NUMERICAL SOLUTION OF HYPERBOLIC EQUATIONS

 AND SYSTEMS BY A METHOD OF THE RUNGE-KUTTA TYPE. IIby
Nguyen Kong Tuy

Vestsi Akademii Navuk Belaruskay SSR, Seryya
Fizika Matematychnykh Navuk, No. 1, pp. 60-66, 1966.

Tianslated from the Russian

June 1968

This document has been approved for public release and sale; its distribution is unlimited.

Redstone Scientific $^{\text {Information }}$ Cemier redstone arsenal, alabama

JOINTLY SUPPORTED BY
U.S. ARMY MISSILE COMMAND

GEORGE C. MARSHALI SPACE FLIGHT CENTER

FACHLITY FCKIA SC2
ACCSSSON MOMEER
THRU

FASES
から5

Bat:OOR

dISFUSTTIUN INSTKUCTIOÑS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

NUMERICAL SOLUTION OF HYPERBOLIC EQUATIONS AND SYSTEMS BY A METHOD OF THE RUNGE-KUTTA TYPE. II

by
Nguyen Kong Tuy

Vestsi Akademii Navuk Belaruskay SSR, Seryya
Fizika Matematychnykh Navuk, No 1, pp. 60-66, 1966.

Translated from the Russian

This document has been approved for public release and sale; its distribution is unlimited.

NUMERICAL SOLUTION OF HYPERBOLIC EQUATIONS

AND SYSTEMS BY A METHOD OF THE
RUNGE-KUTTA TYPE. II

by

Nguyen Kong Tuy

In the first part of the article the two-iteration algorithms of the RungeKutta type were applied to the solution of the Cauchy problem for hyperbolic equations and systems with two independent variables, where the initial data are given along the line segment $\mathrm{x}+\mathrm{y}=$ const.

In the second part of this article an analogous problem is discussed for one equation with Cauchy data along the curve segment.

Below are used designations of the article [1] and the numbering of its paragraphs, formulas and figures is continued.
6. Statement of the Problem

Let there be an equation

$$
\begin{equation*}
u_{x y}=f(x, y, u, p, q) \tag{41}
\end{equation*}
$$

(u is an unknown function of $x, y ; p=u_{x}, q=u_{y}$) with initial conditions given along the segment AB of a certain curve Γ_{0} in the form of:

$$
\begin{equation*}
\mathrm{u}^{0}=\mathrm{u}^{0}(\mathrm{x}), \quad \mathrm{p}^{0}=\mathrm{p}^{0}(\mathrm{x}), \quad \mathrm{q}^{0}=\mathrm{q}^{0}(\mathrm{x}) \quad ; \tag{42}
\end{equation*}
$$

u^{0}, p^{0}, q^{0}, f are assumed to be continuous and differentiable a sufficient number of times. The term Γ_{0} is assumed to be a sufficiently smooth line given in the form

$$
\begin{equation*}
y=y^{0}(x) \quad \text { or } \quad x=x^{0}(y) \tag{43}
\end{equation*}
$$

while $\mathrm{x}^{0}(\mathrm{y}), \mathrm{y}^{0}(\mathrm{x})$ are decreasing functions.

Let us construct in the region of $A B C$ of the definition of the solution a grid in the following (Figure 3). Let us subdivide AC into sufficiently small intervals of length \mathbf{h}; from the points of division we will plot straight lines parallel to the axis Oy , and from their intersections with Γ_{0}, those parallel to the axis Ox , and we will distribute the nodes of the grid according to layers. We will connect the nodes of the $n^{\text {th }}$ layer by the curve Γ_{n}. The curve Γ_{n} can be considered a segment of the initial curve Γ_{0} displaced by nh in the direction $O x$ so that we have the equation Γ_{n} in the form

$$
y^{n}(x)=y^{0}(x-n h)=y^{0}(z), \quad z=x-n h
$$

In making calculations of the $\mathrm{n}^{\text {th }}$ layer we will use, for simplicity, the equation of the curve Γ_{n-1} in the form (43), and we will denote the earlier found values u, p, q in the nodes of the $(n-1)^{\text {st }}$ layer, as well as the initial data, by u^{0}, p^{0}, q^{0}.

For an elementary curvilinear triangle MNP of the grid with vertices $\mathrm{M}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{N}\left(\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{h}, \mathrm{y}_{2}=\mathrm{y}^{0}\left(\mathrm{x}_{1}+\mathrm{h}\right)\right.$) on the $(\mathrm{n}-1)^{\text {st }}$ layer and the vertex $P\left(x_{2}, y_{1}\right)$ on the $n^{\text {th }}$ layer (Figure 4), the following relationships are known:

$$
\begin{gather*}
u(P)=u^{0}\left(x_{1}\right)+\int_{x_{1}}^{x_{1}} p^{h}(x) d x+\iint F(x, y) d x d y, \tag{44.a}\\
\left.p(P)=p^{0}\left(x_{2}\right)+\int_{y^{0}\left(x_{1}\right.}^{0}+h\right) F\left(x_{1}+h, y\right) d y, \tag{44.b}\\
q(P)=q^{0}\left(x_{1}\right)+\int_{x_{1}}^{x_{1}} \mathrm{~F}\left(x, y_{1}\right) d x \tag{44.c}
\end{gather*}
$$

where the multiple integral in (44.a) is taken over the region MNP. As in [1], for the increments $\Delta^{*} u=(P)-u(M), \Delta^{*} p=p(P)-p(M), \Delta^{*} q=q(P)$ - $q(M)$, by using (44) we can find expansions in powers of h at the point M :

