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Early History

e 1930: To explain the continuous
electron spectrum in nuclear
decay, W. Pauli proposes the
existence of a light, neutral,
hardly interacting particle

e 1953: (Reines and Cowan) First
experimental evidence at a
nuclear reactor by detection of

V+p > n+e
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Three Generations

e 1962: First neutrino “beam” and
discovery of a second kind of
neutrino: the muon neutrino
(Lederman, Schwartz,
Steinberger et al.):

p+Be - T
T UV
V+N - p+ X

e 1975: Discovery of the tau

e Since then, a wealth of indirect
evidence for the existence of the
tau neutrino:
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 From studies of the Z decay,
LEP deduces there are
2.98%0.012 species of light
neutrinos

e The tau neutrino Is not the
muon neutrino ¢, +N - u+X
but notr +X )

 The tau and its decay properties
are the same as those of its
fellow charged leptons, the
muon and the electron
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The Standard M odel

|/e’V,u’VT e u,rt U,C,t d,S,b
Mass <1%Vic’, |511KeV/ 2Mevic?, | 5Mev/c?,

<170KeV/c?, 1.5GeV/c?, |100MeV/c?,

<182MeV/c’ 103MeV/ 174GeV/c? | 5GeV/c?

1.8GeV/

charge, 0O -1 | +2/3 | -1/3
soin | 1/2 | 12 | 1/2 | 1/2
color 'none |none one one
t%OUp'eS W,Z ‘W,Zy W,Zy W,Zy
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e |n the Standard Model,
neutrinos are masslelsis only
left-handed neutrinos exist.

 In just about every extension to
the Standard Model, right-
handed neutrinos exist, and
therefore, in these models,
neutrinos have mass!
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Neutrino Oscillations

e Basic idea of neutrino
osclillations was suggested In
1957 (!) by B. Pontecorvo

|t Is a remarkable phenomenon
allowed by quantum mechanics

¢ S0, take a simplified two
generation world, and suppose
the neutrinos interacting with
the W and Z are linear
combinations of the neutrinos
propagating in the vacuum
(called “mass eigenstates”)
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e This can be written:
v, >=cos6 |v, >+8né6|v, >
lv, >=-sn@|v, >+cosd |v, >
e After a timet:

|v.(t) >=cos@e™ |v, > +sinGe™™

Vv, >

v, (t) >=-sin&™" |v, > +cosbe™™

v, >
e Since

|at) >=e™" |a(0) >=e™" |a(0) >
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e \We can now check the

probability that an electron
neutrino becomes a muon
neutrino after a time:

P(ve(0) — v, (1) =I<v,(t) [ve(0) >

— a2 f 2 2£
=9n“28sn %Am E[H

e WWhere L is the distance traveled
(=ct) and

A =g - |
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Properties of
Oscillations

L(km)
PV, - v,)=9n 220sin ELZ?Am (eV?) (GeV)[H

e An experiment’s sensitivity tom?
IS determined by Its L/E value
(L/E I1s small for accelerator
experiments, but huge for solar
neutrinos)

* For largean?
_1. 5
PV, - Vv,) —Esm 20
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Neutrino Oscillation
Experiments

e Solar neutrinos

e Atmospheric neutrinos

e Reactor neutrinos

e Accelerator neutrinos

* Neutrinoless double beta decay
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Solar Neutrinos

o Solar Models predict the
spectrum and flux of neutrinos
observed on Earth:
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Solar Neutrino Detection

e Three types of experiments are
sensitive to different parts of the
spectrum:

« WaterCerenkov (neutrino-
electron scattering: Super-)
Kamiokande), sensitive to
neutrinos above 7 MeV
(neutrino-electron scattering)

e Chlorine p+CIl - e + Ar:
Homestake), > 814 keV

e Gallium v+Ga- e + Ge:
Gallex and Sage) > 233 keV
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Solar Neutrino Results

