

Steady-State Operation of Fusion Plasmas - the Stellarator Project Wendelstein 7-X

Thomas Klinger Max-Planck Institute for Plasma Physics

on behalf of the

enterprise Wendelstein 7-X

steady-state operation: this is likely to be a requirement in a future FPP

Tokamak steady-state operation is a subject of current research

- $\beta_N \sim 4$ required achieved only with advanced tokamak scenarios (ITB's)
- Control of pressure profiles, current profiles and instabilities required
- Several 100MW of CD required efficiency only 20-40% must go up

Stellarators are steady-state "by nature"

- The control issue is much less a problem only weak CD needed
- Plasma performance not yet satisfactory (esp. τ_{E} and β)
- Divertor solution and control of impurities required
- Several technologies must be developed in general
- Superconducting magnets (also HTSCs)
- Steady-state H&CD solutions
- Steady-state capable in-vessel components
- The right materials in general

- I. Principles
- II. Island divertor
- III. Plasma currents
- **IV. Performance**
- V. Construction status

Max-Planck-Institut für Plasmaphysik

In stellarators steady state operation is taken for granted.

Max-Planck-Institut für Plasmaphysik

A very schematic comparison ...

- current in coils and plasma
- current-carrying plasma
- self-organized equilibrium

- ✤ good neoclassical confinement
- toroidal symmetry
- Advanced scenarios and current drive
- ♦ active control of plasma instabilities

- current in the coils only
- very small plasma current
- field-defined equilibrium

- ✤ good neoclassical confinement
- ♦ quasisymmetry
- steady state operation
- no current driven instabilities

 θ

θ

Q

Stellarator symmetries

Max-Planck-Institut für Plasmaphysik

by courtesy of J. Sanchez

A missing link

<complex-block>

- complete the physics understanding of quasi-symmetry
- development of compact stellarators
- a physics link to advanced tokamak operation
- let's advertise a revision of previous decisions

LHD and W7-X

Max-Planck-Institut für Plasmaphysik

LHD

$$\begin{split} &\mathsf{R}_{\mathsf{ax}} = 3.4 - 4.1 \text{ m, } a \leq 0.65 \text{ m} \\ &\mathsf{V}_{\mathsf{pl}} = 30 \text{m}^3 \\ &\mathsf{B} \leq 2.9 \text{ T, } \mathfrak{t}(0) \geq 0.35, \, \mathfrak{t}(a) \leq 1.5 \\ &\mathsf{high shear, } 10 \mathsf{ field periods, } \mathsf{I} = 2 \end{split}$$

W7-X

R_{ax} = 5.5 m, a ≤ 0.53 m V_{pl} = 30m³ B ≤ 3.0 T, $\iota(0) \ge 0.88$, $\iota(a) \le 0.97$ low shear, 5 field periods

- stable high-pressure equilibrium
- minimized stochastic layer formation
- required for reasonable divertor solution

W7 & LHD magnetic configuration

Max-Planck-Institut für Plasmaphysik

W7-line: avoid islands by low shear LHD-heliotron: high shear, small islands

The optimized stellarator W7-X

7 optimization criteria

- 1. feasible modular coils
- 2. good, nested magnetic surfaces
- **3.** good finite- β equilibria
- 4. good MHD stability
- 5. small neoclassical transport
- 6. small bootstrap current
- 7. good confinement of fast particles

development tasks

- **1.** optimum $nT\tau_E$ and high β discharges
- 2. steady state operation
- 3. plasma-wall interaction
- 4. island divertor operation
- 5. turbulent transport

Max-Planck-Institut für Plasmaphysik

poloidal divertor

island divertor

ASDEX upgrade

Wendelstein 7-X

The W7-AS island divertor

the high-density high-confinement (HDH) mode was discovered in 2002 on W7-AS

HDH-regime - a true bifurcation with hysteresis, profile differences, ...

