.14}_{-0.13} \pm 0.34)$  GeV/c<sup>2</sup>

 $L = 210 \text{ pb}^{-1}$ 

### Backup-2 Expected B<sub>c</sub> Signal w.r.t B<sup>+</sup> data



define 
$$R_2 = \frac{\mathcal{BR}(B_c \to J/\psi\pi^{\pm})}{\mathcal{BR}(B_c \to J/\psi l\nu)}$$
  
 $R = R_2 \times \frac{\sigma(B_c) \times \mathcal{BR}(B_c \to J/\psi l\nu)}{\sigma(B_u) \times \mathcal{BR}(B_u \to J/\psi K^{\pm})}$ 

To evaluate the expected signal we use CDF Run I measurement and one ratio of *BR*.

We know  $\frac{\sigma(B_c) \times \mathcal{BR}(B_c \to J/\psi l\nu)}{\sigma(B_u) \times \mathcal{BR}(B_u \to J/\psi K^{\pm})} = 0.132 \pm 0.06$  From CDF Run-1

All theoretical uncertainties are in the value of  $R_2$ 

23rd July 2005