EXp. Observed | SSM Ratio
Flux Prediction
Homestake | 2 14+ | 9.3+1.4  0.273+
0.2SNU | SNU 0.021
Sage (2113 13748 | 0.526+
SNU SNU 0.089
Galex | 69,748 | 13748 | 0.509+
SNU SNU 0.089
(Super)-  1250+0.2| 6.62+ | 0.391+
Kamio- 1.12 | 0.029

kande
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Combined Analysis

 Hata and Langacker have
combined all of this:
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In Terms of Oscillations

e “VVacuum Oscillations™:

At (e\f)

17
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e But in matter
sin® 26
(cos26-242EG, N, / An?f +sin? 26

sin®26_ =

e SO we get additional solutions
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Solar Neutrino

Spectrum

o SuperK measures the solar
neutrino spectrum:
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Atmospheric Neutrinos

« Cosmic rays Interact with the
upper atmosphere, producing
mainly pions and kaons

 The decay sequence from pions
|S 7i — Iu+|/'u
U — ety +v,
e SO0 that we should see two

muon-like neutrinos for each
electron-like neutrino

e The neutrino flux is about 1 per
sguare cm per second (peaking
around 1 GeV)
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Atmospheric Neutrino
Detection

e Measure

R = (V,U +E/Ve +V__9)Data
(vu +|/M/|/e+|/e)MC

* One detector significantly more
accurate than the others:
SuperKamiokande

e They find
R(sub_GeV)=0.680.06 and
R(multi_GeV)=0.650.09
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 Interpreted In terms of neutrino
osclillations, the data yield
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Upwar d-going Muons

* Neutrinos interact in the Earth,
producing muons (dashed =
with oscillations):
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Reactor Neutrinos

 Experiments measure the
neutrino flux at several

distances
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Accelerator Neutrinos

 Experiments have the advantage
of using a fairly well understood
beam

o But suffer from rather high
energy and short distance

e S0, with high statistics
(O(million events)), sensitive to
small mixing angles but only
large anv
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Chorus and Nomad

e Search for tau neutrinos In a
high-energy muon neutrino
beam

« Nomad uses precise tracking to
identify an excess of events
with missing transverse
momentum (neutrino from tau
decay)

e Chorus uses a nuclear emulsion
target (1 micron resolution) to
tag the tau before its decay
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* Analysis ongoing:
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LSND

« Liquid Scintillator Neutrino
Detector - at Los Alamos

« Beam contains mostly positive
pions which decay through

Ly,
S,
e Search for electron
antineutrinos, detected through

_ +
V,+p > e +n
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e LSND sees a net excess of
17.44.7 events, leading to
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Summary of
experimental results

o Solar: need disappearance of
electron neutrinos with

Am® <107°eV?
o Atmospheric: disappearance of
muon neutrinos (and not Into

electron neutrinos) with
Am® =107°eV?

e LSND: sees muon-to-electron
antineutrino oscillations with

Am? =1eV?
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 However, with three light
neutrino generations there can
only be two independent values
of Am?

e Therefore, If all experimental
results are correctly interpreted,
require the existence of at least
one additional light neutrino,
which has to be sterile!

* Otherwise, can live with three
neutrinos, and now know all 5
mixing parameters (2 mass
differences and 3 angles)
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Let's Speculate!

 LSND’s a difficult experiment,
If It's wrong, then long baseline
accelerator experiments should
see a signal (LBL searches for
tau neutrinos in a muon neutrino
beam with E15 GeV and L
=1000)

e SuperK could be wrong, then ...

 There’s a mountain of
phenomenology papers with
such speculations
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Future Experiments

SNO: will detect solar neutrinos
through neutral currents (able to
tell if total flux Is ok) - 20007

(Mini)Boone: check LSND -
2001

Minos: Fermilab-Soudan, check
atmospheric neutrinos - 2002

CERN-Gran Sasso: like Minos
CERN-PS: like MiniBoone

K2K: KeK to
SuperKamiokande - can only
see disappearance - end 1999
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Closing Comments

 Neutrinos are an open window
to physics beyond the Standard
Model

 Many experimental results are
not compatible with the SM,
Indicating neutrinos are
probably massive

e BTW, there’s much more to
neutrino physics than just
oscillations.
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 To keep up to date, check out
the “Neutrino Oscillation
Industry” page at:
http://www.hep.anl.gov/NDK/
Hypertext/nuindustry.html
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