K^{\pm}	
, ,	

$$I(J^P) = \frac{1}{2}(0^-)$$

A REVIEW GOES HERE - Check our WWW List of Reviews

K^{\pm} MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
493.677±0.016 OUR FIT Error i	ncludes scale facto	or of	2.8.		
493.677±0.013 OUR AVERAGE	Error includes sca	le fa	ctor of 2	.4. Se	e the ideogram
	j below.				
493.696 ± 0.007		91	CNTR	_	Kaonic atoms
493.636 ± 0.011	² GALL	88	CNTR	_	Kaonic atoms
493.640±0.054	LUM	81	CNTR	_	Kaonic atoms
493.670±0.029	BARKOV	79	EMUL	±	$e^+e^- \rightarrow K^+K^-$
493.657 ± 0.020	² CHENG	75	CNTR	_	Kaonic atoms
493.691±0.040	BACKENSTO	.73	CNTR	_	Kaonic atoms
$\bullet~\bullet~$ We do not use the following	data for averages	, fits	, limits,	etc. •	• •
493.631±0.007	GALL	88	CNTR	_	$K^- \operatorname{Pb} (9 \rightarrow 8)$
493.675±0.026	GALL	88	CNTR	_	$K^- \operatorname{Pb} (11 \rightarrow 10)$
493.709±0.073	GALL	88	CNTR	_	$K^- W (9 \rightarrow 8)$
493.806±0.095	GALL	88	CNTR	_	$K^- W (11 \rightarrow 10)$
$493.640 \!\pm\! 0.022 \!\pm\! 0.008$	³ CHENG	75	CNTR	_	$K^- \operatorname{Pb} (9 \rightarrow 8)$
$493.658 \!\pm\! 0.019 \!\pm\! 0.012$	³ CHENG	75	CNTR	_	$K^- \operatorname{Pb} (10 \rightarrow 9)$
$493.638 \!\pm\! 0.035 \!\pm\! 0.016$	³ CHENG	75	CNTR	_	$K^- \operatorname{Pb} (11 \rightarrow 10)$
$493.753 \!\pm\! 0.042 \!\pm\! 0.021$	³ CHENG	75	CNTR	_	$K^- \operatorname{Pb} (12 \rightarrow 11)$
$493.742 \!\pm\! 0.081 \!\pm\! 0.027$	³ CHENG	75	CNTR	_	$K^- \operatorname{Pb} (13 \rightarrow 12)$
493.662±0.19	KUNSELMAN	74	CNTR	_	Kaonic atoms
493.78 ±0.17	GREINER	65	EMUL	+	
493.7 ±0.3	BARKAS	63	EMUL	_	
493.9 ±0.2	COHEN	57	RVUE	+	

 $^1\,{\rm Error}$ increased from 0.0059 based on the error analysis in IVANOV 92. $^2\,{\rm This}$ value is the authors' combination of all of the separate transitions listed for this paper.

³ The CHENG 75 values for separate transitions were calculated from their Table 7 transition energies. The first error includes a 20% systematic error in the noncircular contaminant shift. The second error is due to a ± 5 eV uncertainty in the theoretical transition energies.

 $m_{K^{\pm}}$ (MeV)

 $m_{K^+} - m_{K^-}$

Test of CPT.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG
-0.032 ± 0.090	1.5M	⁴ FORD	72	ASPK	±
4 FORD 72 uses m_{π^+}	$-m_{\pi^-}$	$_{-}=+28\pm70$ keV.			

K^{\pm} MEAN LIFE

<u>VALUE (10⁻⁸ s)</u>	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.2386 ± 0.0024 (DUR FIT Error in	ncludes scale facto	or of	2.0.		
1.2385±0.0025 (OUR AVERAGE	Error includes sca below.	le fa	ctor of 2	2.1. Se	e the ideogram
1.2451 ± 0.0030	250k	KOPTEV	95	CNTR		K at rest, U tar- get
1.2368 ± 0.0041	150k	KOPTEV	95	CNTR		K at rest, Cu tar- get
$1.2380 \!\pm\! 0.0016$	3M	OTT	71	CNTR	+	K at rest
$1.2272 \!\pm\! 0.0036$		LOBKOWICZ	69	CNTR	+	K in flight
1.2443 ± 0.0038		FITCH	65 B	CNTR	+	K at rest

 $\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$

1.241! 1.221	$5 \pm 0.0024 \pm 0.011$	400k	⁵ KOPTEV FORD	95 67	CNTR CNTR	±	K at rest
1.231	± 0.011		BOYARSKI	62	CNTR	+	
1.25	$+0.22 \\ -0.17$		BARKAS	61	EMUL		
1.27	$+0.36 \\ -0.23$	51	BHOWMIK	61	EMUL		
1.31	± 0.08	293	NORDIN	61	HBC	_	
1.24	± 0.07		NORDIN	61	RVUE	_	
1.38	± 0.24	33	FREDEN	60 B	EMUL		
1.21	± 0.06		BURROWES	59	CNTR		
1.60	± 0.3	52	EISENBERG	58	EMUL		
0.95	$^{+0.36}_{-0.25}$		ILOFF	56	EMUL		

⁵ KOPTEV 95 report this weighted average of their U-target and Cu-target results, where they have weighted by $1/\sigma$ rather than $1/\sigma^2$.

 K^{\pm} mean life (10⁻⁸ s)

$(\tau_{K^+} - \tau_{K^-}) / \tau_{average}$

This quantity is a measure of CPT invariance in weak interactions.

