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steady-state operation:
this is likely to be a requirement in a future FPP
Tokamak steady-state operation is a subject of current research

• βN~4 required - achieved only with advanced tokamak scenarios (ITB‘s)

• Control of pressure profiles, current profiles and instabilities required

• Several 100MW of CD required – efficiency only 20-40% must go up

Stellarators are steady-state „by nature“

• The control issue is much less a problem – only weak CD needed

• Plasma performance not yet satisfactory (esp. τE and β)

• Divertor solution and control of impurities required

Several technologies must be developed in general

• Superconducting magnets (also HTSCs)

• Steady-state H&CD solutions

• Steady-state capable in-vessel components

• The right materials in general

Introductory comments



Introductory comments

J. Pamela, SOFT 2008
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Outline of the talk

I. Principles

II. Island divertor

III. Plasma currents

IV. Performance

V. Construction status
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Steady-state – a stellarator feature

In stellarators
steady state
operation is

taken for granted.
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Tokamak and Stellarator

✣ good neoclassical confinement

✣ toroidal symmetry

✤ pulsed operation

✤ current driven instabilities, disruptions

✤ bad neoclassical confinement

✤ no toroidal symmetry

✣ steady state operation

✣ no current driven instabilities

• current in coils and plasma

• current-carrying plasma

• self-organized equilibrium

• current in the coils only

• very small plasma current

• field-defined equilibrium

A very schematic comparison …

✣ good neoclassical confinement

✣ toroidal symmetry

✧ advanced scenarios and current drive

✧ active control of plasma instabilities

✣ good neoclassical confinement

✧ quasisymmetry

✣ steady state operation

✣ no current driven instabilities
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The stellarator family

Stellarators

C,Cleo,W7-A, L2, WEGA

classical

quasi-symmetric
W7-AS

advanced

Torsatrons Heliotrons

ATF, CAT,
URAGAN

He-E, LHD,
He-J, CHS

modular

H1, TJ-II

Heliacs

HS
X

NCSX
CHS-qa

q-helical q-axial q-poloid.

W7-X
QPS

shut down
operating
under construction
planned
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Stellarator symmetries
quasi-helical

classical

quasi-poloidal

quasi-toroidalquasi-isodynamic

by courtesy of J. Sanchez

|B|
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A missing link

• complete the physics understanding of quasi-symmetry

• development of compact stellarators

• a physics link to advanced tokamak operation

• let‘s advertise a revision of previous decisions
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LHD
Rax = 3.4 – 4.1 m, a ≤ 0.65 m

Vpl = 30m3

B ≤ 2.9 T, ι(0) ≥ 0.35, ι(a) ≤ 1.5

high shear, 10 field periods, l = 2

W7-X
Rax = 5.5 m, a ≤ 0.53 m

Vpl = 30m3

B ≤ 3.0 T, ι(0) ≥ 0.88, ι(a) ≤ 0.97

low shear, 5 field periods

LHD and W7-X

PC coils
HC coil

LID coils
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MHD equilibrium - comparison

<β> ≈ 4%

<β> ≈ 3%

<β> ≈ 2%

LHD (HINT-Code)

• stable high-pressure equilibrium

• minimized stochastic layer formation

W7-X (PIES-Code)

• required for reasonable divertor solution
?
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W7 & LHD magnetic configuration

W7-AS
|B| on flux surface

R = 2 m

W7-X
|B| on flux surface

R = 5.5 m

LHD
|B| on flux surface

R = 3.6 m

W7-line: W7-line: avoid islands by low shearavoid islands by low shear
LHD-heliotron: high shear, small islandsLHD-heliotron: high shear, small islands
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The optimized stellarator W7-X

1.  feasible modular coils

2.  good, nested magnetic surfaces

3.  good finite-β equilibria

4.  good MHD stability

5.  small neoclassical transport

6.  small bootstrap current

7.  good confinement of fast particles

7 optimization criteria

development tasks

1. optimum nTτE and high β  discharges

2. steady state operation

3. plasma-wall interaction

4. island divertor operation

5. turbulent transport
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Island divertor – the idea

ASDEX upgrade

Wendelstein 7-AS

Wendelstein 7-X

poloidal divertor island divertor
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The W7-AS island divertor

one of five magnetic field periods

1 2 53 4

the idea:

natural islands are intersected with target

O-Point

X-Point

schematic

confinement
region

x-point

island

ergodic
region

separatrix

elliptical plane
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Operation without divertor ✤

no density control

radiation collaps

impurity accumulation

radiation losses
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Operation with divertor – HDH

high density     ne = 2.5⋅1020 m-
3

                            ne/neGW = 2.5

high pressure   β = 3.4%
             βN ~ 9.3

absorption      Pabs = 2.5 MW

confinement   HISS95 = 1.4

MHD stability

stationarity Tflattop ~ 100 τE
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HDH - an advanced operation regime

HDH-regime - a true bifurcation with hysteresis, profile differences, ...