- confinement of energy increases
- confinement of impurities deteriorates

[McCormick PRL 2002 No 015001]

High-beta experiments in HDH

Based on resonant magentic islands @ edge

- A viable divertor solution for stellarators
- Controlled heat and particle deposition
- Density control even at high plasma densities ~ 2.10²⁰m⁻³
- Establishment of High-density H-mode (HDH)
 - Establishes at n~1.5 ... 2.5 ·10²⁰ m⁻³

 - Different from ELM-free H-mode
 - Improved energy confinement
 - Impurity screening ← high edge densities

	RFP	Tokamak	W7-X	LHD	NCSX
diamagnetic current	O (1)	O (1)	0 (1)	O (1)	O (1)
Pfirsch-Schlüter current	0	O (1)	→ 0	O (1)	O(1)
bootstrap current	0	\rightarrow O (1)	→ ()	O (-1)O (1)	O (1)
induced current	\rightarrow O (1)	$O(1) \rightarrow 0$	0	0	0
plasma dynamo	$O(1) \rightarrow 0$	0	0	0	0
current drive	$0 \rightarrow O(1)$	$0 \rightarrow O(1)$	0	0	0

all currents are normalized to their respective frame

By courtesy of F. Wagner

It is possible to reduce systematically the currents in the plasma.

Non-inductive equilibrium

- 1d transport modelling coupled with ray-tracing code
- Off-axis X2-heating in standard configuration
- Current drive required for control of edge iota
- Current drive efficiency *P*=10MW $<\beta>=2.7\% I_{CD}=-88$ kA

MAX-PLANCK-GESELLSCHAFT

- O2-launch angle 12°
- Heating up to 2.1.10²⁰m⁻³
- Single pass absorption drops to 50%
- Double pass with retro-reflectors

Current drive in X2 and O2

Global energy confinement

Max-Planck-Institut für Plasmaphysik

key parameters

major radius:	5.5 m
minor radius:	0.53 m
plasma volume	30 m ³
non-planar coils:	50
planar coils:	20
number of ports:	253
rot. transform:	5/6 - 5/4
induction on axis:	< 3T
stored energy:	600 MJ
heating power	15 - 30 MW
pulse length:	30 min
energy turn ar.:	18 GJ

machine height:	4.5 m
machine diameter:	16 m
machine mass:	725 t
cold mass:	425 t

Wendelstein 7-X main components

the volume in the cryostat is very constrained

Steady-state ECRH heating

- power gyrotrons
- 10 × 1MW 140GHz
- pulse length 1800s
- quasi-optical duct

Design of In-vessel components

test divertor

- target elements CFC sealed on cooled CuCrZr
- baffle elements graphite clamped on CuCrZr
- cryopumps and sweep coils
- about 250.000 parts w 130.000 being non-standard
- about 4km in-vessel water pipe lines
- start of operation with inertially cooled test divertor

Manufacturing in-vessel comp's

Superconducting coils

Max-Planck-Institut für Plasmaphysik

CAD drawing non-planar coil

Status coil delivery

20 planar coils 50 non-planar coils 100M€ contract → consortium 100% manufactured 70% successfully cold tested

Components and assembly

Max-Planck-Institut für Plasmaphysik

plasma vessel

assembly progress

outer vessel with domes

thermal insulation

assembly

central ring modules

The outer vessel

Max-Planck-Institut für Plasmaphysik

More than 1000 openings ~ thermal insulation laborious

Coil assembly

Max-Planck-Institut für Plasmaphysik

The 20 coils of first two modules assembled – supports are welded

Torus hall - machine base

Max-Planck-Institut für Plasmaphysik

The five assembly stands are ready and fill step-wise (now 3/5)