FIGURE 3

FIGURE 4

$$
\begin{align*}
\Delta^{*} u & =h p^{0}\left(x_{1}\right)+\frac{h^{2}}{2!} \frac{d p^{0}\left(x_{1}\right)}{d x}+\frac{h^{3}}{3!} \frac{d^{2} p^{0}\left(x_{1}\right)}{d x^{2}} \\
& -\frac{h^{2}}{2!} \frac{d y^{0}\left(x_{1}\right)}{d x} F(M)-\frac{h^{3}}{3!} \frac{d^{2} y^{0}\left(x_{1}\right)}{d x^{2}} F(M) \\
& -\frac{h^{3}}{3!} \frac{d y^{0}\left(x_{1}\right)}{d x} \quad 2 \cdot \frac{\partial F(M)}{\partial x}+\frac{d y^{0}\left(x_{1}\right)}{d x} \frac{\partial F(M)}{\partial y}+O\left(h^{4}\right) \tag{45.a}
\end{align*}
$$

$$
\Delta^{*} p=h \frac{d p^{0}\left(x_{1}\right)}{d x}+\frac{h^{2}}{2!} \frac{d^{2} p^{0}\left(x_{1}\right)}{d x^{2}}-h \frac{d y^{0}\left(x_{1}\right)}{d x} F(M)
$$

$$
-\frac{h^{2}}{2!} \frac{d^{2} y^{0}\left(x_{1}\right)}{d x^{2}} F(M)-\frac{h^{2}}{2!} \frac{d y^{0}\left(x_{1}\right)}{d x}
$$

$$
\begin{equation*}
\times\left(2 \frac{\partial F(M)}{\partial x}+\frac{d y^{0}\left(x_{1}\right)}{d x} \frac{\partial F(M)}{\partial y}\right)+O\left(h^{3}\right) \tag{45.b}
\end{equation*}
$$

$$
\begin{equation*}
\Delta{ }^{*} q=h F(M)+\frac{h^{2}}{2!} \frac{\partial F(M)}{\partial x}+O\left(h^{3}\right) \tag{45.c}
\end{equation*}
$$

We set forth the problem of the construction of algorithms of the RungeKutta type which give approximate values of the transformations $\Delta u, \Delta p, \Delta q$.
7. Formal Algorithms of the Runge-Kutta Type

$$
\text { We will denote } \int_{x_{1}}^{x_{1}} p^{0}(x) d x=I(h) \text {. (For calculations of } I(h)
$$

see Paragraph 4). We introduce values of k :

$$
\mathrm{k}=\mathrm{k}(\mathrm{~h})=\mathrm{y}^{0}\left(\mathrm{x}_{1}\right)-\mathrm{y}^{0}\left(\mathrm{x}_{1}+\mathrm{h}\right)(\mathrm{h} \geqslant 0) .
$$

Upon the assumption that $\mathrm{y}^{0}(\mathrm{x})$ is a decreasing function, the values of k will be positive. In Figure 4, $k(h)$ is equal to the length of NP. (Construction of the grid in Paragraph 6 and introduction of values of $k(h)$ is borrowed from [2]. From the determination of $k(h)$ we have:

$$
\begin{gather*}
k(h)=O(h) \quad k^{\prime}(0)=\left.\frac{d k(h)}{d h}\right|_{h=0}=-\frac{\mathrm{dy}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}}, \\
\mathrm{k}^{\prime \prime}(0)=\frac{\mathrm{d}^{2} \mathrm{y}^{0}\left(\mathrm{x}_{1}\right)}{d x^{2}} . \tag{46}
\end{gather*}
$$

Assume

$$
S=\frac{h k}{2}+\frac{h^{3}}{12} \frac{\mathrm{~d}^{2} \mathrm{y}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}^{2}}
$$

Let us note that S is equal to the area of the curvilinear triangle MNP, correct to the order $0\left(h^{4}\right)$.