◗  confinement of energy increases
◗  confinement of impurities deteriorates

the high-density high-confinement (HDH) mode
was discovered in 2002 on W7-AS

[McCormick PRL 2002 No
015001]
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High-beta experiments in HDH

MHD modes dissappear 
at high β

• inwards shift of ι=1/2 surface

• formation of magnetic well
β → 3%

[Weller 2003]
[Werner 2003]

(m,n)=(2,1)
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W7-AS Performance /w island
divertor

• Based on resonant magentic islands @ edge

• A viable divertor solution for stellarators

• Controlled heat and particle deposition

• Density control even at high plasma densities ~ 2·1020m-3

• Establishment of High-density H-mode (HDH)

- Establishes at n~1.5 … 2.5 ⋅1020 m-3

- Quiescent and MHD stable ← magnetic well formation

- Different from ELM-free H-mode

- Improved energy confinement

- Impurity screening ← high edge densities
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0000 → O (1)0 → O (1)current drive

0000O (1) → 0plasma dynamo

000O (1) → 0→ O (1)induced current

O (1)O (-1)…O (1)→ 0→ O (1)0bootstrap current

O(1)O (1)→ 0O (1)0
Pfirsch-Schlüter
current

O (1)O (1)O (1)O (1)O (1)diamagnetic current

NCSXLHDW7-XTokamakRFP

Plasma currents - overview

all currents are normalized to their respective frame By courtesy of F. Wagner

It is possible to reduce systematically the currents in the plasma.
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current driven
instability

tearing-mode type
onset at iota=1/2

magnetic
fluctuations

and
soft-X radiation

W7-AS with induced current

[Zarnstorff 2003]
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Non-inductive equilibrium
currents

L = 2 stellaratorL = 2 stellarator

W7-XW7-X

currentcurrent  lineslines

j⊥

j||

j

B

equilibrium current

J=Jdia+JPS+JBS
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Electron-cyclotron current drive –
Ex:

• 1d transport modelling coupled with ray-tracing code

• Off-axis X2-heating in standard configuration

• Current drive required for control of edge iota

• Current drive efficiency P=10MW <β>=2.7% ICD=-88kA

O-Point

X-Point
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ECR heating of dense plasmas

• O2-launch angle 12°

• Heating up to 2.1⋅1020m-3

• Single pass absorption drops to 50%

• Double pass with retro-reflectors
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Current drive in X2 and O2
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4.0

3/2

83.051.0

20

59.065.021.295
256.0 !" BnPRa

ISS #
=

10 MW ECRH

10 MW NBI (H+)

ITER

Numerical simulations:

much improved confinement

Global energy confinement
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Wendelstein 7-X key parameters

key parameters

major radius: 5.5 m
minor radius: 0.53 m
plasma volume 30 m3

non-planar coils: 50
planar coils: 20
number of  ports: 253
rot. transform: 5/6 - 5/4
induction on axis: < 3T
stored energy: 600 MJ
heating power 15 - 30 MW
pulse length: 30 min
energy turn ar.: 18 GJ

machine height: 4.5 m
machine diameter: 16 m
machine mass: 725 t
cold mass: 425 t
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ports

50 non-planar coils

20 planar coils plasma vessel
10 half module

cryostat
10 half shells

central ring
10 segments

thermal insulation

components in
plasma vessel

bus bar system

Wendelstein 7-X main components

the volume in the cryostat is very constrained ❚
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Steady-state ECRH heating

• power gyrotrons

• 10 × 1MW 140GHz

• pulse length 1800s

• quasi-optical duct

• world record shot

• integrated cw design

• series production?
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Design of In-vessel components

TM1H-TM4H 
HHF-modules

TM5H-TM6H 

Clamped LHF-modules

TM7H-TM9H 

HHF-modules

TM1V-TM4V 

HHF-modules

Pumping
Slid

Manifold

Adjustable Frame

Target Elements

• target elements CFC sealed on cooled CuCrZr

• baffle elements graphite clamped on CuCrZr

• cryopumps and sweep coils

• about 250.000 parts w 130.000 being non-standard

• about 4km in-vessel water pipe lines

• start of operation with inertially cooled test divertortest divertor

wall panel cooling

divertor module
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Target modules
(Plansee)

Manufacturing in-vessel comp‘s

Heat shield
(IPP)

Cooling pipes
(IPP and n.n.)

Wall pannels
(MAN DWE)

Cryo pumps
(IPP)
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Superconducting coils

CAD drawing non-planar coil

Status coil delivery

20 planar coils

50 non-planar coils

100M€ contract → consortium

100% manufactured

70% successfully cold tested
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plasma vessel
modules

thermal insulation assembly central ring modules

outer vessel with domes

assembly
progress

Components and assembly
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The outer vessel

More than 1000 openings ~ thermal insulation laborious
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Coil assembly

The 20 coils of first two modules assembled ❚ – supports are welded
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The five assembly stands are ready and fill step-wise (now 3/5)

Torus hall - machine base
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Magnet module

The completed first magnet module went into the next assembly stand
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Schedule

• completion date 2014

• 68 weeks buffer time

• 29 milestones

• tight schedule control
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• 1st operation phase with 10s @ 8MW and 50s @ 1MW

• inertially cooled divertor and only partial cooling of in-vessel comp‘s

• shut-down (15 months) for completion and hardening

• 2nd operation phase to approach 30min @ 10MW

• 3rd operation phase with 10MW ECRH, 20MW NBI and 10MW ICRH

The start of exploitation
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• „Fully“ optimized magnetic field configuration with simultaneously …

- low equilibrium currents

- good magnetohydrodynamic equilibria

- good magnetohydrodynamic stability

- good neoclassical confinement

- good fast-particle confinement

• First superconducting stellarator with modular magnetic field coils

- steady-state island divertor for full power load

- steady-state 10MW 140GHz ECRH with quasi-optical wave guide

- steady-state diagnostic and CoDaC system

A promising new high-temperature plasma device

The Wendelstein 7-X stellarator
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Fusion power - „think big“



43/42

The tokamak principle

Tokamak (1951 Sacharov und Tamm)
тороидальная камера в магнитных

катушках
„toroidal chamber in magnet coils“

• radial shift of plasma axis

jvf

jtor

• induced toroidal plasma current
                 ~ MAmps

jtf

• toroidal magnetic field
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The stellarator principle

Stellarator (1951 Spitzer)
Stella = the star

jhf

• helical magnetic field

jtor≈ 0

toroidal magnetic field

jtf

•


