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Abstract
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1 Introduction

Derivatives contracts, as they call for future delivery or payments, are clearly exposed to the

risk of counterparty default. On organized derivatives exchanges, the central counterparty

clearing house (hereafter CCP) greatly reduces this concern by becoming counterparty to

every transaction undertaken by a clearing member (hereafter CM).1 As an intermediary,

the CCP does not incur market risk but it does bear default risk (also called counterparty

risk, or nonperformance risk) vis-a-vis their CMs. Indeed, a payment default occurs if the

daily loss of a CM�s total position exceeds his margin and he does not pay the de�ciency

on time.2

In this paper, we analyze empirically the default risk of CM using actual data of daily

gains and losses of all the CMs of the Chicago Mercantile Exchange�s CCP. Characterizing

the probability of a default by a CM, as well as the magnitude of the resulting loss, is

of great interest to many �nancial market participants. First in line is the CCP since,

in the event of a CM default, it will need to utilize its own resources to compensate the

winning CMs, and once resources are exhausted, it may also default. Other concerned

market participants include the non-defaulting CMs because of the mutualization of losses

through loss-sharing rules. Individual investors trading through the defaulting CM can also

be at risk since, as made clear by Jordan and Morgan (1990), they are not contractually

protected by the CCP �especially if the default of the CM is due to the loss of another

customer trading through the defaulting CM. The parent companies of the CM are also

directly concerned since they provide the �nancial guaranty necessary to the CM to operate.

Furthermore, as implicit and explicit insurers of the CCP against default, central banks

(Bernanke, 1990) and insurance companies may �nd the present analysis informative.

Although actual defaults by a CM have remained infrequent (Examples of CCP having

experienced a CM default are US Options Clearing Corporation in 1973, New York Mer-

cantile Exchange, Inc. in 1976, Commodities Exchange Inc. in 1985, and US Board of

1The clearing activity consists in con�rming, matching, and settling all trades on an exchange. On most
derivatives exchanges, only a subset of market participants (i.e., the CMs) can directly trade with the CCP
whereas all non-CM participants have to route their trades through a designated CM. Some end-customers
deal directly with a CM (e.g. non-CM institutional investors, hedge funds) while others trade through a
broker who still needs to route the trades through a CM.

2Our de�nition of default does not include all occurrences when a CM does not meet a margin call. As
long as the balance of the margin account is non-negative, the position of the CM can be unwinded at no
cost to the CCP and other CMs. It is only when the balance is negative - the money has already been
lost and needs to be transferred immediately to the winning party - that failing to meet a margin call is
perceived as a default.
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Trade Clearing Corporation in 1992), concerns about default risk in the clearing process

have recently increased for a number of reasons. Indeed, recent years have witnessed an

extraordinary expansion of the derivatives markets, which was fueled in part by the rise

of the hedge fund industry. In parallel to this increase, the emergence of mega-exchanges

resulting from mergers (e.g. Chicago Mercantile Exchange & Chicago Board of Trade,

EURONEXT & LIFFE) leads to fewer and bigger clearing facilities. As a result, CCPs

concentrate an increasing amount of risk which raises substantial systemic risk concerns.

As recently noticed by Federal Reserve Governor Kroszner (2006), CCPs are now clearing

new products, some of which being illiquid or very complex, and are frequently involved

in cross-border clearing activities. In response to this growing concern, a number of CCPs

have purchased default protections from insurance companies to further strengthen their

�nancial safeguard package. Recent examples include the CCP of the New York Mercantile

Exchange, Inc., the CCP of the Sydney Futures Exchange, and the Norwegian Futures and

Options Clearinghouse.3

Over the years, CCPs have assembled a battery of safeguards to control their default

risk exposure. First, CMs are subject to �nancial and capital adequacy requirements to

guaranty their creditworthiness. Second, CCPs impose a system of margining which ensure

that obligations of both CM and their customers are collateralized. Both house margin

accounts and customer margin accounts are adjusted daily to re�ect changes in the mark-to-

market value of positions. These daily aggregate gains or losses are called variation margins.

If the margin account balance falls below the maintenance margin then additional margin

must be posted to bring the balance up to the required level.4 In most cases, CMs are

permitted to post a margin on the aggregate net position for their own house positions but

they are required to deposit margins with the CCP su¢ cient to cover the gross positions of

their customers. Furthermore, positive balances in the house account are typically pledged

to o¤set negative balances in the customer account, but not the reverse.

The academic literature on default risk on derivatives exchanges has developed concur-

rently with derivatives markets. A �rst strand of the literature focuses on the probability of

facing a daily loss greater than the actual margin and, in turn, that additional funds must

be raised (Figlewski, 1984; Gay, Hunter and Kolb, 1986; Knott and Polenghi, 2006) and on

3In their 10K form �led in September 2002 to the Security Exchange Commission, the Chicago Mer-
cantile Exchange stated that they were in the process of obtaining default insurance. However, to our
knowledge, this has not materialized yet.

4Intraday margin calls are possible in particularly volatile market conditions. Extraordinary intraday
margin calls occurred three times on October 19th, 1987, and ten more times in the remainder of October
(Fenn and Kupiec, 1993).
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the expected value of additional funds that need to be raised conditional or not on addi-

tional funds being needed (Bates and Craine, 1999). Other authors have proposed models

of optimal margin that lead to a given target probability of a loss in excess of the margin

(Booth et al., 1997 and Cotter, 2001), that minimize the total cost of margin, settlement,

and default costs (Fenn and Kupiec, 1993), that re�ect the option to default on a futures

position (Day and Lewis, 2004), or that take account of the CCP risk aversion (Cotter

and Dowd, 2006). Recently, Shanker and Balakrishnan (2005) have used the framework

of Brennan (1986) to set the optimal margin, capital, and price limits that will minimize

the cost of clearing �rms and simultaneously provide protection against default risk to the

CCP. Di¤erently, Bailey and Ng (1991) estimate the default premium in the futures prices

of precious metals and show that nonperformance risk has signi�cantly a¤ected futures

prices during the 1979-1980 "Hunt Brothers" episode.

A common feature of the aforementioned studies is that they all focus on an individual

futures position. As a result, their conclusions do not directly apply to CMs since, at any

point in time, they maintain a portfolio of positions with complex diversi�cation e¤ects.

Indeed, a CM�s aggregate portfolio includes di¤erent derivatives types (e.g., futures and

options), o¤setting positions (i.e. long and short), di¤erent underlying assets, and various

maturities.5 Moreover, some of the positions are proprietary positions of the CM while

others come from all the end-customers that access the derivatives exchange through this

CM.

Portfolio-based margin requirements are computed in most CCPs (including the Chicago

Mercantile Exchange) using the Standard Portfolio Analysis of Risk (hereafter SPAN) mar-

gining system.6 SPAN evaluates the risk of an entire account�futures/options portfolio and

computes at the end of each trading day its aggregate margin requirement called perfor-

mance bond.7 To arrive at a margin level, SPAN considers a series of scenarios representing

potential changes over a one-day horizon in the underlying security�s price and volatility.

5In an early attempt to analyze the default risk of a CCP, Gemmill (1994) highlights the dramatic
diversi�cation bene�t from combining contracts on uncorrelated or weakly correlated assets.

6The SPAN system was originally developed by the Chicago Mercantile Exchange. A smaller number of
CCPs use the Theoretical Intermarket Margining System (TIMS) developed by the US Options Clearing
Corporation.

7On the Chicago Mercantile Exchange, performance bond can be in cash (ten acceptable currencies),
U.S. Treasuries, letters of credit, selected stocks from the S&P 500 index, selected sovereign debt, mortgage
backed securities, and several types of notes and bonds from selected �nancial institutions. As of June 30,
1998, the Chicago Mercantile Exchange�s CCP held a total of $3.771 billion in house margin funds and
$7.949 billion in customer margin funds. U.S. Treasuries account for 89.76% of house margin funds, letters
of credit for 4.97%, and cash for 0.17%. Corresponding percentages for customer margin funds are 83.46%,
12.96%, and 0.61%, respectively (source: CFTC, 1998).
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For each scenario, the value changes are aggregated across all positions and the CM�s mar-

gin requirement for the day is set to the maximum aggregate loss across all scenarios.8 The

empirical performance of SPAN has been tested by Kupiec (1994) for selected portfolios of

S&P 500 futures and futures-options contracts. He �nds that, over the period 1988-1992,

the historical margin coverages exceed 99% for most considered portfolios. Furthermore,

Kupiec and White (1996) �nd that SPAN provides similar risk protection than the alter-

native margining system, "Reg T", but with substantially smaller collateral requirements.9

The present study is the �rst one to analyze the default risk of CMs using actual daily

performance bonds and variation margins. Our dataset includes the performance bonds

and variation margins for all CMs of the Chicago Mercantile Exchange�s CCP over the

period January 4th, 1999 - December 31st, 2001. Chicago Mercantile Exchange is the

largest and most diverse �nancial exchange in the world for trading futures and options.