At the first iteration we assume that:

$$
\begin{gather*}
u^{1}=u^{0}\left(x_{1}\right)+\mathrm{I}(\mathrm{~h})+\mathrm{SF}_{1}, \\
\mathrm{~F}_{1}=\omega_{1} \mathrm{~F}(\mathrm{M})+\tau_{1} \mathrm{~F}(\mathrm{~N}), \quad \omega_{1}, \tau_{1} \geq 0, \quad \omega_{1}+\tau_{1}=1, \tag{47.a}\\
\mathrm{p}^{1}=\mathrm{p}^{0}\left(\mathrm{x}_{2}\right)+\mathrm{kF}_{1}, \quad \mathrm{~F}_{1} \hat{1}=\mathrm{F}(\mathrm{~N}), \tag{47.b}\\
\mathrm{q}^{1}=\mathrm{q}^{0}\left(\mathrm{x}_{1}\right)+\mathrm{h} \mathrm{~F}_{1}^{-}, \quad \mathrm{F}_{\overline{1}}=\mathrm{F}(\mathrm{M}) . \tag{47.c}
\end{gather*}
$$

We form the elementary increments:

$$
\left.\begin{array}{l}
\Delta^{1} u=u^{1}-u^{0}\left(x_{1}\right) \tag{47.d}\\
\Delta^{1} p=p^{1}-p^{0}\left(x_{1}\right) \\
\Delta^{1} q=q^{1}-q^{0}\left(x_{1}\right)
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\delta^{1} \mathrm{u}=\mathrm{u}^{1}-\mathrm{u}^{0}\left(\mathrm{x}_{2}\right) \tag{47.e}\\
\delta^{1} \mathrm{p}=\mathrm{p}^{1}-\mathrm{p}^{0}\left(\mathrm{x}_{2}\right) \\
\delta^{1} \mathrm{q}=\mathrm{q}^{1}-\mathrm{q}^{0}\left(\mathrm{x}_{2}\right)
\end{array}\right\}
$$

Furthermore, we introduce the intermediate points $M_{2}^{j}(j=u, q)$, $N_{2}^{j}(j=u, p):$

$$
\begin{align*}
& \mathrm{M}_{2}^{\mathrm{j}}=\left(\mathrm{x}_{1}+\mathrm{p}^{\mathrm{j}} \mathrm{~h} ; \quad \mathrm{y}_{1}+\sigma^{\mathrm{j}} \mathrm{k} ; \quad \mathrm{u}^{0}\left(\mathrm{x}_{1}\right)+\alpha^{\mathrm{j}} \Delta^{1} \mathrm{u} ;\right. \\
& \left.\mathrm{p}^{0}\left(\mathrm{x}_{1}\right)+\beta^{\mathrm{j}} \Delta^{1} \mathrm{p} ; \quad \mathrm{q}^{0}\left(\mathrm{x}_{1}\right)+\gamma^{\mathrm{j}} \Delta^{1} \mathrm{q}\right), \tag{48.a}\\
& \mathrm{N}_{2}^{\mathrm{j}}=\left(\mathrm{x}_{2}+\mathrm{p}^{-\mathrm{j}} \mathrm{~h} ; \quad \mathrm{y}_{2}+\sigma^{-\mathrm{j}} \mathrm{k} ; \quad \mathbf{u}^{0}\left(\mathrm{x}_{2}\right)+\alpha^{-\mathrm{j}} \delta^{1} \mathbf{u} ;\right. \\
& \left.\mathrm{p}^{0}\left(\mathrm{x}_{2}\right)+\beta^{-\mathrm{j}} \delta^{1} \mathrm{p} ; \quad \mathrm{q}^{0}\left(\mathrm{x}_{2}\right)+\gamma^{-j} \delta^{1} q\right), \tag{48.b}
\end{align*}
$$

where $p^{\mathrm{j}}, \sigma^{\mathrm{j}}, \alpha^{\mathrm{j}}, \ldots, \gamma^{-\mathrm{j}}$ are numerical parameters.
At the second iteration we assume that:

$$
\left.\begin{array}{c}
u^{2}=u^{0}\left(x_{1}\right)+\mathrm{I}(\mathrm{~h})+\mathrm{SF}_{2}, \\
\mathrm{~F}_{2}=\omega_{2} \mathrm{~F}\left(\mathrm{M}_{2}^{\mathrm{u}}\right)+\tau_{2} \mathrm{~F}\left(\mathrm{~N}_{2}^{\mathrm{u}}\right) ; \quad \omega_{2}, \tau_{2} \geq 0, \quad \omega_{2}+\tau_{2}=1, \\
\mathrm{p}^{2}=\mathrm{p}^{0}\left(\mathrm{x}_{2}\right)+\mathrm{kF} \hat{2}, \quad, \quad \mathrm{~F}_{2}^{\hat{2}}=\mathrm{F}\left(\mathrm{~N}_{2}^{\mathrm{p}}\right), \\
\mathrm{q}^{2}=\mathrm{q}^{0}\left(\mathrm{x}_{1}\right)+\mathrm{hF} \mathrm{~F}_{2}, \quad \mathrm{~F}_{2}=\mathrm{F}\left(\mathrm{M}_{2}^{\mathrm{q}}\right), \\
\Delta^{2} \mathrm{u}=\mathrm{u}^{2}-\mathrm{u}^{0}\left(\mathrm{x}_{1}\right), \tag{49.d}\\
\Delta^{2} \mathrm{p}=\mathrm{p}^{2}-\mathrm{p}^{0}\left(\mathrm{x}_{1}\right), \\
\Delta^{2} \mathrm{q}=\mathrm{q}^{2}-\mathrm{q}^{0}\left(\mathrm{x}_{1}\right)
\end{array}\right\},
$$

Finally, for $\Delta u, \Delta p, \Delta q$ we take the following linear combinations:

$$
\left.\begin{array}{l}
\Delta u=\lambda_{1} \Delta^{1} u+\lambda_{2} \Delta^{2} u \\
\Delta p=\mu_{1} \Delta^{1} p+\mu_{2} \Delta^{2} p \\
\Delta \rho=\nu_{1} \Delta^{1} q+\nu_{2} \Delta^{2} q
\end{array}\right\}
$$

$\left(\lambda_{i}, \mu_{i}, \nu_{i}\right.$ are numerical parameters $)$.

