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Factors Controlling Mercury Fate, Transport
And Net Methylation in Aquatic Systems 

1.Source and Form of Mercury 
2.Factors Controlling Air-Water Exchange 

and Mercury Evasion/Loss from the System
3. Factors Controlling Mercury Bioavailability
4. Factors Controlling Microbial Activity
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•Relative bioavailability of 
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Factors Controlling Hg(II) Reduction and Hg(0) Evasion 
from Aquatic Systems

Light - photochemical and biological processes; diurnal 
cycle found in some aquatic systems

Water Chem. - DOC can enhance reduction, but also limits 
light penetration
- Dissolved constituents influence the extent of 
the “back reaction” – Hg(0) oxidation. This can 
also occur in the atmosphere leading to recycling

Wind Speed - Removes Hg(0) via evasion and prevents its 
oxidation and subsequent potential methylation
- Is the most important control over evasional flux, 
as are other factors that influence gas exch. coeff.

Terr. Surfaces-Evasion from land surfaces is also important



Estimated fluxes of elemental mercury for various water 
bodies. As fluxes are mostly from short-term measurements, 
they are scaled to a monthly rather than a yearly basis. 
 

Location Flux (µg m-2 mth-1) Ref. 
Equatorial Pacific 0.7-7 1 
North Pacific <2 10 
N. Atlantic - summer 12 2 
S. Atlantic - summer 36 3 
Bermuda 2.7 4 
Long Island Sound, USA 2.1 5 
Scheldt Estuary, Belgium 1.2-2.4 6 
Chesapeake Bay, USA 0.8 7 
St. Lawrence River/Lake Ontario 2.1 8 
Lakes/Wetlands 0.2-2 9 

Notes:References: #1= Mason and Fitzgerald, 1993; #2= Mason et al., 1998; 

 #3= Lamborg et al., 1999;  4 = Mason et al., 2001; #5= Rolfhus and Fitzgerald, 2001; #6= Baeyens 

and Leemakers, 1998; #7= Mason et al., 1999; #8= Poissant et al., 2000; #9= Zhang and Lindberg, 

1999 and reference therein; #10 = Laurier et al., unpublished data.  

 



Diel Cycle of Atmospheric Hg at 
Barrow, Alaska

Mercury and ozone during polar sunrise at Alert, Canada. 
From Schroeder et al., 998

Lindberg et al., 2002
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Factors Controlling Bioavailability

1.Partitioning to the Solid Phase
2.Dissolved Hg Speciation 
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Effect of Suspended Load on Total
Mercury Concentration Given a Fixed 
Dissolved Hg Concentration of 1 ng/L
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Sequential Extraction Results

Distribution of Hg Between Sedimentary Phases
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Partioning of Hg at site N-3
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Figure 1. Mercury (Hg) and methylmercury (CH3Hg) in near surface (0-4 cm ) sediment in:
1. Freshwater wetlands from: North and South Carolina, Ontario, Canada, Florida Everglades; 
2. Marine and estuarine sediments from: coastal N. and S. Carolina, the Chesapeake Bay and its 

estuaries, coastal Florida, coastal Texas, Slovenia coast, coastal Poland, coastal Malaysia, 
Anadyr Estuary, Russia; 

3. Lakes: New Jersey, New York State,Wisconsin, California, Finland, Poland; 
4. Rivers: S. Carolina, Wisconsin, Nevada, Alaska, Germany, Poland.   From Benoit et al., 2003



• Hg loading
– Atmospheric
– Point sources

• Sulfur loading

• Controls on microbial activity 
- Temperature
- Trophic status

• Basin geomorphology
– Wetland area 
– Littoral area
– Watershed area

Variability in MeHg production among
ecosystems is a function of:
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Hg2+ + xS2- + yH+ = HgSxHy
2-2x+y

e.g HgSo, HgS62-, HgSH2
-, Hg(SH)2o
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At steady state…
[HgC] = kD.[HgLn]/(kB + kM)

and
d[CH3Hg]/dt = kM.[HgC] 

= kD.kM.[HgLn]/(kB + kM)

Hg bioavailability to the bacteria is important,
but intracellular processes also influence
the net rate of methylation
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1. Hg methylation occurs in all parts of the watershed
2. Production of methylmercury from a Hg spike is correlated

to in situ concentration 

Low oxygen? No oxygen?
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Low oxygen? No oxygen?

Sulfate Reduction Rates
Upland 
riparian zone Wetland Lake

Activity of SRB in the watershed
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Fig. 1.  Results of the preliminary lake sediment diagenetic model.
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Ambient CH3Hg (pg g
-1

w.w.) 

0 200 400 600 800 1000C
H

319
9 H

g 
pr

od
uc

ed
 in

 4
 h

r (
pg

 g
-1

 w
.w

.)