We conduct an in-depth statistical analysis of the performance bonds (B > 0), variation

margins (V > 0 corresponds to a gain for the CM and V < 0 corresponds to a loss), and of

their ratio V=B, i.e., the relative pro�t-and-loss. We are particularly interested in the left

tail of the distribution of the V=B ratio since a ratio smaller than -1 indicates a situation in

which the CM has an incentive to default. Over our three-year sample period, we identify

68 occurrences when the daily loss in the house account exceeds the posted margin. Almost

one third of our sample CMs have experienced a margin-exceeding loss and in one case the

loss was as high as 173% of the posted margin. We also �nd that the value of the V=B

ratio seems to be independent of the size of the performance bond. Furthermore, margin-

exceeding losses are much less frequent on the customer side, with only four occurrences in

total. As a result, the major source of default risk for a CM is proprietary trading.

In this paper, not only we quantify the default risk but we also show how this risk can

be hedged through the purchase of a default insurance. We design and price a realistic

insurance contract covering the loss to the CCP from default by one or several CMs. The

insurance policy is based on the accumulated default losses over a T -year insured period,

subject to both a policy deductible and an overall payout limit. Valuation proceeds in

two steps. First, we empirically model the left tail of the V=B ratio using a generalized

Pareto distribution. Second, the actuarial insurance premium is determined by Monte

8The SPAN lets each CCP determine the minimum margin for each contract, the volatility range of
each underlying asset, the de�nition of an extreme move in the value of the underlying asset, as well as
the diversi�cation e¤ect between futures with di¤erent maturities or between futures written on di¤erent
underlying assets (see CFTC, 2001 for more details).

9Kupiec (1994) and Kupiec and White (1994) do not use actual historical SPAN margins but hypothet-
ical margins generated using a model that mimics the SPAN system.
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Carlo simulations of the joint default process and payout under the policy. Furthermore,

we investigate the e¤ect on the fair value of the premium of including data from October

19th, 1987 in our sample. We �nd that including the Black Monday dramatically impacts

the fair value of the default insurance premium.

Our approach drastically di¤ers from previous attempts to compute the fair value of

an insurance against losses from futures trading. Bates and Craine (1999) compute the

daily premium on an insurance policy that would cover the loss induced by a futures

price change exceeding the margin. Using an option pricing approach, they estimate the

insurance premium around the October 1987 crash. A key di¤erence between the Bates

and Craine�s analysis and ours is that they consider a hypothetical insurance on a single

futures contract on the S&P 500 index. Gemmill (1994) assesses the cost of default of a

stylized CCP assumed to clear three generic futures contracts �soft commodity, metal, and

�nancial �and to collect £ 50 million of margin from each market. He considers di¤erent

levels of default cost and, as acknowledged by the author (on page 991), assigns "highly

subjective" default probabilities. Under the assumed default scheduled, Gemmill estimates

a rough estimate for the premium of an insurance covering against a default by the CCP.

Contrary to previous research, we use actual data on CM�s portfolios to price a realistic

insurance policy covering the loss due to the default of one or several CMs.

We claim that there is a clear analogy between the premium of the default insurance

and the fair cost of the guarantee provided by the central bank. Indeed, just like a standard

insurance company, the Federal Reserve (or U.S. Federal Treasury) may have to compensate

the CCP in the event of a default by one or several CMs in order to prevent a breakdown

of the �nancial system. As Bernanke (1990) puts it "the Fed became the insurer of last

resort" during past episodes of extreme volatility, such as October 1987. For the Federal

Reserve, the deductible corresponds to any guarantee fund held by the CCP. As a result,

our study permits to put a dollar amount on the service provided by the central bank,

which is the implicit insurer of the clearing house. This is ultimately the cost to the tax

payer of the implicit protection of the clearing house.

Although the focus of the current paper is on organized derivatives exchanges, our an-

alytic tools can be applied to clearing companies on the over-the-counter (hereafter OTC)

market. Indeed, a growing fraction of OTC products are cleared through one of the three

main clearing processes. First, some OTC products are converted into equivalent exchange-

traded contracts and cleared on derivatives exchanges CCPs.10 Second, SwapClear, a CCP
10For instance, Clearing 360, an exchange service o¤ered by the Chicago Mercantile Exchange since
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for OTC interest rate swaps, clears approximately 40% of the global inter-dealer market

for interest rate swaps (as of December 2006, Bank for International Settlements, 2007).

SwapClear exhibits most of the features of a derivatives exchange CCP, e.g., CMs, regula-

tory capital and minimum credit rating for CMs, and parent �rms. Third, OTC derivatives

prime brokers operate very much like CCPs since they clear and settle the trades of a small

number (around 30) of large buy-side investors, typically hedge funds. For each transac-

tion, the prime broker interposes itself between the hedge fund and the other party. As a

result, a prime broker is a de facto CCP which is exposed to the risk of default by a large

end-user.

The outline of the paper is as follows. In the next section, we present our data and

analyze the risk properties of the performance bonds and margin variations for house and

customer accounts. We pay special attention to the (left) tail behavior of the variation

margin - performance bond ratio. In Section 3, we describe the default insurance contract

and implement our valuation strategy. We summarize and conclude our study in Section

4.

2 Risk Analysis

2.1 Data and Preliminary Results

Our empirical analysis is based on daily performance bond requirements (B) and daily

variation margins (V ) for all the CMs of the Chicago Mercantile Exchange�s CCP. The

performance bonds are computed at the end of each trading day by the SPAN margining

system and the variation margins simply re�ect daily mark-to-market gains or losses. The

sample period covers the period January 4th, 1999 - December 31st, 2001, which includes

several prominent episodes such as the burst of the internet bubble and the terrorist attack

of September 11th, 2001. For each of our 71 sample CMs, amounts are separated between

house accounts, BH and VH , and customer accounts, BC and VC . This partition of the

dataset between proprietary and customer trading re�ects the principle of strict segregation

of customer funds in place in most CCPs. In our dataset, 60 CMs have both a house and

a customer accounts, nine only have a house account, and two manage a customer account

April 2006, takes a bilaterally negotiated OTC swap trade and converts it into a strip of futures contracts,
which are then submitted to Chicago Mercantile Exchange for clearing. Similar OTC clearing services are
provided by Bclear (Euronext.Li¤e), OTC Trade Entry Facility (Eurex), Converge (Canadian Derivatives
Clearing Corporation), and Clearport (New York Mercantile Exchange).
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only. The total sample size is 43,236 member/day observations for house accounts and

41,013 member/day observations for customer accounts.

We plot in Figure 1 the cumulative performance bond across all CMs averaged over each

month. We see that both house account and customer account margins have experienced

a positive trend until the third quarter of 2001. Another interesting feature of the data

is the higher magnitude of the customer margins (i.e., cumulative BC around 15 billion

dollars per day) compared to house margins (i.e., cumulative BH around 6 billion dollars

per day). This di¤erence between the magnitude of house and customer accounts is due in

part to the gross margining regime under which customer accounts are administered. We

display in Figure 2 the daily variation margins for house and customer accounts. We notice

a clear change in the volatility of the variation margins between the �rst and second part

of our sample period. Our preliminary analysis seems to indicate that the distribution of

the performance bonds and variation margins are not stationary through time.

Since we are interested in potential default by a CM, we need to compare, on each day,

the performance bond with the variation margin of each CM.11 In particular, a situation

where BH + VH < 0 is problematic since the CM may decide to default instead of paying

the de�ciency. In our analysis, we favor an alternative, however equivalent, expression that

is the ratio of the variation margin and performance bond. In this case, default may occur

if VH=BH < �1 or VC=BC < �1.12 We plot in Figure 3 the time-series of the ratio of the
variation margin and performance bond for each type of accounts. This variable indicates

the fraction of the margin that is won or lost by a CM on a given day. Contrasting the V=B

ratio for house and customer accounts turns to be very informative as this ratio is much

more volatile for house accounts than it is for customer accounts. In our sample, there

are 68 occurrences when the daily loss on the house account exceeds the posted margin

whereas the corresponding number for customer accounts is four. The most severe event

corresponds to a loss on proprietary trading that amounts to 173% of the posted margin.

