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Early HistoryEarly History

• 1930: To explain the continuous
electron spectrum in nuclear
decay, W. Pauli proposes the
existence of a light, neutral,
hardly interacting particle

• 1953: (Reines and Cowan) First
experimental evidence at a
nuclear reactor by detection of

ν + p → n + e+
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Three GenerationsThree Generations

• 1962: First neutrino “beam” and
discovery of a second kind of
neutrino: the muon neutrino
(Lederman, Schwartz,
Steinberger et al.):

• 1975: Discovery of the tau

• Since then, a wealth of indirect
evidence for the existence of the
tau neutrino:

p + Be → π
           π → µ ν
              ν + N → µ + X
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• From studies of the Z decay,
LEP deduces there are
2.989±0.012 species of light
neutrinos

• The tau neutrino is not the
muon neutrino (
but not         )

• The tau and its decay properties
are the same as those of its
fellow charged leptons, the
muon and the electron

XN +→+ µν µ

X+τ
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The Standard ModelThe Standard Model
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• In the Standard Model,
neutrinos are massless ⇒ only
left-handed neutrinos exist.

• In just about every extension to
the Standard Model, right-
handed neutrinos exist, and
therefore, in these models,
neutrinos have mass!
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Neutrino OscillationsNeutrino Oscillations
• Basic idea of neutrino

oscillations was suggested in
1957 (!) by B. Pontecorvo

• It is a remarkable phenomenon
allowed by quantum mechanics

• So, take a simplified two
generation world, and suppose
the neutrinos interacting with
the W and Z are linear
combinations of the neutrinos
propagating in the vacuum
(called “mass eigenstates”)



September 23, 1999 9

• This can be written:

• After a time t :

• Since
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• We can now check the
probability that an electron
neutrino becomes a muon
neutrino after a time t :

• Where L is the distance traveled
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Properties ofProperties of
OscillationsOscillations

• An experiment’s sensitivity to
is determined by its L/E value
(L/E is small for accelerator
experiments, but huge for solar
neutrinos)

• For large
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Neutrino OscillationNeutrino Oscillation
ExperimentsExperiments

• Solar neutrinos

• Atmospheric neutrinos

• Reactor neutrinos

• Accelerator neutrinos

• Neutrinoless double beta decay
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Solar NeutrinosSolar Neutrinos

• Solar Models predict the
spectrum and flux of neutrinos
observed on Earth:

F
lu

x 
at

 1
 A

U
 (

cm
−2

 s
−1

M
eV

−1
) 

[f
or

 li
n

es
, c

m
−2

 s
−1

]

13N
15O

17F

7Be

8B

hep

pp

1012

1010

108

106

104

102

Cl KamiokandeGa

Neutrino energy (MeV)
0.1 0.50.2 1 52 10 20

pep



September 23, 1999 14

Solar Neutrino DetectionSolar Neutrino Detection

• Three types of experiments are
sensitive to different parts of the
spectrum:

• Water ýerenkov (neutrino-
electron scattering: Super-)
Kamiokande), sensitive to
neutrinos above 7 MeV
(neutrino-electron scattering)

• Chlorine (ν+Cl → e + Ar:
Homestake), > 814 keV

• Gallium (ν+Ga → e + Ge:
Gallex and Sage) > 233 keV
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Solar Neutrino ResultsSolar Neutrino Results

Exp. Observed
Flux

SSM
Prediction

Ratio

Homestake 2.14±
0.2 SNU

9.3±1.4
SNU

0.273±
0.021

Sage 72±13
SNU

137±8
SNU

0.526±
0.089

Gallex 69.7±8
SNU

137±8
SNU

0.509±
0.089

(Super)-
Kamio-
kande

2.59±0.2 6.62±
1.12

0.391±
0.029
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Combined AnalysisCombined Analysis

• Hata and Langacker have
combined all of this:
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In Terms of OscillationsIn Terms of Oscillations

• “Vacuum Oscillations”:
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• But in matter

• so we get additional solutions
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Solar NeutrinoSolar Neutrino
SpectrumSpectrum