8. Numerical Determination of Parameters

For $\Delta^{i} \mathrm{u}, \Delta^{\mathrm{i}} \mathrm{p}, \Delta^{i} \mathrm{q}$ are valid the following expansions in powers of h at the point M :

$$
\begin{align*}
\Delta^{i} u=h p^{0}\left(x_{1}\right) & +\frac{h^{2}}{2!} \frac{d p^{0}\left(x_{1}\right)}{d x}+\frac{h^{3}}{3!} \frac{d^{2} p^{0}\left(x_{1}\right)}{d x^{2}}+\frac{h^{2}}{2!} k^{\prime}(0) F(M) \\
& +\frac{h^{3}}{3!}\left[\frac{3}{2} k^{\prime \prime}(0)+\frac{1}{2} \frac{d^{2} y^{0}\left(x_{1}\right)}{d x^{2}} \quad F(M)\right. \\
& +\frac{h^{3}}{3!} 3 k^{\prime}(0)\left(\frac{d F_{i}}{d h}\right)_{M}+O\left(h^{4}\right) \tag{51.a}\\
\Delta^{i} p & =h \frac{d p^{0}\left(x_{1}\right)}{d x}+\frac{h^{2}}{2!} \frac{d^{2} p^{0}\left(x_{1}\right)}{d x^{2}}+h k^{\prime}(0) F(M) \\
& +\frac{h^{2}}{2!} k^{\prime \prime}(0) F(M)+\frac{h^{2}}{2!} 2 k^{\prime}(0)\left(\frac{d F_{i}^{n}}{d h}\right)_{M}+O\left(h^{3}\right) \tag{51.b}\\
\Delta^{i} q & =h F(M)+\frac{h^{2}}{2!} 2\left(\frac{d F_{-}}{d h}\right)_{M}+O\left(h^{3}\right) . \tag{51.c}
\end{align*}
$$

By comparing (50) and (51) and substituting $\mathrm{k}^{\prime}(0), \mathrm{k}^{\prime \prime}(0)$ in (46) we obtain expansions in powers of h at the point M for $\Delta u, \Delta p, \Delta q$:

$$
\begin{align*}
& \Delta u=\left(\lambda_{1}+\lambda_{2}\right)\left[h p^{0}\left(x_{1}\right)+\frac{h^{2}}{2!} \frac{d p^{0}\left(x_{1}\right)}{d x}+\frac{h^{3} d^{2} p^{0}\left(x_{1}\right)}{3!}{d x^{2}}^{2}\right] \\
& -\left(\lambda_{1}+\lambda_{2}\right) \frac{h^{2}}{2!} \frac{\mathrm{dy}^{0}\left(\mathrm{x}_{1}\right)}{d x} F(M)-\left(\lambda_{1}+\lambda_{2}\right) \frac{h^{3}}{3!} \frac{\mathrm{d}^{2} y^{0}\left(x_{1}\right)}{d x^{2}} F(M) \\
& -\frac{h^{3}}{3!} \frac{d y^{0}\left(x_{1}\right)}{d x} \times 3\left(\lambda_{1} \frac{d F_{1}}{d h}+\lambda_{2} \frac{d F_{2}}{d h}\right)_{M}+O\left(H^{4}\right), \tag{52.a}
\end{align*}
$$

$$
\begin{align*}
& \Delta \mathrm{p}=\left(\mu_{1}+\mu_{2}\right)\left[\mathrm{h} \frac{\mathrm{dp}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}}+\frac{\mathrm{h}^{2}}{2!} \frac{\mathrm{d}^{2} \mathrm{p}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}}\right] \\
& -\left(\mu_{1}+\mu_{2}\right)\left[\mathrm{h} \frac{\mathrm{dy}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}} \mathrm{~F}(\mathrm{M})-\frac{\mathrm{h}^{2}}{2!} \frac{\mathrm{d}^{2} \mathrm{y}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}} \mathrm{~F}(\mathrm{M})\right] \\
& -\frac{\mathrm{h}^{2}}{2!} \frac{\mathrm{dy} \mathrm{y}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}} 2\left(\mu_{1} \frac{\mathrm{dF} \hat{1}}{\mathrm{dh}}+\mu_{2} \frac{\mathrm{dF} \hat{2}}{\mathrm{dh}}\right)_{\mathrm{M}}+\mathrm{O}\left(\mathrm{~h}^{3}\right) \text {, } \tag{52.b}\\
& \Delta q=\left(\nu_{1}+\nu_{2}\right) h F(M)+\frac{\mathrm{h}^{2}}{2!} 2\left(\nu_{1} \frac{\mathrm{dF}_{1}^{-}}{\mathrm{dh}}+\nu_{2} \frac{\mathrm{dF}_{2}^{-}}{\mathrm{dh}}\right)_{\mathrm{M}}+\mathrm{O}\left(\mathrm{~h}^{3}\right) . \tag{52.c}
\end{align*}
$$