In dollar terms, the most severe daily loss (among these 68 occurrences) amounts around

44 million dollars. Interestingly, underwater accounts do not only a¤ect a handful of CMs

exhibiting extreme risk appetite as almost one third of our sample CMs have experienced

11More precisely, we contrast the performance bond set at the end of a given trading day, Btend , with
the variation margin computed over the following trading day, Vt+1. In the following, we will drop the
time index for simplicity. Note that Vt+1 often di¤ers from Bt+1end �Btend since both CM�s positions and
market volatility vary from one day to the next.
12A V/B ratio smaller than �1 is a necessary condition for defaulting but not a su¢ cient one. Reasons

for not defaulting include the bene�t of reduced clearing fee rate, reduced collateral cost (i.e., net margining
system), membership value, present value of future rents, and reputation e¤ect for parent companies.
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at least one margin-exceeding loss.

We complement our visual inspection of the data with some descriptive statistics in

Table 1. For each type of account (house vs. customer), we consider four variables of

interest, namely the performance bond, the variation margin, as well as the level and the

absolute value of the V=B ratio. We see that the average house performance bond is just shy

of the $100 million mark and that the average customer performance bond is almost three

times larger. Comparing average V across types of accounts reveals that proprietary trading

is on average more pro�table than trading by customers, which is consistent with previous

studies comparing the performance of various investor types (Grinblatt and Keloharju,

2000, and Frazzini and Lamont, 2007).13 Although the average and median values of the

V=B ratio are zero, the absolute value ratio is, on a typical day, around 15% for house

accounts and 7% for customer accounts. In dollar terms, that amounts to 900 million

dollars (= 0:150 � 6 billion) for house accounts and 1.11 billion dollars (= 0:074 � 15
billion) for customer accounts. On a technical note, we notice that the B and V variables

are much more skewed (especially BH and BC) and exhibit fatter tails (especially VH and

VC) than the V=B ratios.

In the three lower panels of Table 1, we split the three-year sample period into three

equal-sized subperiods. Consistent with our analysis of Figures 1 and 2, we �nd that the

average margin account has been growing through time and that the distributions of the

variation margins are pathologically non-stationary. Di¤erently, the �rst four moments

of the V=B ratio are remarkably stable across subperiods. Of particular interest is the

very low correlation between the V=B ratio and the level of the performance bond, i.e.,

0.003 for house accounts and less than 0.001 for customer accounts. Furthermore, this

correlation coe¢ cient has never exceeded 1:3% or gone below �1:3% on a given sample

year using either house or customer data. This modest in-sample correlation points toward

linear independence between the V=B ratio and the margin account size, which is a very

important property if one wants to aggregate data across CMs.

In Table 2, we present similar descriptive statistics by account size quantile. Speci�cally,

the �rst (respectively fourth) quantile considers the 25% smallest (respectively largest)

daily performance bonds. Consistent with this partition rule, the average performance

13We cannot infer the CM�s overall pro�t/loss from house accounts since much of the trading activity is
arbitraging between the futures and over-the-counter markets or cash markets (e.g., cash-futures arbitrage
of the S&P 500 index, eurodollar-interest rate swap arbitrage). Thus a negative V might be matched by
positive mark-to-market gains elsewhere.
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bond grows exponentially from Panel A (smallest accounts) to Panel D (largest accounts).

We note that the distribution of the V=B variable remains stable across size quantiles and

that the correlation between V=B and B is always close to zero.

In the following sections, we are going to focus our analysis on the V=B ratio rather

than on their sum, or on any of their component in isolation. We follow this strategy for

the following reasons. First, the V=B ratio allows us to e¢ ciently combine the information

about variation margins and performance bonds (no loss of information) in a compact way.

Second, the distribution of V=B is much more stable through time and across size quantiles

than the distribution of B or V . Third, the very low correlation between V=B and B allows

us to aggregate information across CMs without dramatically skewing the data because of

account size di¤erences.

The �nal step of our explanatory analysis of the data is constructing an histogram of the

V=B variable. Consistent with our previous results, we note in Table 3 the higher variability

of the V=B ratio for proprietary trading than for trading from customers. For instance,

76.2% (respectively 48.62%) of the time VC=BC (respectively VH=BH) remains within the

]-0.1;0.1] range. Another key statistical di¤erence between house and customer accounts is

the thickness of the tails of the distribution of V=B. In our house accounts sample, 1 out of

185 observations lies in the extreme left tail (de�ned as relative losses exceeding 70% of the

performance bond, i.e., V=B < �0:7) whereas the corresponding frequency is only 1 out of
1,250 observations for customer accounts. With 60 CMs, this implies one extreme (but not

rare) event a¤ecting a house account every three days (' 185=60). We also notice that,

on average, observations in the tails of the distribution tend to be associated with smaller

performance bond. However, as suggested by the maximum values, some sizable accounts

also end up far in the tails of the distributions. We speci�cally analyze the extreme left tail

of the distribution in Figure 4. We clearly see that V=B is much more negatively skewed

for house accounts than it is for customer accounts. This result further supports the idea

that the main source of default risk is proprietary trading and not trading by customers.

2.2 Tail Behavior

Modelling defaults in a derivatives exchange calls for a characterization of the far end of

the left tail of the V=B distribution. To do so, we deviate from the standard approach in

statistics that is to �t the entire distribution with a given distribution. The intuition is that

data in the bulk or in the right tail of the distribution do not help much, and sometimes
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hurt, in characterizing the left tail of the distribution. Instead, we follow an extreme value

approach in which only observations with losses exceeding a pre-speci�ed threshold � are

used.14

The result we use is a theorem of Balkema and de Haan (1974) and Pickands (1975) that

states that under moderately general conditions the distribution of the excess z = X� � of
a random variable X over a high threshold �, conditional on the threshold being exceeded,

converges to the generalized Pareto distribution G. This distribution depends on two

parameters: a scale parameter � and a tail shape parameter k, which both can be estimated

by maximum likelihood (see Appendix for details). Its cumulative distribution function is:

G(z;�; k) =

(
1� (1� kz=�)1=k k 6= 0
1� e�z=� k = 0

: (1)

For k > 0, the above applies for 0 � z < �=k, with G = 1 for z � �=k and G = 0 for z < 0
(i.e., the range of z is bounded). The case k = 0 will occurs if sampling is from normal,

lognormal and several other common distributions. The case k < 0 occurs if sampling from

fatter tailed distributions. Di¤erentiating G with respect to z gives the probability density

function:

g(z;�; k) =
1

�
(1� kz=�)�1+1=k (2)

in the relevant domain. Note that in what follows, exceedance is interpreted as amount by

which V=B falls below �.

The choice of the threshold � is a crucial step in characterizing the tail of the distrib-

ution. In general it should be set large enough that the data exceeding it is clearly in the

relevant tail of the distribution, but small enough that the remaining sample is adequate for

estimating the remaining parameters. In our test, we perform estimation for a range of ��s

from �0:7 to �0:9. This corresponds to daily losses ranging from 70 to 90% of the posted

margin. Furthermore, estimation of the tail distribution parameters is done separately for

house and customer accounts. We report in Table 4 the maximum likelihood estimation

results. For each threshold level, we display the number of observations in the tail n, the

estimated parameters k and �, along with their asymptotic standard errors. We see that

out of the 43,236 member/day observations for house accounts, 233 observations lie in the

14Over the past decade, Extreme Value Theory has been increasingly used to model extreme events
in �nance, e.g. Longin (1996, 2000, 2005), Embrechts, Kluppelberg, and Mikosch (1997), Diebold et al.
(1998), McNeil and Frey (2000), Neftci (2000), Longin and Solnik (2001), Poon, Rockinger, and Tawn
(2004), and McNeil, Frey, and Embrechts (2005).
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left tail of the distribution when the threshold is set to �0:7. Moreover, the number of ex-
ceedances mechanically decreases as the threshold becomes further negative, e.g. n = 142

when � = �0:8. Depending on the considered threshold, the tail shape parameter estimate
ranges from 0.0107 to 0.2492 and the scale parameter ranges from 0.1321 to 0.3059. We also

notice that, as expected, standard errors decrease with the sample size. When customer

account data are used, the number of exceedances is much smaller than with house account

data. In particular, when � = �0:9, the number of exceedances is as low as eight. This
latest result con�rms our analysis in Section 2.1 in which we document that extreme losses

a¤ect more frequently house accounts. The results from this section are going to play an

important role in the valuation of the default insurance, which we next explore.

