THE STATUS AND FUTURE OF COAL PREPARATION IN INDIA

Gary Staats

U. S. Department of Energy Federal Energy Technology Center

Nagaraja Rao and Sai Gollakota Burns and Roe Services Corporation

For Presentation at the 1997 Coal Liquefaction & Solid Fuels Contractors' Review Conference Pittsburgh, Pennsylvania

September 3, 1997

OUILINE OF THE PRESENTATION

- Background and Objectives
- FETC Implementation
- Drivers for Coal Preparation
- Status of Implementation
- Future Activities
- Conclusion

BACKGROUND OF COAL PREPARATION ACTIVITIES IN INDIA

- USAID/India and US-AEP initiatives to promote coal preparation projects for the Indian power sector and Coal India Limited
- Announced as part of the Presidential Mission to India in July 1994
- FETC is participating in the implementation of the program

OBJECTIVES AND IMPLEMENTATION OF COAL PREPARATION ACTIVITIES

OBJECTIVES

- To assist Ministry of Coal in expediting the development of captive coal mines and washeries
- To facilitate the development of private coal preparation plants

IMPLEMENTATION COMPONENTS

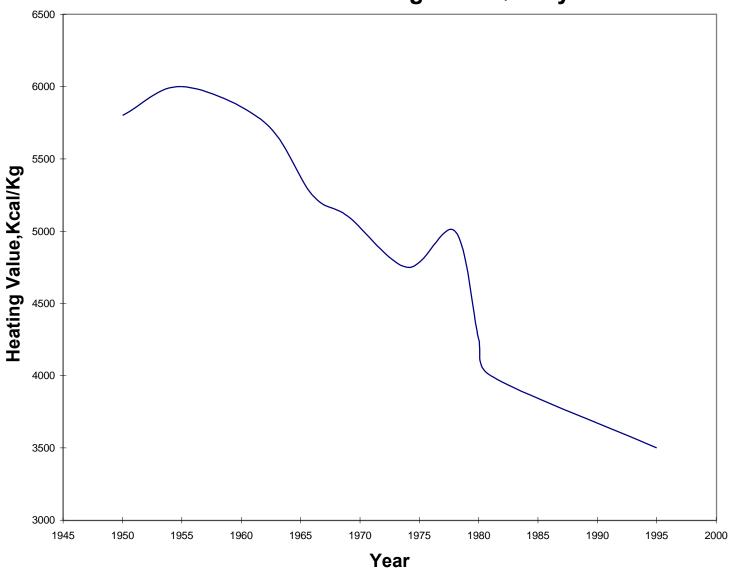
- FETC Technical Support and Business Promotion
- Project Financing
- Energy Projects Advisor in India
- Business Plan Development

FETC IMPLEMENTATION AND TECHNICAL SUPPORT

- Develop database on Indian coals
 * Resources, characteristics, and washability
- Obtain improved washability/combustion data
 - * Pilot-scale preparation of clean coal at CFRI
 - * Combustion tests with raw and clean coals at BHEL
 - * Advanced Coal Preparation at CFRI and Bilaspur Washery
- Develop different coal preparation alternatives and analyze profitability for
 - * Power plants
 - * Coal preparation plant investors
- Support for Commercial Coal Washery Development
- Preinvestment Support for Coal Cleaning and Other Environmental Enhancement Projects