The selection of parameters is effected so that the corresponding expansions of (52) and (45) coincide for an arbitrary function $F(x, y)$ and arbitrary step h. As a result of comparison of (52) and (45) we obtain the following conditions:

$$
\begin{gather*}
\lambda_{1}+\lambda_{2}=\mu_{1}+\mu_{2}=\nu_{1}+\nu_{2}=1, \tag{53}\\
3\left(\lambda_{1} \frac{d F_{1}}{d h}+\lambda_{2} \frac{d F_{2}}{d h}\right)_{M}=2 \frac{\partial F(M)}{\partial \mathrm{x}}+\frac{d y^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}} \frac{\partial \mathrm{~F}(\mathrm{M})}{\partial \mathrm{y}}, \tag{54}\\
2\left(\mu_{1} \frac{\mathrm{dF} \hat{1}}{\mathrm{dh}}+\mu_{2} \frac{d \mathrm{~F}_{2}}{\mathrm{dh}}\right)_{\mathrm{M}}=2 \frac{\partial \mathrm{~F}(\mathrm{M})}{\partial \mathrm{x}}+\frac{\mathrm{dy}^{0}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}} \frac{\partial \mathrm{~F}(\mathrm{M})}{\partial \mathrm{y}}, \tag{55}\\
2\left(\nu_{1} \frac{\mathrm{dF}_{\hat{1}}}{\mathrm{dh}}+\nu_{2} \frac{\mathrm{dF}-\overline{2}}{\mathrm{dh}}\right)_{\mathrm{M}}=\begin{array}{c}
\partial \mathrm{F}(\mathrm{M}) \\
\partial \mathbf{x}
\end{array} \tag{56}
\end{gather*}
$$

For the right sides of (54) through (56) we have:

$$
\begin{align*}
& \frac{\partial F}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u} p+\frac{\partial f}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial f}{\partial q} f \\
& \frac{\partial F}{\partial y}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial u} q+\frac{\partial f}{\partial p} f+\frac{\partial f}{\partial q} \frac{\partial q}{\partial y} \\
& \frac{\partial p}{\partial x}=\lim _{h \rightarrow 0} \frac{\Delta^{*} p}{h}=\frac{d p^{0}(x)}{d x}-\frac{d y^{0}(x)}{d x} f ; \tag{57}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial q}{\partial y} & =\lim _{h \rightarrow 0} \frac{q^{0}\left(x_{1}\right)+\Delta^{*} q-q^{0}\left(x_{1}+h\right)}{k} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{q^{0}\left(x_{1}\right)+\Delta^{*} q-q^{0}\left(x_{1}+h\right)}{k / h} \\
& =\left[\frac{d q^{0}(x)}{d x}-f\right] /\left(\frac{d y^{0}(x)}{d x}\right) \tag{57}
\end{align*}
$$

From (57) it follows that:

$$
\begin{align*}
2 \frac{\partial F(M)}{\partial x} & +\frac{d y^{0}\left(x_{1}\right)}{d x} \frac{\partial F(M)}{\partial y} \\
& =\left[2 \frac{\partial f}{\partial x}+\frac{d y^{0}}{d x} \frac{\partial f}{\partial y}+\frac{\partial f}{\partial u}\left(2 p^{0}\right.\right. \\
& \left.+\frac{d y^{0}}{d x} q^{0}\right)+\frac{\partial f}{\partial p}\left(2 \frac{d p^{0}}{d x}-\frac{d y^{0}}{d x} f\right) \\
& \left.\left.+\frac{\partial f}{\partial q}\binom{d q^{0}}{d x}\right]\right]_{M} . \tag{58}
\end{align*}
$$

For the calculation of the left sides of (54) through (56) it is necessary to find $(\mathrm{d} / \mathrm{dh}) \mathrm{M}^{\text {for }} \mathrm{F}(\mathrm{N}), \mathrm{F}\left(\mathrm{M}_{2}^{\mathrm{j}},\right) \mathrm{F}\left(\mathrm{N}_{2}^{\mathrm{j}}\right)$:

$$
\frac{\mathrm{dF}(\mathrm{~N})}{\mathrm{dh}}=\frac{\mathrm{dF}\left(\mathrm{x}_{1}+\mathrm{h}, \mathrm{y}_{1}-\mathrm{k}(\mathrm{~h})\right)}{\mathrm{dh}}=\frac{\partial \mathrm{F}(\mathrm{~N})}{\mathrm{dx}}-\frac{\mathrm{dk}(\mathrm{~h})}{\mathrm{dh}} \frac{\partial \mathrm{~F}(\mathrm{~N})}{\partial \mathrm{y}}
$$

so that on the strength of (46) and (57)

$$
\begin{align*}
{\left[\frac{d F(N)}{d h}\right]_{M} } & =\left[\frac{\partial f}{\partial x}+\frac{d y^{0}}{d x} \frac{\partial f}{\partial y}+\frac{\partial f}{\partial u}\left(p^{0}+\frac{d y^{0}}{d x} q^{0}\right)\right. \\
& \left.+\frac{\partial f}{\partial p} \frac{d p^{0}}{d x}+\frac{\partial f}{\partial q} \frac{d q^{0}}{d x}\right]_{M} \tag{59}
\end{align*}
$$