3 Default Insurance

3.1 Contract Features and Valuation Strategy

We now turn to the development of an insurance contract that protects the CCP against

the default of one or several of its CMs. We assume that CM default occurs according

to the following stochastic process. Default requires that (a) futures prices have changed

su¢ ciently since the previous day that loss in margin account exceeds performance bond

posted, and (b) member elects to default rather than pay the de�ciency. Over the �xed

term of T years, there is a policy deductible, or �rst loss amount born by the insured, D,

and overall payout limit L. Premium is paid in advance for each payment interval, which

have length tp years, at an annual rate of p per dollar of policy limit, i.e., payment on each

such date is p � tp �L.15 Another realistic feature of our contract is that accumulated default
losses for purpose of the deductible is reset to zero at the end of each reset interval of length

tr.

In our model we make the following two assumptions. First, default by a CM can only

be due to a de�ciency in the house account. Second, account value change as a proportion

of previous day performance bond is independent of the size of the performance bond.

Both assumptions are consistent with the risk analysis presented in Section 2. Indeed, we

have shown that de�ciencies in house accounts are much more frequent than de�ciencies

in customer accounts. Furthermore, the independence assumption is motivated by the fact

that empirical correlations between V=B and B are close to zero.

15It is conventional in the insurance industry to report the insurance premium in basis points per year
on policy maximum payout.
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The main building blocks of our model are as follows. Value changes of policy-relevant

magnitude are in the negative tail of the distribution of proportional value changes of

any given �rm. As in Section 2, the tail is de�ned by proportional value loss exceeding

a threshold �. Value changes of policy-relevant magnitude are caused by the arrival of

trigger events, which arrive as a Poisson process with constant arrival intensity �. Upon

arrival of a trigger event, proportional value loss for a given �rm exceeds � with a �xed

probability �. In our model, exceedance of the threshold may be correlated across �rms and

a single exceedance correlation parameter �� characterizes the common pairwise correlation.

Conditional upon a trigger event and exceedances occurring, the size of exceedance z for a

given �rm is a random draw from a generalized Pareto distribution with scale parameter �

and tail shape parameter k. We allow the size of exceedances to be correlated across �rms

and we use a single exceedance size correlation parameter �z to characterize the common

pairwise correlation. Firms with value loss exceeding performance bond, z + � < �1, are
candidates for default. Default occurs independently across �rms with probability �1 for

�2 � z + � < �1 and with probability �2 for z + � < �2.

The nine parameters of the default process are thus �; �; �; k; �; ��; �z; �1; �2. Of these,

� and � are technical parameters and statistician imposed in the tail analysis. Given these,

�; k; � are estimated by maximum likelihood methods from historical data. The remaining

parameters ��; �z; �1; �2 are analyst imposed.
16 Note that since no defaults have occurred

over our sample period, any empirical estimate of �1; �2 would of course be zero.

Fair actuarial pricing for the contract is the p satisfying:

p � A(T; tp; r) � L = E(NPV of Policy Payouts) (3)

where A(T; tp; r) is the present value of a $1/year annuity for T years (readily calculated

analytically), paid in advance at intervals tp, in a constant interest rate r environment. L is

the policy limit on which the premium is paid and p is the annual premium rate. The right

hand side of the equation is estimated as the average net present value (NPV) of policy

payouts over Monte Carlo simulations of the default process modelled above.17

For given �; k; � values, each path is simulated as follows. An exponentially distributed

random time dt to next Poisson trigger event is drawn. This is done by drawing a uniform
16In Section 3.5, we investigate the e¤ect on the insurance premium of changing the value of the key

parameters.
17In Equation (3), future cash-�ows are discounted using the risk-free rate since it is very di¢ cult to

make a case for having a positive or negative beta for this insurance contract.
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[0; 1] random variable u, then setting �t = � lnu=�. If time since start crosses a deductible
reset date, cumulative loss is reset to zero. Standard normal random variables x0; y0 are

drawn for the common factors in�uencing whether individual �rms exceed the value loss

thresholds and the amount by which they exceed. Looping through each of the M �rms,

an independent standard normal xi is drawn and the correlated standard normal x =

�
1=2
� x0 + (1� ��)1=2xi formed. If x < F�1(�), where F�1 is the inverse normal cumulative
distribution function, then �rm i is determined to have exceeded loss threshold �. This

implies that exceedance occurs with probability �. If �rm i exceeds the loss threshold,

another independent standard normal yi is drawn and the correlated standard normal

y = �
1=2
z y0+(1��z)1=2yi formed. An exceedance size is computed as z = G�1(F (y)), where

F is the cumulative normal distribution function and G�1 is the inverse of the generalized

Pareto cumulative distribution function. Note that F (y) will be a (correlated) uniform

random variable, and thus z will be a correlated random variable following a generalized

Pareto distribution. If the proportional loss exceeds the performance bond, � + z < �1,
the �rm is a candidate for default. Default or not is determined by a further independent

uniform random draw, with default probability either �1 or �2 depending on the magnitude

of � + z.

If default by �rm i occurs, the default cost is set by drawing a performance bond level

from the empirical distribution of BH . The range of performance bond levels is partitioned

into buckets from 0 to maximum observed level. The number of daily observations of �rms

in each bucket is counted over the year. This determines an empirical distribution function

F (S) = Prfs � Sg of �rm sizes, assumed to be linear between bucket levels. The number of
clearing members is assumed constant at M = 60, which is the average number of clearing

members. Firm sizes for simulation are then the M sizes given by si = Q�1(i=M), where

Q is the size distribution and i = 1; : : : ;M . In the event of a default by CM i, payment

by the insurance company is set at the minimum of the default amount, the remaining

aggregate policy limit, and the amount by which cumulative defaults to date exceed the

deductible. Any payment is discounted back to the present at the risk-free rate and added

to cumulative present value of payouts.

3.2 Valuation Results

We consider the following base case for the insurance policy: a three-year policy, with a

$500 million deductible, a $500 million payout limit, a deductible reset interval of 0.25

years, and a premium payment interval of 0.25 years. The values of the other parameters
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are �� = �z = 0:5, �1 = 0:2, �2 = 0:5, and r = 5%:
18 Assuming 250 trading days per year,

annualized arrival rate of threshold exceedances per �rm is estimated as a = n=(250�60�3),
where n is the number of exceedances of � in the sample. Estimated arrival rate of trigger

events is then � = a=� with � = 0:25. Furthermore, we take the size distribution as �xed

at the average distribution over the most recent sample year (2001).

We report in Table 5 the estimated insurance premium for several threshold levels. Our

main �nding is that the premium is around two basis points per year on policy maximum

payout, with standard errors approximately one-�fth of the point estimate. Given the $500

million payout limit assumed in our base case (see Panel A), a two basis point premium

rate results in $100,000 premium payments per year. Since the term of the policy is three

years, the total insurance premium is around $300,000. We also report the probability

of any payout event over term of policy (ppay), the probability of policy limit payout

over term of policy (pmax), and the probability of at least one �rm defaults during policy

term (pdef). The marginal e¤ects of having a policy payout limit and/or a deductible are

investigated in Panels B-D of Table 5. As expected, these two features have dramatic e¤ect

on the insurance premium and on the probabilities of any payout or maximum payout. For

instance, with a threshold equals to -0.8, waving the deductible increases the probability

of any payout by a ratio of 19 and the insurance premium (or value) by a ratio of six.

Furthermore, relaxing jointly the cap on the payout and setting the deductible to zero

pushes the value of the insurance to around $2 million.

To further illustrate our simulation-based pricing strategy, we display in Figure 5 the

value and the frequency of the simulated total default losses obtained from 40,000 simulated

paths. In this experiment, we use our base case with a threshold of -0.8. There are 768

paths (pdef = 1.92%) experiencing at least one default and, as a result, 39,232 paths (1 -

pdef = 98.08%) experiencing no default. Although some of the total losses are sizable �the

maximum value is $2.08 billion �the majority of the losses remains below the $25 million

mark.19 Moreover, we �nd that 2% of the total default losses exceed $1 billion.

