XP720: EBW Emission in H-Mode Plasmas

S.J. Diem Presented at the 2007 NSTX Results Review July 23-24, 2007

XP 720: EBW emission in H-mode plasmas

- Measure 8-36 GHz thermal EBW emission via oblique B-X-O coupling
- Study behavior of EBWs emitted from H-mode plasmas at $\rm f_{ce}, \, 2f_{ce}$ and $\rm 3f_{ce}$
- Experiment had three objectives:
 - Study effect of collisions on B-X-O mode coupling
 - Investigate dependence of B-X-O coupling on plasma parameters
 - Study how bootstrap current at H-mode pedestal change fields field pitch at UHR

NSTX

Remotely Steered EBW Antennas Allow Angular Mapping of f_{ce} & 2 f_{ce} B-X-O Coupling Window

Preliminary H-mode results show good f_{ce} and $2f_{ce}$ B-X-O coupling in high κ , f_{BS} plasmas

- Target plasma: I_p=0.8 MA, κ~2.5, T_e~1 keV, and n_e(0)~2-4x10¹³ cm⁻³
- Preliminary experimental EBW transmission efficiency given by the ratio T_{rad}/T_e(0):
 - ~30-50% for $\rm f_{ce}{=}18~GHz$
 - ~20-40% for 2f_{ce}=28 GHz

Detected EBW Emission Sensitive to Dr_{sep}

- Dr_{sep} reduction of 2 cm provided controlled z₀ scan
- T_{rad} decreased from ~350 eV to ~100 eV with 8 cm decrease in z₀
- Results similar to rapid EBE decay observed in 2006 H-modes after — L→H transition

Increase in EBW transmission efficiency observed with LITER conditioning

- T_e(0)~0.8-0.9 keV
- T_{rad} increased from 40 eV (no Li) to ~300 eV for f_{ce}= 18 GHz emission
- Li may decrease L_n at at EBW mode conversion layer, widening EBW transmission window
- Similar trend observed for 2f_{ce} frequencies

More work needed to understand EBW mode coupling physics

- Analyze the following:
 - Antenna scan data
 - Spiral antenna data
- Analyze data from f_{ce} system
 - Do not have an absolute calibration for 8-18 GHz (f_{ce}) radiometer because of damage to microwave amplifiers at the end of run campaign;
 - Relative T_{rad} data trends analysis during run still possible
 - Harmonic system measured absolutely calibrated f_{ce} =16-18 GHz
- Correlation analysis of high time resolution reflectometer data
- Perform comparison of experimental data to EBE simulation code results