Furthermore, from (51) it follows that:

$$
\begin{aligned}
& \left(\frac{d \Delta^{1} u}{d h}\right)_{M}=p^{0}\left(x_{1}\right), \quad\left(\frac{d \Delta^{1} p}{d h}\right) \\
& \left(\frac{d \Delta^{1} q}{d h}\right)_{M}=F(M)
\end{aligned}
$$

and from comparisons of $\delta^{1} u, \delta^{1} p, \delta^{1} q$ wit

$$
\begin{align*}
& \left(\frac{d \delta^{1} u}{d h}\right)_{M}=-q^{0} \\
& \left(\frac{d \delta^{1} p}{d h}\right)_{M}=-\frac{d y}{} \\
& \left(\frac{d \delta^{1} q}{d h}\right)_{M}=-\frac{d q^{0}\left(x_{1}\right)}{d x}+F(M) \tag{61}
\end{align*}
$$

From (48. a), using (60), we have

$$
\begin{align*}
{\left[\frac{\mathrm{dF}\left(\mathrm{M}_{2}^{\mathrm{u}}\right)}{\mathrm{dh}}\right]_{M} } & =\left[\rho^{j} \frac{\partial \mathrm{f}}{\partial \mathrm{x}}-\sigma^{\mathrm{j}} \frac{\mathrm{dy}}{\mathrm{dx}} \frac{\partial \mathrm{f}}{\partial \mathrm{y}}+\alpha^{\mathrm{j}^{0}} \frac{\partial \mathrm{f}}{\partial \mathrm{u}}\right. \\
& \left.\left.+\beta^{j\left(\frac{d p^{0}}{\mathrm{dx}}-\frac{\mathrm{dy}}{} \mathrm{dx}^{0}\right.} \mathrm{f}\right) \frac{\partial \mathrm{f}}{\partial \mathrm{p}}+\gamma^{\mathrm{j}} \frac{\partial \mathrm{f}}{\partial \mathrm{q}}\right]_{M} \tag{62}
\end{align*}
$$

From (48.b), where $\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{h}, \mathrm{y}_{2}=\mathrm{y}_{1}-\mathrm{k}(\mathrm{h})$, using (61), we have

$$
\begin{align*}
{\left[\frac{d F\left(N_{2}^{u}\right)}{d h}\right]_{M} } & =\left[\left(1+\rho^{-j}\right) \frac{\partial f}{\partial x}+\left(1-\sigma^{j}\right) \frac{d y^{0}}{d x} \frac{\partial f}{\partial y}\right. \\
& +\left(p^{0}+q^{0} \frac{d y^{0}}{d x}-\alpha^{-j} q^{0} \frac{d y^{0}}{d x}\right) \frac{\partial f}{\partial u} \\
& +\left(\frac{d p^{0}}{d x}-\beta^{-j} \frac{d y^{0}}{d x} f\right) \frac{\partial f}{\partial p} \\
& \left.+\left(\frac{d q^{0}}{d x}-\gamma^{-j} \frac{d q^{0}}{d x}+\gamma^{-j} f\right) \frac{\partial f}{\partial q}\right]_{M} \tag{63}
\end{align*}
$$

Let us consider the condition (54). Its right side is given in (58) and the left side can be expressed in the following form, using for this (47.a), (49.a), (59), (62), and (63):

$$
\begin{align*}
3 \frac{\partial \mathrm{f}}{\partial \mathrm{x}}\left(\lambda_{1} \tau_{1}\right. & \left.+\lambda_{2} \tau_{2}+\lambda_{2} \omega_{2} \rho+\lambda_{2} \tau \tau_{2} \bar{\rho}\right) \\
& +3 \frac{\partial \mathrm{f}}{\partial \mathrm{y}}\left(\lambda_{1} \tau_{1}+\lambda_{2} \tau_{2}-\lambda_{2} \omega_{2} \sigma-\lambda_{2} \tau \bar{\sigma} \bar{\sigma}\right) \frac{\mathrm{dy}}{}{ }^{0} \\
& +3 \frac{\partial \mathrm{f}}{\partial \mathrm{u}}\left[\left(\lambda_{1} \tau_{1}+\lambda_{2} \tau_{2}+\lambda_{2} \omega_{2} \alpha\right) \mathrm{p}^{0}\right. \\
& +\left(\lambda_{1} \tau_{1}+\lambda_{2} \tau_{2}-\lambda_{2} \tau{ }_{2} \bar{\alpha}\right) \mathrm{q}^{0} \frac{\mathrm{dy}}{\mathrm{dx}} \\
& \\
& +3 \frac{\partial \mathrm{f}}{\partial \mathrm{p}}\left[\left(\lambda_{1} \tau_{1}+\lambda_{2} \tau_{2}+\lambda_{2} \omega_{2} \beta\right) \frac{\mathrm{dp}}{\mathrm{dx}}\right. \\
& \left.-\left(\lambda_{2} \omega_{2} \beta+\lambda_{2} \tau \bar{\beta}\right) \frac{\mathrm{dy}}{\mathrm{dx}} \mathrm{f}\right] \\
& +3 \frac{\partial \mathrm{f}}{\partial \mathrm{q}}\left[\left(\lambda_{1} \tau_{1}+\lambda_{2} \tau_{2}-\lambda_{2} \tau 2 \gamma\right) \frac{\mathrm{dq}}{\mathrm{dx}}\right. \tag{64}\\
& \left.+\left(\lambda_{2} \omega_{2} \gamma+\lambda_{2} \tau_{2} \bar{\gamma}\right) \mathrm{f}\right] .
\end{align*}
$$