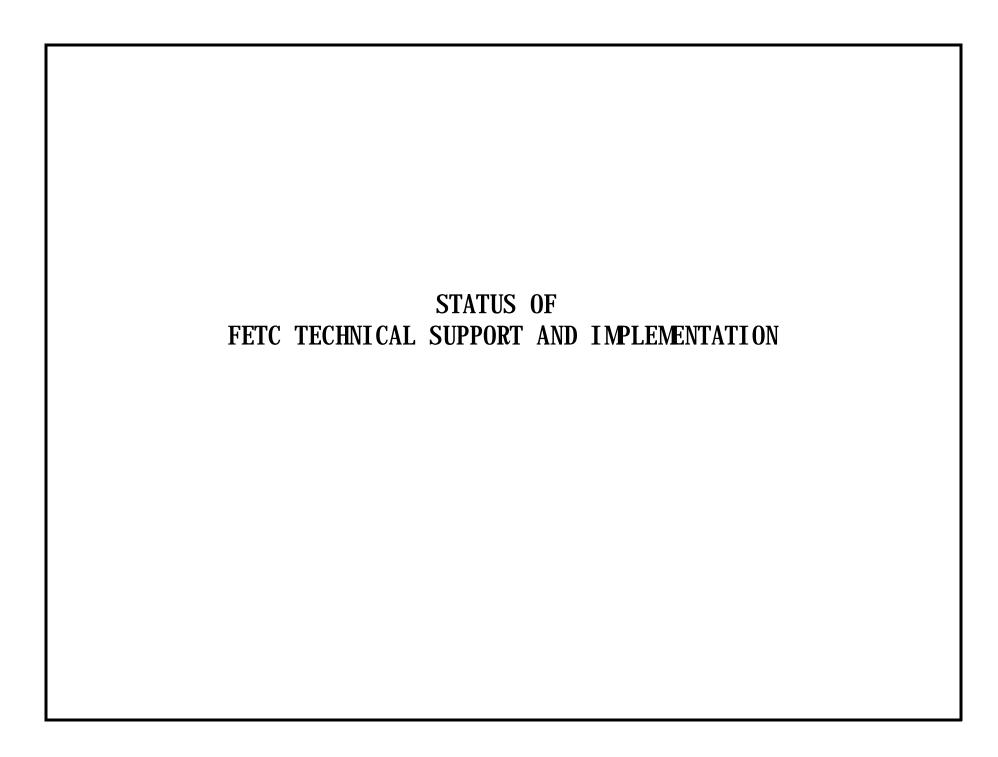
KEY DRIVERS FOR COAL PREPARATION

- Increased coal-based power generation
- Increased surface mining and mechanization
- Depletion of better quality coal reserves
- Increased shipments of coal to distant power stations
- Greater need for maintaining the environmental quality
- Demand from independent power producers for cleaner coal
- Competition from abroad


ELECTRIC POWER GENERATION IN INDIA

- Present total installed capacity: 81,000 MWe
- Annual electricity production: 350 billion kWh
- Population: 930 million
- Per capita annual consumption: 376 kWh
- Thermal generation (mostly coal-based): 76%
- Planned capacity addition: 140,000 MWe (next 15 years)
- Most of the additional capacity will be coal-based

GROWTH PROJECTION OF COAL UTILIZATION


- Coal requirement for power generation is expected to increase from about 170 million tonnes/yr in 1994 to 500 million tonnes/yr by the year 2010.
- Non-coking coal resources are concentrated in the central and northeastern parts of India in the North Karanpura, Korba, Ib Valley, and Talcher coal fields.
- Long-distance transportation of coal to power plants located near the major urban areas is required.
- Non-coking coals, which contain high mineral-matter content (35-50 wt%), are being utilized for power generation mostly without any washing.

Deterioration of Non-Coking Coal Quality in India

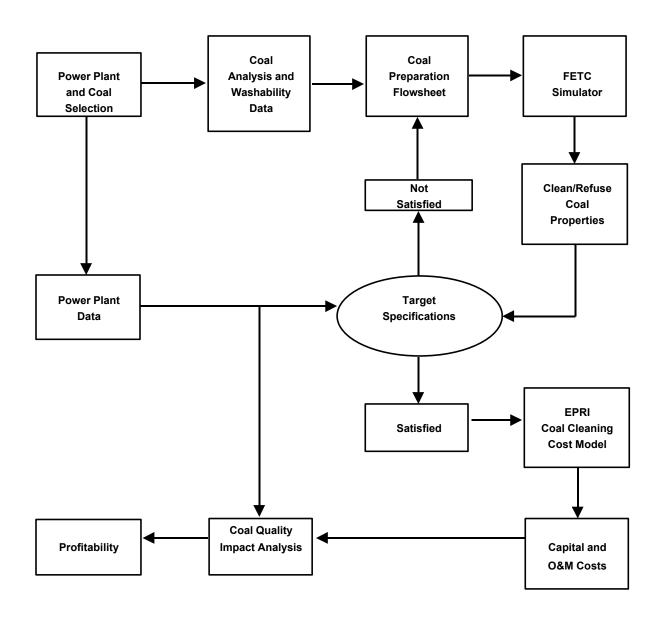
ESTIMATED EMISSIONS AND ASH GENERATION FOR COAL-BASED POWER PLANIS WITHOUT COAL PREPARATION (2010)

Distance km	Coal consumption Mt/yr	Ash Mt/yr	Parti- culates t/yr 1000s	S0 ₂ t/yr 1000s	Land ha 1000s	CO ₂ , Mt/yr
Mi ne-mouth	155	65	182	775	52	239
< 500	70	29	82	350	23	108
500 -1000	60	25	70	300	20	92
>1000	215	90	253	1, 075	72	331
Total	500	209	587	2, 500	167	770