We investigate in Table 6 whether our pricing results are critically sensitive to the

value of certain key parameters. In this comparative statics exercise, we recompute the

value of the default premium, along with the associated probabilities (ppay, pmax, and

18The relatively small values for �1 and �2 re�ect the apparent strong economic incentive of CM for not
defaulting.
19The discrepancy between DefMax in Panel A of Table 5 and the maximum value in Figure 5 is due to

the fact that DefMax measures individual defaults whereas Figure 5 displays total or cumulative defaults
over the entire path.
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pdef), while changing the value of one parameter at the time. The value of the other

parameters remains equal to their base-case value and the threshold we use is -0.8. We

consider designated changes in parameters of plus or minus 50% of the base-case value (e.g.

from �� = 0:5 to �� = 0:75 and 0:25). We also consider an extreme case in which we set

all correlation parameters (�� and �z) to zero. While the estimation results remain rather

stable on the whole, several �ndings are worthwhile being particularly stressed. First, �1
is highly in�uential, as one might expect. Second, changing the value of �2 has no e¤ect

whatsoever on the results. The reason is that no V=B values smaller than -2 occurred in

the simulations with this particular set of parameters. Indeed, as shown in Section 2.2, the

most negative value for V=B is -1.9543 (i.e., the upper bound is 1.9543 = 0.2695 / 0.1379).

3.3 Value of the Federal Reserve Guarantee

The insurance contracts developed in this section allows us to put a dollar amount on the

service provided by the central bank. Indeed, the Federal Reserve (or the U.S. Federal

Treasury) may ultimately have to act as the implicit insurer of the clearing house in case

of a major �nancial meltdown (Bernanke, 1990). The cost of this service is given by the

fair value of a default insurance with no payout limit and a "deductible" equal to the

total security deposit held by the CCP. In order to estimate the size of this deductible one

needs to understand the default procedure in place at the Chicago Mercantile Exchange.

In the event of a payment default that originates from a house account, the CCP takes

the following actions (in this order): (1) transfer all customer positions to another CM; (2)

take control or liquidate the positions in the defaulting house accounts; (3) apply the CM�s

security deposit and house performance bonds to the failed obligation �recall customer

performance bonds may not be used by the CCP; (4) attach all other assets of the CM

that are available to the CCP, such as membership and pledged shares; (5) invoke any

applicable parent guarantee; (6) use lines of credit as a temporary liquidity facility; (7)

apply the surplus fund and aggregate security deposit of the clearing membership; and

(8) assess non-defaulting CMs for any unsatis�ed obligations up to a pre-speci�ed cap,

expressed as a multiple of the aggregate security deposit.

As of December 31st, 2001 (i.e., end of our sample period), the available �nancial

resources in the case of a default are $821 million (from (1) to (7)) with an additional

$2,358 million in capital assessment powers (8).20 Although the former amount is readily

20The $821 million �gure is obtained by adding $3 million (market value of pledged shares and member-
ship), $113 million (surplus funds), and $705 million (security deposits of clearing �rms). Note also that
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available to the CCP, the latter is more of a theoretical bound since there is no deposit

yet. In particular, it is not completely clear which fraction could eventually be obtained

in a timely manner. Furthermore, since the allocation would be based on each CM�s share

of the security deposit pool, the size of the assessment would be greatly reduced should

the defaulting �rms be the largest CMs. Finally, some CMs may decide to default on this

extra capital assessment. For these reasons, we use in the following a "deductible" of $821

million.

We present the estimation results in Table 7. The value of the commercial equivalent of

the Federal Reserve guarantee is between $200,000 and $380,000 for a three-year policy. The

magnitude of the insurance premia is consistent with our results in Table 5 but are rather

small, especially when compared to actual historical losses faced by the Federal Reserve.

For instance, the ultimate cost of the U.S. Savings and Loan crisis of the 1980s and 1990s

is estimated to have totaled around $160 billion, among which about $124 billion was

directly paid by the U.S. government. However, the �gures reported in Table 7 correspond

to expected costs, not actual ones. Although the theoretical cost of this guarantee is modest,

the value for the society is huge. Indeed, reducing the chance of a systemic collapse of the

�nancial system is priceless. The various economics and �nancial disruptions triggered by

a CCP failure would have a huge social cost.

A few additional remarks need to be done. First, our estimates are based on pre-merger

data from 1999-2001. As a result, current �gures would certainly need to be scaled up.

Second, our sample does not include the most critical episode in the history of derivatives

clearing, namely October 1987. We study the impact on our key results of including the

Black Monday in Section 3.4. Third, our estimates do not account for defaults on customer

accounts �an issue further discussed in Section 3.5.

3.4 Black Monday E¤ect

On October 19th, 1987, the Chicago Mercantile Exchange�s S&P 500 futures contract

dropped 80.75 points to 201.50. As mentioned by Bernanke (1990) and Bates and Crane

(1999), rumors about possible clearinghouse failures spread out quickly on Black Monday

which added to the sense of panic in the markets. In this section, we complement our

original dataset with performance bonds and variation margins for all Chicago Mercantile

the CCP has a $500 million line of credit but this amount is not included by the CME in the de�nition of
the total �nancial safeguard package (Source: Chicago Mercantile Exchange 10K form for �scal year 2001).
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Exchange CMs�house accounts on October 19th, 1987. This expanded sample allows us

to quantify the impact of a major crisis on the fair value of a default insurance contract.

From a regulator�s point of view, information about an actual crisis situation can be of

great interest.

The main concern to add one extreme day from 1987 to our sample is the fact that

margins in the eighties were much smaller than in recent years. However, since the variable

of interest is the V=B ratio, the size di¤erence does not alter the analysis. Furthermore,

as expected on a market crash, the number of underwater accounts is extremely high. We

�nd that 15 CMs experienced a loss exceeding their posted margin on this particular day.

However, as many of them concerned very small accounts, we eliminate from consideration

member accounts with performance bonds less than $10 million. This conservative approach

allows us to not unduly exaggerate the role of the crash in the analysis. We end up with

four V=B ratios smaller than a -1 and �ve smaller than -0.7 (our larger threshold), namely

-4.646, -4.482, -4.430, -4.052, -0.979. We note that these values are extremely high, without

any comparison with the values observed in our original (no-crash) sample.

Armed with this expanded dataset, we re-conduct our tail analysis and present the

results in the Panel A of Table 8. A direct e¤ect of adding four outliers is the lower value of

the tail shape parameter. The parameter estimate is also more stable across thresholds as

it remains between -0.315 and -0.340. This is consistent with a much fatter left tail for the

distribution of V=B: The estimated value of the scale parameter is signi�cantly less a¤ected

by the inclusion of the market crash. Of particular interest is the impact of the extra data

on the value of the insurance contract. We report the estimated insurance premium for

our base case in Panel B of Table 8. Although the probability of having an extreme event

remains virtually unchanged, the losses are much more severe. This is re�ected in the

probability of having payout event over policy term, the probability of policy limit payout

over policy term, and in turn, by the insurance premium which is multiplied by more than

three compared to Table 5 (Panel A). Note that the maximum default size appears to be

a major contributor to the premium di¤erence with the 1987 data. Indeed, the simulated

default loss can be as high as $13.6 billion.

Finally, we recompute the value of the Federal Reserve guarantee in Panel C of Table 8.

In line with the �rst two panels, our estimates di¤er drastically from our previous analysis.

As for the Federal Reserve guarantee, the estimated fair value is multiplied on average by

10, with a value around $3 million. Thus, including information about actual �nancial

crises turns out to be particularly important in assessing the fair cost of the protection
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provided by the Federal Reserve. This result is of primary importance since it is only in

such extreme market conditions that the central bank eventually becomes insurer of last

resort (Bernanke, 1990).

3.5 Default on a Customer Account

In this section, we discuss several potential extensions of the current analysis. So far,

the only considered source of CM default is proprietary trading. However, it is plausible

that the default originates from a customer position. As already mentioned, this event is

far less likely to occur for two reasons. First, customer accounts are administered under

gross margining and second, the CM�s house performance bonds are pledged to cover any

de�ciency on the customer account. Technically speaking, the second reason implies that

one would have to switch from VC=BC to VC=(BC + BH) in case of payment default on a

customer account. This prevents us from using our model with customer account data.

Although CCPs segregate customer performance bonds from house performance bonds,

customer performance bonds for each CM are pooled together. If a default occurred in

the CM�s customer account, the CCP applies toward the default all customer performance

bond deposits and positions in the defaulting CM�s customer origin account. Accordingly,

positions and performance bonds deposited by customers not causing the default are poten-

tially at risk, i.e., they can be liquidated (Jordan and Morgan, 1990). A potential adverse

e¤ect of this is that investors may be reluctant to channel their trades through a CM that

has large, risk-seeker customers. This could be particulary acute in absence of proprietary

trading since, in that case, no house performance bond is pledged. In order to reduce the

perverse e¤ect of information asymmetry, such a CM could purchase a default insurance

like the one developed in this paper to protect its non-defaulting customers, and in turn,

increase its market share.
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4 Conclusion

A clearing house failure is a major systemic risk event. In this paper, we take an inside

look at a central counterparty clearing house, with a special emphasis on its exposure to

default risk. Using actual daily data on margin requirements and variation margins for

all the clearing members of the Chicago Mercantile Exchange�s clearing house, we shed

some light on the potential sources of default risk within the clearing house. In particular,

we identify many occurrences when a member�s daily loss exceeds his posted margin. We

document that underwater accounts are much more frequent for house accounts than it is

for customer accounts, which suggests that the major source of default risk is proprietary

trading. Furthermore, we quantify the default risk by characterizing the left tail of the

distribution of the ratio between variation margin and performance bond.