Here, all values are given at the point M and, for simplicity, all indices $\mathrm{j}=\mathrm{u}$ are omitted.

As in [1] we assume:

$$
\begin{equation*}
\bar{\alpha}=\alpha, \quad \bar{\beta}=\beta, \quad \bar{\gamma}=\gamma, \quad \bar{\rho}=\rho-1, \quad \bar{\sigma}=\sigma+1 \tag{65}
\end{equation*}
$$

Taking into account (53), (65) and equating (64) to the right part of (58), we will obtain for the parameters at Δu a system of equations (24) from [1]. Thus, the results of Table 1 of the article [1] remain valid for the parameters at Δu.

By considering analogously the conditions (55), (56) we will obtain for the parameters at $\Delta \mathrm{p}, \Delta \mathrm{q}$ the systems of equations (25), (26) from [1], so that for the parameters at $\Delta \mathrm{p}, \Delta \mathrm{q}$ the results of Table 2 of the article [1] remain valid.

The scheme of calculations according to the proposed algorithms will have a form analogous to (27), (28) from [1].

BIBLIOGRAPHY

1. Nguyen Kong Tuy, Vestsi AN BSSR, Ser. Fiz.-Mat. Navuk, No. 4, 1965.
2. Schechter, E., Studii si Cercetari Mathem. (Cluj) , 12, No. 2, 1961, pp. 377-392.

No. of Copies
U. S. Atomic Energy Commission ATTN: Reports Library, Room G-017 Washington, D. C. 20545
U. S. Naval Research Laboratory

ATTN: Code 2027
Washington, D. C. 20390
Weapons Systems Evaluation Group
Washington, D. C. 20305
John F. Kennedy Space Center, NASA
ATIN: KSC Library, Documents Section
Kennedy Space Center, Florida 32899
APGC (PGBPS-12)
1
Eglin Air Force Base, Florida 32542
U. S. Army CDC Infantry Agency

1
Fort Benning, Georgia 31905
Argonne National Laboratory
ATTN: Report Section
9700 South Cass Avenue
Argonne, Illinois 60440
U. S. Army Weapons Command

ATTN: AMSWE-RDR
Rock Island, Illinois 61201
Rock Island Arsenal
ATIN: SWERI-RDI
Rock Island, Illinois 61201
U. S. Army Cond. § General Staff College

ATIN: Acquisitions, Library Division
Fort Leavenworth, Kansas 66027
Combined Arms Croup, USACIDC
ATTN: Op. Res., P and P Div.
Fort Leavenworth, Kansas 66027
U. S. Army CDC Armor Agency

Fort Knox, Kentucky 40121
Michoud Assembly Facility, NASA
ATIN: Library, I-MICH-OSD
P. O. Box 29300

New Orleans, Louisiana 70129
Aberdeen Proving Ground
ATTN: Technical Library, Bldg. 313
Aberdeen Proving Ground, Maryland 21005
NASA Sci. G Tech. Information Facility
ATTN: Acquisitions Branch (S-AK/DL)
P. O. Box 33

College Park, Maryland 20740
U. S. Army Edgewood Arsenal

ATTN: Librarian, Tech. Info. Div.
Edgewood Arsenal, Maryland 21010

National Security Agency
ATTN: C3/TDL
Fort Meade, Maryland 20755
Goddard Space Flight Center, NASA
ATMN: Liurary, puciuntits Section
Greenbelt, Maryland 20771
U. S. Naval Propellant Plant

ATTN: Technical Library
Indian Head, Maryland 20640
U. S. Naval Ordnance Laboratory

ATTN: Librarian, Eva Liberman
Silver Spring, Maryland 20910
Air Force Cambridge Research Labs.
L. G. Hanscom Field

ATTN: CRMXLR/Stop 29
Bedford, Massachusetts 01730
U. S. Army Tank Automotive Center

ATIN: SMOTA-RTS. 1
Warren, Michigan 48090
U. S. Amy Materials Research Agency

ATTN: AMXMR-ATL
Watertown, Massachusetts 02172
Strategic Air Command (OAI)
Offutt Air Force Base, Nebraska 68113
Picatinny Arsenal, USAMUCOM
ATTN: SMUPA-VA6
Dover, New Jersey 07801
U. S. Army Electronics Command