• SuperK measures the solar
neutrino spectrum:
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Atmospheric NeutrinosAtmospheric Neutrinos

• Cosmic rays interact with the
upper atmosphere, producing
mainly pions and kaons

• The decay sequence from pions
is:

• So that we should see two
muon-like neutrinos for each
electron-like neutrino

• The neutrino flux is about 1 per
square cm per second (peaking
around 1 GeV)
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Atmospheric NeutrinoAtmospheric Neutrino
DetectionDetection

• Measure

• One detector significantly more
accurate than the others:
SuperKamiokande

• They find
R(sub_GeV)=0.63±0.06 and
R(multi_GeV)=0.65±0.09
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• It is even more powerful to look
at R versus cosθ (where θ is the
incoming neutrino’s azimuthal
angle). cosθ determines the
distance L traveled by the
neutrino:
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• Interpreted in terms of neutrino
oscillations, the data yield

νµ - ντ
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Upward-going Upward-going MuonsMuons

• Neutrinos interact in the Earth,
producing muons (dashed =
with oscillations):
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Reactor NeutrinosReactor Neutrinos
• Experiments measure the

neutrino flux at several
distances

• → atmospheric anomaly cannot
be muon to electron
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Accelerator NeutrinosAccelerator Neutrinos

• Experiments have the advantage
of using a fairly well understood
beam

• But suffer from rather high
energy and short distance

• So, with high statistics
(O(million events)), sensitive to
small mixing angles but only
large 2m∆
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Chorus and NomadChorus and Nomad

• Search for tau neutrinos in a
high-energy muon neutrino
beam

• Nomad uses precise tracking to
identify an excess of events
with missing transverse
momentum (neutrino from tau
decay)

• Chorus uses a nuclear emulsion
target (1 micron resolution) to
tag the tau before its decay
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• Analysis ongoing:
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LSNDLSND

• Liquid Scintillator Neutrino
Detector - at Los Alamos

• Beam contains mostly positive
pions which decay through

• Search for electron
antineutrinos, detected through
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• LSND sees a net excess of
17.4±4.7 events, leading to
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Summary ofSummary of
experimental resultsexperimental results

• Solar: need disappearance of
electron neutrinos with

• Atmospheric: disappearance of
muon neutrinos (and not into
electron neutrinos) with

• LSND: sees muon-to-electron
antineutrino oscillations with

252 10 eVm −≤∆

232 10 eVm −≈∆

22 1eVm ≈∆
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• However, with three light
neutrino generations there can
only be two independent values
of

• Therefore, if all experimental
results are correctly interpreted,
require the existence of at least
one additional light neutrino,
which has to be sterile!

• Otherwise, can live with three
neutrinos, and now know all 5
mixing parameters (2 mass
differences and 3 angles)

2m∆
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Let’s Speculate!Let’s Speculate!

• LSND’s a difficult experiment,
if it’s wrong, then long baseline
accelerator experiments should
see a signal (LBL searches for
tau neutrinos in a muon neutrino
beam with E≈15 GeV and L
≈1000)

• SuperK could be wrong, then …

• There’s a mountain of
phenomenology papers with
such speculations
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Future ExperimentsFuture Experiments

• SNO: will detect solar neutrinos
through neutral currents (able to
tell if total flux is ok) - 2000?

• (Mini)Boone: check LSND -
2001

• Minos: Fermilab-Soudan, check
atmospheric neutrinos - 2002

• CERN-Gran Sasso: like Minos

• CERN-PS: like MiniBoone

• K2K: KeK to
SuperKamiokande - can only
see disappearance - end 1999
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Closing CommentsClosing Comments

• Neutrinos are an open window
to physics beyond the Standard
Model

• Many experimental results are
not compatible with the SM,
indicating neutrinos are
probably massive

• BTW, there’s much more to
neutrino physics than just
oscillations.
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• To keep up to date, check out
the “Neutrino Oscillation
Industry” page at:
http://www.hep.anl.gov/NDK/
Hypertext/nuindustry.html