In this paper, we also develop, and price, a realistic insurance contract covering the

loss to the clearing house from default by one or several clearing members. This �nancial

innovation allows a substitution of the implicit insurer of the clearing house, i.e., the central

bank, by an explicit insurer, i.e., one or several insurance companies. The estimate of the

insurance premium can also be interpreted as the fair cost of the service provided by the

central bank as an implicit insurer of the clearing house.

The insurance policy designed in this paper could be employed in di¤erent contexts.

Indeed, it could be used to compute the fair premium of an insurance policy covering the

loss to a brokerage �rm from default by one or several customers, especially if the �rm is also

a CM. A �rst bene�cial e¤ect of such a contract would be to protect the performance bond

of the �rm. A second bene�t would be to protect the performance bond of non-defaulting

customers in the case of a default by another customer of this CM. Finally, although our

insurance contract has been developed for derivatives exchanges, it could be calibrated in

a similar way to OTC de-facto clearing institutions, such as prime brokers.
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Appendix: Estimation of Tail Distribution Parameters

Suppose we have a large set of N independent observations of a random variableX. Choose

a tail estimation threshold � large enough so that the observations exceeding � are cred-

ibly in the upper tail, but not so large that the number of observations is insu¢ cient to

con�dently identify k and �. Let n be the number of observations exceeding �. There is

a tradeo¤ here between bias, from not being su¢ ciently far in the tail for the asymptotic

distribution result to hold, and variance, from having too few observations to estimate k

and �.

Let Xi, i = 1; :::; n, denote the observations above the � selected, and zi = Xi � � the
corresponding exceedances. Using the i.i.d. assumption, the log of the likelihood function

for this data is the sum of the log density functions from Equation (2):

L = �n ln� � (1� 1

k
)

nX
i=1

ln(1� kzi=�): (A1)

Maximum likelihood estimates are the values of k and � that maximize this expression.

First order conditions for a maximum of L with respect to k and � are:

L� = 0 = �n=� � (1� 1

k
)
X
i

kzi=�
2

1� kzi=�
(A2)

Lk = 0 = � 1
k2

X
i

ln(1� kzi=v) + (1�
1

k
)
X
i

zi=�

1� kzi=�
: (A3)

We de�ne a new variable c � k=� and substitute into Equation (A2). The pair of equations
can be partially solved to:

k = � 1
n

X
i

ln(1� czi) (A4)

0 = n+

�
1 +

nP
i ln(1� czi)

�X
i

czi
1� czi

: (A5)

Note that the last equation contains only the single unknown c. Although not analytically

solvable, it is readily numerically solvable for ĉ (e.g., by Newton�s method or the secant

method). Then k can be computed from Equation (A4), and �̂ = k̂=ĉ.
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Table 1: Descriptive Statistics

BH V H V H

BH
jV Hj
BH

BC V C V C

BC
jV Cj
BC

Panel A: 1999-2001

Mean 98.78 0.47 0.003 0.150 267.78 -0.53 -0.002 0.074

Median 13.96 0.00 0.000 0.105 40.48 0.00 0.000 0.045

Std-Dev 226.79 43.92 0.217 0.156 546.68 71.93 0.117 0.090

Skewness 4.84 0.74 0.137 2.662 3.41 -0.89 0.205 3.494

Kurtosis 35.54 116.71 8.774 15.949 17.16 138.70 16.133 28.966

Corr(Bi,�) 1.000 0.042 0.003 -0.040 1.000 -0.021 0.000 -0.010

Panel B: Year 1999

Mean 68.22 -0.24 0.001 0.131 212.95 0.37 -0.001 0.068

Median 14.48 0.00 0.000 0.092 38.84 0.00 0.000 0.042

Std-Dev 129.94 23.69 0.190 0.137 444.41 44.96 0.106 0.082

Skewness 3.20 -0.38 0.033 2.587 3.36 0.80 -0.122 3.153

Kurtosis 15.38 55.80 8.338 14.366 16.22 71.78 12.281 20.194

Corr(Bi,�) 1.000 -0.029 -0.013 -0.027 1.000 0.040 0.013 -0.045

Panel C: Year 2000

Mean 83.37 0.96 0.006 0.165 252.22 -1.19 -0.003 0.081

Median 14.09 0.00 0.003 0.118 40.50 0.00 -0.001 0.048

Std-Dev 176.04 42.02 0.233 0.165 505.05 74.77 0.131 0.102

Skewness 3.74 -0.04 0.257 2.500 3.39 -0.80 0.472 3.788

Kurtosis 20.94 77.54 7.830 14.315 16.51 120.15 19.163 34.778

Corr(Bi,�) 1.000 0.060 0.012 -0.013 1.000 -0.048 -0.008 -0.006

Panel D: Year 2001

Mean 148.00 0.72 0.003 0.156 346.59 -0.82 -0.002 0.072

Median 13.36 0.00 0.000 0.109 41.81 0.00 0.000 0.045

Std-Dev 325.83 59.86 0.226 0.163 671.42 91.07 0.112 0.086

Skewness 3.88 0.94 0.046 2.792 3.06 -1.03 0.071 3.031

Kurtosis 21.32 85.06 9.460 17.586 13.95 109.57 11.710 19.294

Corr(Bi,�) 1.000 0.047 0.004 -0.079 1.000 -0.025 0.000 0.009

Notes: This table presents descriptive statistics for house (H) and customer (C) margin
accounts from 71 clearing members from the Chicago Mercantile Exchange�s clearing house. There
are 60 clearing members with both house and customer accounts, nine with an house account only,
and two with a customer account only. For house margin accounts, we focus on the end-of-the-day
performance bond (BH), end-of-the-day variation margin (V H), their ratio (V H=BH), and the
ratio of the absolute variation margin and performance bond (jV H j=BH). We consider similar
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variables for customer margin accounts (BC , V C , V C=BC , and jV C j=BC). For each variable,
the sample size is 43,236 member/day observations for house accounts and 41,013 member/day
observations for customer accounts. We compute the mean, median, standard-deviation (all in
million of dollars for the B and V variables), skewness, kurtosis, and correlation between the
performance bond and the other variables. The descriptive statistics are computed for the entire
sample period in Panel A (1999-2001) and then for each year separately in Panels B-D (1999,
2000, and 2001).
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Table 2: Descriptive Statistics by Size Quartiles

BH V H V H

BH
jV Hj
BH

BC V C V C

BC
jV Cj
BC

Panel A: First Quartile (Smallest 25% Performance Bonds)

Mean 0.35 0.00 0.007 0.172 2.08 0.00 -0.001 0.080

Median 0.19 0.00 0.000 0.108 1.82 0.00 0.000 0.047

Std-Dev 0.38 0.12 0.261 0.197 1.55 0.28 0.128 0.100

Skewness 1.16 0.95 0.126 2.677 0.58 0.12 0.090 3.179

Kurtosis 3.27 43.92 9.354 14.528 2.38 24.19 12.784 19.970

Corr(Bi,�) 1.000 0.03 -0.001 -0.071 1.000 -0.01 0.000 -0.123

Panel B: Second Quartile

Mean 6.89 0.01 0.003 0.148 18.88 -0.07 -0.004 0.082

Median 6.67 0.01 0.001 0.105 15.68 0.00 0.000 0.052

Std-Dev 3.52 1.69 0.211 0.150 10.33 2.80 0.125 0.095

Skewness 0.22 -0.18 0.113 2.546 0.57 -0.13 -0.119 2.827

Kurtosis 1.99 13.50 8.199 15.067 2.04 21.45 10.091 16.002

Corr(Bi,�) 1.000 -0.01 -0.023 0.058 1.000 -0.01 0.002 0.044

Panel C: Third Quartile

Mean 32.86 -0.03 0.000 0.149 107.54 -0.26 -0.002 0.071

Median 27.19 -0.01 0.000 0.108 81.43 -0.01 0.000 0.042

Std-Dev 16.78 7.53 0.209 0.147 65.36 14.47 0.116 0.092

Skewness 0.92 -0.02 0.113 2.217 0.90 -0.80 0.913 4.820

Kurtosis 2.73 10.08 6.595 10.909 2.41 31.67 30.117 57.434

Corr(Bi,�) 1.000 -0.01 -0.006 -0.014 1.000 -0.03 -0.013 0.004

Panel D: Fourth Quartile (Largest 25% Performance Bonds)