Magnet module

Max-Planck-Institut für Plasmaphysik

The completed first magnet module went into the next assembly stand

Schedule

	Ma b	Maraanaanana	Anfang	Ende	Dawar	
	м.	vorgangsname	Aniang	Ende	Datier	<u>p6 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 202</u>
	0	Aklaufalan das Mantana (Taskuslasiaska Samana)	M- 21.02.05	M- 10.05.14	4C4 E 14	
	0	MST 0: TOSKA executional	D: 01 04 00	D: 04 04 00	404,5 1	
	1	MSTU: TUSKA operational	DI 01.04.06	DI 01.04.08	202.5.16	
			Mo 21.03.05	FF 14.12.12	393,5 VI	
			WI0 21.03.05	MI 13.02.08	150 V	
 completion date 2014 			Mo U9.05.05	MI 06.02.08	142 V	
			Mi 13.02.08	Mi 05.03.08	3 V	
			Mi 05.03.08	Mi 05.03.08	0 V	
			Mi 05.03.08	Mi 30.04.08	7,5 V	
	60	waaka huffar tima	Mi 30.04.08	Di 26.08.08	16,5 V	
•	DO	weeks puller lime	Di 26.08.08	Mo 03.11.08	9,5 V	
				Sa 07.02.09	13 V	
			Sa 07.02.09	Sa 07.02.09	0 V	W MST 3
		-	Sa 07.02.09	Sa 28.02.09	З И	
	7 0	milastonas	Sa 28.02.09	Sa 25.04.09	7,5 V	
	LJ	111111111111111111111111111111111111111	Sa 25.04.09	Mo 18.05.09	3 V	
			Mo 18.05.09	Mo 18.05.09	0 V	
			Mo 18.05.09	Mo 05.10.09	19,5 V	
			Mo 21 12 09	Mo 26 04 10	7.58 V	
	nit	ht schedule control	Mo 26 04 10	Mo 26 04 10	0.0	
	uy		Mi 06 01 10	Er 09 04 10	5.67 V	
	-		Mo 26 04 10	Do 01 07 10	0,01 V A VA	
	21	Contingency I/iB (design not yet finished)	Do 01 07 10	Do 05.09.10		
	21	MST 12: KID accombly in fet medule Gnicked (norte 1 and 2)	Do 01.07.10	Do 05.00.10	0.10	
	22	1. Madula, next 2 of in useral communents (madula plane)	Do 05.06.10	D0 05.00.10	1 42 10	
	23	1. Module, part 3 of in-vessel components (module plane)	D0 22.11.12	Fr 14.12.12	1,42 V	
	24	Module piping, vacuum	Mo 05.10.09	Di 15.12.09	10 V	
	25	1. Module connection with supply systems	Mi 16.03.11	Mi 16.03.11	0 V	V 16.03.
	26	2. Module (#1)	Mi 27.02.08	Mi 28.11.12	239,26 W	
	53	3. Module (#4)	Mi 17.09.08	Do 08.11.12	208,12 W	
	80	4. Module (#2)	Mi 15.04.09	Do 05.09.13	221,13 W	
	107	5. Module (#3)	Do 05.11.09	Fr 30.08.13	191,99 W	
	134	Final adjustment of modules	Do 10.02.11	Do 10.03.11	4 V	
	135	Module connections (parallel work)	Mi 30.05.12	Mi 12.12.12	27,7 W	
	136	1-2 connection of modules #5-#1	Mi 30.05.12	Mi 21.11.12	24,8 V	
	137	1-3 connection of modules #5-#4	Mi 30.05.12	Di 23.10.12	20,7 V	
	138	4-2 connection of modules #1-#2	Mi 30.05.12	Sa 10.11.12	23,3 V	
	139	4-5 connection of modules #2-#3	Mi 30.05.12	Fr 26.10.12	21,3 V	
	140	5-3 connection of modules #4-#3	Mi 30.05.12	Mi 07.11.12	22,7 V	
	141	Contingency module connection 5 W (from risk analysis)	Mi 07.11.12	Mi 12.12.12	5 V	
	142	MST 25: All modules connected	Mi 12.12.12	Mi 12.12.12	0 V	₩ 96 MST 25
	143	Completion of torus	Di 21.12.10	Mo 19.05.14	171,1 W	
	144	Completion OV (ports and domes in support openings)	Mo 18.02.13	Mi 03.07.13	18,4 V	
	145	MST 27: Completion of cryostat	Mi 03.07.13	Mi 03.07.13		M M M M M M M M M M M M M M M M M M M
	146	Installation current leads	Mi 03.07.13	Mo 19.08.13	6.7 V	
	147	Completion of Periphery (cables (25W) piping vacuum)	Mi 03 07 13	Mi 29 01 14	29 V	
	148	KiP 4 Part	Er 30.08.13	Mi 20 11 13	11 41 \8	
	149	Contingency 15 W (from risk analysis)	Mi 29 01 14	Mo 19 05 14	15 V	<u>┊</u> ╴╋╸┽╸┿╺┾╸┿╸┿╸┿╸┿╸┿╸┿ ╸┼ ╋┥┓ [┲] ╗ <mark>╖</mark> ┊╴┿╺┾╺┿╺┿╸┿╸┿╸┿╸┿╸┿╸┿╸┿╸┿╸┿╸
	150	MST 26: Start of assembly ECPH	Mo 28 01 12	Mo 28 01 12	0.0	╢╴┼┈┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝╌┝
	150	Module #5: Installation of ECDU	Mo 20.01.13	Ro 20.01.13	24.10	
	151	Module #0. Installation of ECRU	IVIU 20.01.13	5a 25.01.14	34 V	
	102	woodle #1: Installation of ECRA	Nio 28.01.13	Fr∠4.01.14	34 V	<u>┙</u> <u>┥</u> <u>┥</u> ┥┥┥┥┥┥┥┥┥┥┥┥┥┥╴ ╎╴╵╴╎╴╵╎╴╵╎╴╵╎╴╵╎╴╵╎
	153	installation ICRH in torus hall	Di 21.12.10	DI 10.05.11	19 V	Ÿ <mark>╴┟╶╎╴╶╎╶╶╎╶╶╎╶╎╴╎╴╎╴╎╴╎╴╎╴╎╴╎╴</mark> ┟╎╴╶┥╴╎╴┥╴╎╸┥╸╎╸┥╸╎╸┥╸╎╸┥
	154	Assembly ICRH	Mo 19.08.13	Mo 13.01.14	20 V	Ÿ
	155	Completion of NBI boxes in assembly hall	Di 21.12.10	Fr 18.03.11	12 V	
	156	Assembly NBI 1. Part	Mo 27.06.11	Sa 07.07.12	52 V	
	157	Assembly NBI 2. Part	Mi 30.01.13	Mi 29.01.14	33,31 V	
	158	MST 29: Start Commissioning	Mo 19.05.14	Mo 19.05.14	0 V	₩ MŞT 29