ATTN: AMSEL-CB
Fort Monmouth, New Jersey 07703
Sandia Corporation
ATTN: Technical Library
P. O. Box 5800

- Albuquerque, New Mexico 87115

ORA(RRRT)
Holloman Air Force Base, New Mexico 88330
Los Alamos Scientific Laboratory
ATIN: Report Library
P. O. Box 1663

Los Alamos, New Mexico 87544
White Sands Missile Range
ATTN: Technical Library
White Sands, New Mexico 88002
Rome Air Development Center (EMLAL-1)
ATTN: Documents Library
Griffiss Air Force Base, New York 13440

1

Brookhaven National Laboratory
Technical Information Division
ATIN: Classified Documents Group
Upton, Long Island, New York 11973
Watervliet Arsenal
ATTN: SWEWV-RD
Watervliet, New York 12189
U. S. Amy Research Office (ARO-D)

ATTN: CRD-AA-IP
Box CM, Duke Station
Durham, North Carolina 27706
Lewis Research Center, NASA 1
ATTN: Library
21000 Brookpark Road
Cleveland, Ohio *44135
Foreign Technology Division
ATIN: Library
Wright-Patterson Air Force Base, Ohio 45400
U. S. Army Artillery \& Missile School

ATTN: Guided Missile Department
Fort Sill, Oklahoma 73503
U. S. Army CDC Artillery Agency

ATTN: Library
Fort Sill, Oklahoma 73504
U. S. Army War College 1

ATTN: Library
Carlisle Barracks, Pennsylvania 17013
U. S. Naval Air Development Center 1

ATIN: Technical Library
Johnsville, Warminster, Pennsylvania 18974
Frankford Arsenal
ATTN: C-2500-Library
Philadelphia, Pennsylvania 19137
Div. of Technical Information Ext., USAEC 1
P. O. Box 62

Oak Ridge, Tennessee 37830
Oak Ridge National Laboratory
ATIN: Central Files
P. O. Box X

Oak Ridge, Tennessee 37830
Air Defense Agency, USACDC
ATTN: Library
Fort Bliss, Texas 79916
U. S. Army Air Defense School

ATTN: AKBAAS-DR-R
Fort Bliss, Texas 79906
U. S. Army Combat Developments Command
Institute of Nuclear Studies Fort Bliss, Texas 79916

Manned Spacecraft Center, NASA
1
ATIN: Technical Library, Code BM6
Houston, Texas 77058
Defense Documentation Center
20
Cameron Station
Alexandria, Virginia 22314
U. S. Army Research Office

1
ATTN: STINFO Division
3045 Columbia Pike
Arlington, Virginia 22204
U. S. Naval Weapons Laboratory

1

ATTN: Technical Library
Dahlgren, Virginia 22448
U. S. Anmy Engineer Res. G Dev. Labs.

ATTN: Scientific \& Technical Info. Br. Fort Belvoir, Virginia 22060

Langley Research Center, NASA 1
ATIN: Library, MS-185
Hampton, Virginia 23365
Research Analysis Corporation
1
ATIN: Library
McLean, Virginia 22101
Foreign Science \& Technology Center 3
Munitions Building
Washington, D. C. 20315
National Aeronautics \& Space Administration 2 Code USS-T (Translation Section)
Washington, D. C. 20546

INTERNAL
Headquarters
U. S. Army Missile Command

Redstone Arsenal, Alabama 35809
ATIN: AMSMI-D
AMSMI - XE, Mr. Lowers 1
AMSMI-Y 1
AMSMI-R, Mr. MCDaniel 1
AMSMI-RAP 1
AMSMI-RBLD 10
USACDC-LnO 1
AMSMI-RB, Mr, Croxton 1
AMSMI -RBT 8

National Aeronautics ξ Space Administration
Marshall Space Flight Center
Marshall Space Flight Center, Ala. 35812
ATTN: MS-T, Mr. Wiggins
R-COMP-T, Dr. Fehlberg

	2n. REPORT SECURITY CLASSIFICATION
Research and Development Directorate	Unclassified
U. S. Army Missile Command Redstone Arsenal, Alabama 35809	2b. GROUP N/A
3. REPORT TITLE NUMERICAL SOLUTION OF HYPERBO OF THE RUNGE-KUTTA TYPE. II Fizika Matematychnykh Navuk, No. 1,	ND SYSTEMS BY A METHOD avuk Belaruskay SSR, Seryya

4. DESCRIPTIVE NOTES (Type of report and incluatve dates)

Translated from the Russian
8. AUTHOR(S) (First neme, middle iniflal, laet name)

Nguyen Kong Tuy

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

None
Same as No. 1
13. ABETRACT

In the first part of this article the two-iteration algorithms of the Runge-Kutta type were applied to the solution of the Cauchy problem for hyperbolic equations and systems with two independent variables, where the initial data are given along the line segment $\mathrm{x}+\mathrm{y}=$ const.

In the second part of this article an analogous problem is discussed for one equation with Cauchy data along the curve segment.

UNCLASSIFIED
Security Classification