Mean 355.04 1.90 0.003 0.134 942.58 -1.76 -0.002 0.063

Median 256.89 -0.14 -0.001 0.102 741.92 -0.01 0.000 0.039

Std-Dev 340.29 87.49 0.181 0.121 759.90 143.09 0.095 0.072

Skewness 3.03 0.32 0.174 2.006 1.81 -0.43 -0.074 2.428

Kurtosis 14.78 29.63 5.914 11.713 6.59 35.41 8.095 11.827

Corr(Bi,�) 1.000 0.04 0.014 0.006 1.000 -0.02 0.000 0.152

Notes: This table presents size-based descriptive statistics for house and customer margin
accounts. For house margin accounts, we focus on the end-of-the-day performance bond (BH),
end-of-the-day variation margin (V H), their ratio (V H=BH), and the ratio of the absolute vari-
ation margin and performance bond (jV H j=BH). We consider similar variables for customer
margin accounts (BC , V C , V C=BC , and jV C j=BC). For each variable, the sample size is 43,236
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member/day observations for house accounts and 41,013 member/day observations for customer
accounts. We compute the mean, median, standard-deviation (all in million of dollars for the
B and V variables), skewness, kurtosis, and correlation between the performance bond and the
other variables. The descriptive statistics are computed for four quartiles, from the smallest 25%
performance bonds in Panel A to the largest 25% performance bonds in Panel D.

Table 3: Performance Bonds and V/B Ratios

House Accounts Customer Accounts

from to E(B j �) Max(B j �) Obs Freq E(B j �) Max(B j �) Obs Freq

-1 -0.7 33.5 1,604 234 0.54% 87.5 842 32 0.08%

-0.7 -0.6 37.6 620 164 0.38% 144.2 2,851 27 0.07%

-0.6 -0.5 69.5 1,989 338 0.78% 146.9 3,851 59 0.14%

-0.5 -0.4 74.6 1,930 620 1.43% 144.7 3,625 151 0.37%

-0.4 -0.3 75.9 2,233 1,302 3.01% 225.1 3,639 357 0.87%

-0.3 -0.2 101.9 2,183 2,690 6.22% 292.5 4,140 1,080 2.63%

-0.2 -0.1 107.6 2,280 5,663 13.10% 278.8 4,421 3,455 8.42%

-0.1 0 98.7 2,440 10,938 25.30% 264.4 4,508 15,656 38.17%

0 0.1 97.3 2,608 10,082 23.32% 269.0 4,815 15,598 38.03%

0.1 0.2 110.7 2,636 5,555 12.85% 289.4 4,173 3,127 7.62%

0.2 0.3 109.3 2,291 2,819 6.52% 248.7 4,086 914 2.23%

0.3 0.4 102.1 2,134 1,424 3.29% 256.1 3,719 312 0.76%

0.4 0.5 65.2 1,979 627 1.45% 195.3 3,671 131 0.32%

0.5 0.6 56.7 1,916 340 0.79% 112.6 1,416 66 0.16%

0.6 0.7 53.2 2,152 160 0.37% 234.3 3,302 17 0.04%

0.7 +1 24.0 845 280 0.65% 47.4 170 31 0.08%

Notes: This table presents summary statistics for the performance bonds and the histograms
of the ratio of the variation margin (V ) and performance bond (B). E(B j �) denotes the expected
value of the performance bond B conditional on B being within a given range (e.g., between -1
and -0.7 in the �rst row). Max(B j �) denotes the maximum value of the performance bond B
conditional on B being within a given range (e.g., between -0.7 and -0.6 in the second row). Both
E(B j �) and Max(B j �) are measured in million of dollars. Obs is the number of observations
in each range. Freq is the frequency in percent in each range.
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Table 4: EVT-based Tail Analysis

� n k s.e.(k) � s.e.(�)

Panel A: House Accounts

�0:7 233 0.0107 0.0648 0.2243 0.0207

�0:8 142 0.1379 0.0723 0.2695 0.0297

�0:9 90 0.2492 0.0791 0.3059 0.0395

Panel B: Customer Accounts

�0:7 32 0.1321 0.1534 0.1672 0.0389

�0:8 15 0.2658 0.1896 0.1946 0.0609

�0:9 8 0.1850 0.2882 0.1562 0.0705

Notes: This table presents the maximum-likelihood coe¢ cient estimates of a generalized
Pareto distribution G(V=B), namely a tail shape parameter k and a scale parameter �. Es-
timation is done alternatively for house accounts in Panel A and customer accounts in Panel B.
The exceedances are de�ned using three di¤erent thresholds, � = -0.7, -0.8, -0.9. n is the number
of exceedances used in the estimation, i.e., number of V=B ratios smaller than �. s.e.(k) and
s.e.(�) denote asymptotic standard errors of the tail shape and scale parameters respectively.
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Table 5: Insurance Price Estimates

� � ppay pmax pdef bp/yr s.e.(%) Value DefMax

Panel A: Base Case

�0:7 0.0052 0.0011 0.0004 0.0218 2.18 0.18 305.9 3,122

�0:8 0.0032 0.0010 0.0003 0.0192 1.87 0.19 262.2 1,859

�0:9 0.0020 0.0011 0.0003 0.0151 2.27 0.17 318.2 1,527

Panel B: No Policy Payout Limit

�0:7 0.0052 0.0011 0.0000 0.0218 - 0.24 612.9 3,122

�0:8 0.0032 0.0010 0.0000 0.0192 - 0.22 403.7 1,859

�0:9 0.0020 0.0011 0.0000 0.0151 - 0.22 508.1 1,527

Panel C: No Deductible

�0:7 0.0052 0.0218 0.0011 0.0218 11.04 0.07 1,547.2 3,122

�0:8 0.0032 0.0192 0.0010 0.0192 11.77 0.07 1,649.9 1,859

�0:9 0.0020 0.0151 0.0011 0.0151 10.32 0.07 1,446.5 1,527

Panel D: No Policy Payout Limit and No Deductible

�0:7 0.0052 0.0218 0.0000 0.0218 - 0.10 2,160.0 3,122

�0:8 0.0032 0.0192 0.0000 0.0192 - 0.08 2,023.6 1,859

�0:9 0.0020 0.0151 0.0000 0.0151 - 0.09 1,968.9 1,527

Notes: This table presents the estimated insurance premium for several threshold levels �. The
� parameter is the annualized Poisson arrival rate of trigger events that cause account loss in the
tail range, ppay is the probability of any payout event over term of policy, pmax is the probability
of policy limit payout over term of policy, pdef is the probability of at least one �rm defaults during
policy term, bp/yr denotes the Monte Carlo estimate of actuarially fair price expressed in basis
points per year on policy maximum payout, paid in advance at premium payment interval, and
s.e.(%) is the Monte Carlo sampling error of price expressed as proportion of estimated fair price.
Value gives the present value of the insurance liability (and premiums) in thousands of dollars,
i.e., policy limit � bp/yr � discount factor for three years. DefMax is the largest default in
million of dollars occurring in the 40,000 simulations. In Panel A, we consider the following base
case: a three-year policy, with a $500 million deductible, a $500 million payout limit, a deductible
reset interval of 0.25 years, a premium payment interval of 0.25 years, �� = �z = 0.5, �1 = 0.2,
�2 = 0.5, r = 5%, and M = 60. In Panels B-D, we consider several variations of the base case.
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Table 6: Comparative Statics Analysis