HIGHLIGHTS OF INDO-US COAL BENEFICIATION WORKSHOP

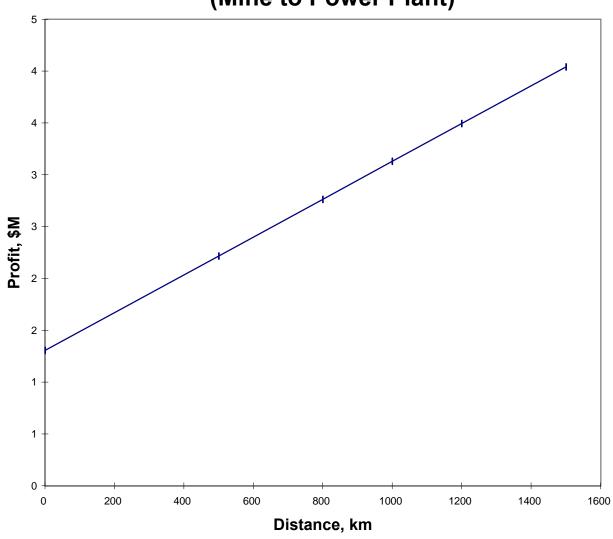
- This Indo-US Workshop was held last year in New Delhi.
- This workshop provided an excellent forum for U.S. companies to meet the key people in the Indian coal industry.
- Over 150 delegates participated including 12 from the U.S.
- U.S. utilities presented the cost effectiveness of coal washing and the multiple benefits to their plants.
- Key officials from the Government of India-Ministries of Power/Coal/Railways/Environment & Forest, Planning Commission, National Thermal Power Corporation, and State Electricity Boards promoted coal beneficiation and agreed to reduce potential barriers to acceptance.

ACTIONS OF GOVERNMENT OF INDIA (GOI)


- Beneficiation of high-ash Indian coals has been recognized as one of the most important growth areas in the power sector by the GOI.
- To encourage private companies to build, own, and operate independent coal preparation plants, the GOI has liberalized its policies and introduced several incentive schemes, such as tax holidays and tax reductions.
- Privatization of coal mining, power generation and distribution has been initiated.

HIGHLIGHTS OF BILASPUR WASHERY

- The first private non-coking coal washery.
- ST-BSES Washeries Limited is poised to build several more washeries in India.
- Participants: Spectrum Technologies, CLI Corporation, BSES Limited, USAID/India, and FETC/DOE.
- Anuual raw coal processing capacity is 2.5 million tonnes.
- Provides cleaned Dipka coal to BSES's Dahanu power plant.
- USAID & DOE/FETC are supporting advanced coal cleaning at Bilaspur.
- Two more U.S. companies are working on other GOI washeries.


SITE-SPECIFIC STUDIES

- Determined the benefits of coal preparation for Talcher and Dipka coals.
- Obtained washability data for Dipka coal to design fine coal cleaning circuits; scheduled pilot-scale tests at CFRI and BHEL.
- Presented the results at:
 - * Indo-US Coal Preparation Workshop, New Delhi, India, February 1996.
 - * World Coal Institute Conference, June 1996, New Delhi, India.
 - * Thirteenth Annual International Pittsburgh Coal Conference, September 1996.
 - * ASIA ENERGY VISION 2020, International Conference on Energy, New Delhi, November 1996.
 - * National Conference on Energy Policy Towards the 21st Century, New Delhi, December, 1996.
 - * Annual Air & Waste Management Association's Meeting & Exhibition, Toronto, June 1997.

Block Diagram for Profitability Analysis

Effect of Distance on Profitability (Mine to Power Plant)

ENVIRONMENTAL IMPACTS

(Projected for Year 2010)

Potential benefits of coal preparation include reduction of the following:

- Ash disposal at power plants (78 Mt/yr)
- Greenhouse gases (30 Mt/yr)
- Particulate emissions (220,000 tonnes/yr)
- SO_2 emissions (440,000 tonnes/yr)
- Land requirements for ash disposal (62,000 ha)

OTHER IMPACTS

- Because of the use of higher heating value coal:
 - Power generation can be increased (2,500 MWe at 5% additional availability)
 - Transportation costs can be reduced (\$685 million/yr).
- The socio-economic benefits include:
 - Improved health (e.g., reduced incidences of bronchitis, asthma)
 - Reduced displacement of people
 (i.e., reduced land acquisition for ash disposal)
 - Availability of additional resources for other essentials (e.g., using rail wagons for more essential commodities)

FUTURE ACTIVITIES

- Promotion of cleaned coal utilization by NTPC and State Electricity Boards.
- Four studies for lead SEBs and IPPs to identify the economic and environmental benefits.
- Demonstration of deep-coal cleaning benefits.
- Pilot-scale coal cleaning and combustion tests to determine economic and environmental benefits.
- Database development to assist US washery developers.
- Technology transfer/business promotion through workshops, site-visits, and cooperative meetings in the U.S. and India.
- Preinvestment support for commercial washery development.

CONCLUSIONS

- DOE/FETC coal preparation implementation activities in India will promote development of at least six coal washeries in the next five years.
- The potential beneficial impacts of coal preparation on the economics of power generation, infrastructure, and environmental management have been quantified and have been found to be significant.
- The establishment of coal washeries in India provides an attractive business opportunity to U.S. washery developers.