			1 1 5	st op phase 0s at 8MW 50s at 1MW	hai cor of s	rdening npletion systems	2nd op 5-10s a steady-stat	phase t 18MW e at 10MW
asser	nbly	comissioning		cor	npletion	comissioning		
	20	14	2015	2016	i 2017	2018	i 2019	2020

- 1st operation phase with 10s @ 8MW and 50s @ 1MW
- inertially cooled divertor and only partial cooling of in-vessel comp's
- shut-down (15 months) for completion and hardening
- 2nd operation phase to approach 30min @ 10MW
- 3rd operation phase with 10MW ECRH, 20MW NBI and 10MW ICRH

Max-Planck-Institut für Plasmaphysik

- "Fully" optimized magnetic field configuration with simultaneously ...
 - low equilibrium currents
 - good magnetohydrodynamic equilibria
 - good magnetohydrodynamic stability
 - good neoclassical confinement
 - good fast-particle confinement
- First superconducting stellarator with modular magnetic field coils
 - steady-state island divertor for full power load
 - steady-state 10MW 140GHz ECRH with quasi-optical wave guide
 - steady-state diagnostic and CoDaC system

A promising new high-temperature plasma device

The tokamak principle

Max-Planck-Institut für Plasmaphysik

Tokamak (1951 Sacharov und Tamm) тороидальная камера в магнитных катушках "toroidal chamber in magnet coils"

The stellarator principle

Max-Planck-Institut für Plasmaphysik

Stellarator (1951 Spitzer) Stella = the star