� ppay pmax pdef bp/yr s.e.(%) Value DefMax

Base Case 0.0032 0.0010 0.0003 0.0192 1.87 0.19 262.2 1,859

�� = 0:75 0.0032 0.0013 0.0005 0.0153 2.64 0.16 369.4 1,608

�� = 0:25 0.0032 0.0009 0.0003 0.0216 1.72 0.20 241.3 2,487

�z = 0:75 0.0032 0.0010 0.0004 0.0173 1.99 0.19 278.9 2,555

�z = 0:25 0.0032 0.0009 0.0002 0.0211 1.53 0.20 214.2 1,652

�� = �z = 0 0.0032 0.0008 0.0003 0.0286 1.61 0.21 225.8 2,406

�1 = 0:30 0.0032 0.0017 0.0006 0.0218 3.32 0.15 466.0 1,859

�1 = 0:10 0.0032 0.0005 0.0002 0.0143 1.07 0.25 150.1 1,859

�2 = 0:75 0.0032 0.0010 0.0003 0.0192 1.87 0.19 262.2 1,859

�2 = 0:25 0.0032 0.0010 0.0003 0.0192 1.87 0.19 262.2 1,859

M = 80 0.0032 0.0013 0.0004 0.0207 2.58 0.16 361.5 1,947

M = 40 0.0032 0.0006 0.0003 0.0155 1.52 0.23 212.8 2,176

Notes: This table presents the results of a comparative static analysis of the estimated insur-
ance premium. The � parameter is the annualized Poisson arrival rate of trigger events that cause
account loss in the tail range, ppay is the probability of any payout event over term of policy,
pmax is the probability of policy limit payout over term of policy, pdef is the probability of at least
one �rm defaults during policy term, bp/yr denotes the Monte Carlo estimate of actuarially fair
price expressed in basis points per year on policy maximum payout, paid in advance at premium
payment interval, and s.e.(%) is the Monte Carlo sampling error of price expressed as proportion
of estimated fair price. Value gives the present value of the insurance liability (and premiums)
in thousands of dollars, i.e., policy limit � bp/yr � discount factor for three years. DefMax is
the largest default in million of dollars occurring in the 40,000 simulations. The �rst row displays
the base case results with a threshold � = �0:8, a three-year policy, a $500 million deductible, a
$500 million payout limit, a deductible reset interval of 0.25 years, a premium payment interval
of 0.25 years, �� = �z = 0.5, �1 = 0.2, �2 = 0.5, r = 5%, and M = 60. In subsequent rows, we
consider several variations of the base case where the successive shocks are displayed in the �rst
column.
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Table 7: Cost of the Federal Reserve Guarantee

� � ppay pdef s.e.(%) Value DefMax

�0:7 0.0052 0.0005 0.0218 0.31 382.5 3,122

�0:8 0.0032 0.0004 0.0192 0.30 202.9 1,859

�0:9 0.0020 0.0005 0.0151 0.30 265.2 1,527

Notes: This table presents the estimated insurance premium for several threshold levels �. The
� parameter is the annualized Poisson arrival rate of trigger events that cause account loss in the
tail range, ppay is the probability of any payout event over term of policy, pdef is the probability
of at least one �rm defaults during policy term, and s.e.(%) is the Monte Carlo sampling error
of price expressed as proportion of estimated fair price. Value gives the present value of the
insurance liability (and premiums) in thousands of dollars, i.e., policy limit � bp/yr � discount
factor for three years. DefMax is the largest default in million of dollars occurring in the 40,000
simulations. The features of the contract and the value of the key parameteres are as follows: a
three-year policy, a $821 million deductible, no payout limit, a deductible reset interval of 0.25
years, a premium payment interval of one year, �� = �z = 0.5, �1 = 0.2, �2 = 0.5, r = 5%, and
M = 60.
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Table 8: Estimation Results When the Black Monday is Included

Panel A: EVT-based Tail Analysis

� n k s.e.(k) � s.e.(�)

�0:7 238 -0.3153 0.0853 0.1873 0.0197

�0:8 147 -0.3201 0.1089 0.2147 0.0288

�0:9 95 -0.3403 0.1375 0.2395 0.0402

Panel B: Insurance Price Estimates

� � ppay pmax pdef bp/yr s.e.(%) Value DefMax

�0:7 0.0053 0.0030 0.0016 0.0239 7.37 0.10 1,033.2 10,962

�0:8 0.0033 0.0029 0.0015 0.0186 7.25 0.10 1,015.8 13,623

�0:9 0.0021 0.0030 0.0018 0.0163 7.39 0.10 1,036.4 6,547

Panel C: Value of the Federal Reserve Guarantee

� � ppay pdef s.e.(%) Value DefMax

�0:7 0.0053 0.0021 0.0239 0.22 2,657.3 10,962

�0:8 0.0033 0.0020 0.0185 0.21 2,703.6 13,623

�0:9 0.0021 0.0019 0.0163 0.16 3,055.1 6,547

Notes: This table presents the estimation results for the tail analysis (Panel A), the insurance
price (Panel B), and the value of the Federal Reserve guarantee (Panel C) when the sample includes
the data from the Black Monday of October 19th, 1987. Panel A replicates Panel A in Table 4.
The analysis is conducted for house accounts only. The panel presents the maximum-likelihood
coe¢ cient estimates of a generalized Pareto distribution G(V=B), namely a tail shape parameter
k and a scale parameter �. The exceedances are de�ned using three di¤erent thresholds, � =
-0.7, -0.8, -0.9. n is the number of exceedances used in the estimation, i.e., number of V=B
ratios that are smaller than �. s.e.(k) and s.e.(�) denote asymptotic standard errors of the tail
shape and scale parameters respectively. Panel B replicates Panel A in Table 5. The panel
presents the estimated insurance premium for several threshold levels. The � parameter is the
annualized Poisson arrival rate of trigger events that cause account loss in the tail range, ppay is
the probability of any payout event over term of policy, pmax is the probability of policy limit
payout over term of policy, pdef is the probability of at least one �rm defaults during policy term,
bp/yr denotes the Monte Carlo estimate of actuarially fair price expressed in basis points per
year on policy maximum payout, paid in advance at premium payment interval, and s.e.(%) is the
Monte Carlo sampling error of price expressed as proportion of estimated fair price. Value gives
the present value of the insurance liability (and premiums) in thousands of dollars, i.e., policy
limit � bp/yr � discount factor for three years. DefMax is the largest default in million of dollars
occurring in the 40,000 simulations. We consider the following base case: a three-year policy, with
a $500 million deductible, a $500 million payout limit, a deductible reset interval of 0.25 years, a
premium payment interval of 0.25 years, �� = �z = 0.5, �1 = 0.2, �2 = 0.5, r = 5%, and M =
60. Panel C replicates Table 7. The features of the contract and the value of the key parameters
are as in Panel B except that there are a $821 million deductible and no payout limit.
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Figure 1: Daily Total Performance Bond

Notes: This �gure displays the cumulative performance bond (in dollars) across all clearing
members (�iBit) averaged over each month. The lower line is for house accounts and the upper
line is for customer accounts.
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Figure 2: Daily Variation Margins

Notes: This �gure displays all daily variation margins (in dollars) between January 4th, 1999
and December 31st, 2001. The top panel is for house accounts and the lower panel is for customer
accounts. On each sample day, we stack all clearing members�variation margins. For instance,
the �rst 63 observations in Panel A are the daily variation margins of the 63 clearing members
posting margins on January 4th, 1999. The following 63 observations are the daily variation
margins of the 63 clearing members posting margins on January 5th, 1999, and so on. The total
number of observations is 43,236 observations in Panel A and 41,013 observations in Panel B.
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Figure 3: Ratio of the Variation Margins and Performance Bonds

Notes: This �gure displays the ratio of the daily variation margins (V) over the daily perfor-
mance bond (B) for all clearing members between January 4th, 1999 and December 31st, 2001.
The top panel is for house accounts and the lower panel is for customer accounts. On each sample
day, we stack all clearing members�V/B ratios. For instance, the �rst 63 observations in Panel
A are the daily variation margins of the 63 clearing members posting margins on January 4th,
1999. The following 63 observations are the daily variation margins of the 63 clearing members
posting margins on January 5th, 1999, and so on. The total number of observations is 43,236
observations in Panel A and 41,013 observations in Panel B.
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Figure 4: Left-Tail Histogram of V/B for House and Customer Accounts

Notes: The bars represent the frequency of observations in a particular bucket, i.e., number of
observations in this bucket (displayed above each bar) divided by the total number of observations
in the tail. The dark shaded bars are for house accounts and the light shaded bars are for customer
accounts.
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Figure 5: Simulated Default Losses

Notes: This �gure displays the value and the frequency of the simulated total default losses
obtained from 40,000 simulated paths. In this experiment, we use our base case with � = -0.8
(refer to caption of Table 5 for details). The number of paths experiencing no defaults is 39,232.
The exponentially increasing line shows the 768 non-zero total default losses (in dollars) sorted
from smallest to largest. The superimposed pie chart displays the size distribution of the non-zero
total default losses, labelled L and measured in million of dollars.
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