0

10

20

30

40

50

r2 = 0.74

r2 = 0.77

r2 = 0.42

August 18oC

Sept 11oC

June 5oC

Native in situ methylmercury (CH3Hg) concentration and excess CH3
199Hg produced 

from 199Hg in 4 hrs, in peat collected in June, August and September, 2000, from a 
lakeside, sphagnum wetland (L115) at ELA in northwest Ontario. 

The relationship between production rate and 
in situ concentration changes with time

From Benoit et al., 2003



Treatment

co
ntr

ol
+0

.1 
mM su

lfid
e

+ 1
 m

M su
lfid

e
+ 1

0 m
M su

lfid
e

+0
.1 

mM su
lfa

te
+0

.5 
mM su

lfa
te

+1
 m

M su
lfa

te

M
et

hy
la

tio
n 

ra
te

, f
ra

ct
io

n/
da

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Measured sulfide concentration

1 u
M

5 u
M

35
0 u

M
6 m

M

2 u
M

10
 uM

12
 uM Methylmercury

production in Florida 
Everglades sediment cores 
after addition of either 
sulfate (light grey bars) or 
sulfide (white bars).  
Sediment cores, taken from 
the central area of the 
Loxahatchee National 
Wildlife Refuge (LNWR), 
were amended with either 
sodium sulfide or sodium 
sulfate (at neutral pH), by 
injection into the top 4 cm of 
sediment. 

From Benoit et al., 2003



ENR F1 U3 2BS 3A15 TS7 TS9 WCA1

Su
lfa

te
 re

du
ct

io
n 

ra
te

nm
ol

es
/c

c 
d

0

250

500

750

1000

1250

1500

1750

N
eu

tra
l H

g,
 n

g/
L 

(m
od

el
ed

 H
gS

0  +
 H

g(
H

S)
20 )

0.0

0.5

1.0

1.5

2.0

Su
lfi

de
, µ

M

0

20

40

60

80

100
SRR
HgS0

Sulfide

ENR F1 U3 2BS 3A15 TS7 TS9 WCA1

m
et

hy
la

tio
n 

k,
 /d

0.00

0.01

0.02

0.03

0.04

0.05

%
 C

H
3H

g

0

1

2

3

4

production rate
% MeHg

Measured sulfate 
reduction rate, porewater
sulfide concentration, 
percent methylmercury
(%CH3Hg), mercury 
methylation rate and 
modeled porewater HgSo

in the upper 4 cm of 
Florida Everglades 
sediments at  8 ACME 
sites.  Everglades sites are 
arranged from left to right 
by average surface water 
sulfate concentration 
(highest concentrations on 
the left). With the 
exception of the WCA 1 
site, this represents a north 
to south transect, running 
from the Everglades 
Nutrient Removal Project 
(ENR) and Water 
Conservation Area 2A 
(F1, U3) in the north, 
through Water 
Conservation Areas 2B 
(2BS) and 3A (3A15), and 
to Taylor Slough in 
Everglades National Park 
(TS7, TS9) in the south. 
Data shown are averages 
from three years (1995-
1998) of bi- to tri-annual 
sampling. 

From Benoit et al., 2003



LOX Mesocosms
Winter 2001-2002
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MeHg Spiked into Everglades Sediment Mesocosms

• New 201Hg is more readily methylated than existing Hg
• DOC and SO4 additions affect methylation of new 201Hg  more than existing Hg
• DOC stimulates production of MeHg from old and new pools
• SO4 stimulated MeHg production from new pools only
• High SO4 additions produce sulfide that inhibits methylation



Fraction of “old” Hg 
in sediments as MeHg:

average 3.5%

Fraction of “new” Hg 
in sediments as MeHg:

midsummer average ~15%  
declines later inthe season

but is still more “available”
the next year 
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A conceptual summary…….



Summary
1. The bioavailability/reactivity of Hg on entering an aquatic system 

depends on its form and whether input is direct or indirect
2. Mercury reduction and subsequent evasion removes Hg that might 

otherwise be methylated
3. Mercury binds strongly to particles and the type and nature of the 

particle influences its subsequent bioavailabilty
4. Total Hg concentration is not the only variable influencing methyl-

mercury concentration. 
5. Bacteria influence Hg bioavailability by changing sediment chemistry –

converting sulfate to sulfide, consuming and altering organic matter,
reducing iron oxides

6. Not all sulfate-reducing bacteria methylate Hg so, in addition to 
microbial activity, the makeup of the bacterial consortium also 
influences methylation

7. Sediment chemistry, and physical processes, influence the rate of 
transport of the methylmercury from the site of accumulation to the 
site of methylation.
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