VALUE (%)	DOCUMENT ID	TECN
0.11 \pm 0.09 OUR AVERAGE	Error includes scale fac	tor of 1.2.
0.090 ± 0.078	LOBKOWICZ 69	CNTR
0.47 ± 0.30	FORD 67	CNTR

A REVIEW GOES HERE - Check our WWW List of Reviews

K⁺ DECAY MODES

 K^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Г1	$\mu^+ u_{\mu}$	(63.51 ± 0.18) %	S=1.3
Γ ₂	$e^+ \nu_e$	$(1.55\pm0.07) imes10^{-5}$	5
Γ ₃	$\pi^+\pi^0$	(21.16 ± 0.14) %	S=1.1
Г4	$\pi^+\pi^+\pi^-$	(5.59 ± 0.05) %	S=1.8
Γ ₅	$\pi^{+}\pi^{0}\pi^{0}$	(1.73±0.04) %	S=1.2
Г ₆	$\pi^0 \mu^+ \nu_{\mu}$	(3.18±0.08) %	S=1.5
	Called $K^+_{\mu 3}$.		
Γ ₇	$\pi^0 e^+ \nu_e$	(4.82±0.06) %	S=1.3
	Called K_{e3}^+ .		
Г ₈	$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.1 ± 0.4) $ imes 10^{-5}$	
Г9	$\pi^+\pi^-e^+\nu_e$	$(3.91\pm0.17) imes10^{-5}$	
Γ ₁₀	$\pi^+\pi^-\mu^+ u_\mu$	(1.4 ± 0.9) $ imes 10^{-5}$	•
Γ_{11}	$\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	$< 3.5 \times 10^{-6}$	CL=90%
Γ_{12}	$\pi^+ \gamma \gamma$	[a] (1.10 ± 0.32) $ imes$ 10 ⁻⁶)
Γ ₁₃	$\pi^+ 3\gamma$	$[a] < 1.0 \times 10^{-4}$	CL=90%
I ₁₄	$\mu^+ \nu_\mu \nu \overline{\nu}$	$< 6.0 \times 10^{-6}$	CL=90%
Γ ₁₅	$e^+ \nu_e \nu \overline{\nu}$	$< 6 \times 10^{-5}$	CL=90%
l ₁₆	$\mu^+ u_\mu e^+ e^-$	$(1.3 \pm 0.4) imes 10^{-7}$	
Γ_{17}	$e^+ \nu_e e^+ e^-$	(3.0 $^{+3.0}_{-1.5}$) $ imes$ 10 $^{-8}$	3
Г ₁₈	$e^+ \nu_e \mu^+ \mu^-$	$< 5 \times 10^{-7}$	CL=90%
Γ ₁₉	$\mu^+ u_\mu \mu^+ \mu^-$	$<$ 4.1 $\times 10^{-7}$	CL=90%
Γοο	$\mu^+ \nu_{\mu} \gamma$	[a,b] (5.50±0.28)×10 ⁻³	5
Γ ₂₁	$\pi^{+}\pi^{0}\gamma$	[a,b] (2.75±0.15)×10 ⁻⁴	Ļ
Γ_{22}^{21}	$\pi^+ \pi^0 \gamma$ (DE)	[a,c] (1.8 ±0.4)×10 ⁻⁵	;
Γ_{23}	$\pi^+\pi^+\pi^-\gamma$	[a,b] (1.04±0.31)×10 ⁻⁴	Ļ
Γ ₂₄	$\pi^+ \pi^0 \pi^0 \gamma$	[a,b] (7.5 $+5.5$) × 10 ⁻⁶	5
Γ ₂₅	$\pi^0 \mu^+ \nu_\mu \gamma$	$[a,b] < 6.1 \times 10^{-5}$	CL=90%
Γ ₂₆	$\pi^0 e^+ \nu_e^{\gamma}$	[a,b] (2.62±0.20)×10 ⁻⁴	ļ
Γ_{27}	$\pi^0 e^+ \nu_e \gamma$ (SD)	$[d] < 5.3 \times 10^{-5}$	CL=90%
Γ ₂₈	$\pi^0 \pi^0 e^+ \nu_e \gamma$	$< 5 \times 10^{-6}$	CL=90%

HTTP://PDG.LBL.GOV Page 4 Created: 6/23/1999 15:44

	Lepton Family number (LF), Lepto	n number (L),	$\Delta S = \Delta Q ($	SQ)
	violating modes, or Δ	S = 1 weal	k neutral curre	nt (<i>S1</i>) mod	es
Γ ₂₉	$\pi^+\pi^+e^-\overline{\nu}_e$	SQ	< 1.2	imes 10 ⁻⁸	CL=90%
Г ₃₀	$\pi^+\pi^+\mu^-\overline{ u}_\mu$	SQ	< 3.0	imes 10 ⁻⁶	CL=95%
Г ₃₁	$\pi^+ e^+ e^-$	<i>S</i> 1	(2.74±0.	23) $ imes 10^{-7}$	
Г ₃₂	$\pi^+ \mu^+ \mu^-$	<i>S</i> 1	(5.0 ± 1 .	0) $ imes$ 10 $^{-8}$	
Г ₃₃	$\pi^+ \nu \overline{\nu}$	<i>S</i> 1	(4.2 + 9.)	$_5^7$) $ imes$ 10 $^{-10}$	
Г ₃₄	$\mu^- u e^+ e^+$	LF	< 2.0	imes 10 ⁻⁸	CL=90%
Г ₃₅	$\mu^+ \nu_e$	LF	[e] < 4	imes 10 ⁻³	CL=90%
Г ₃₆	$\pi^+\mu^+\mathrm{e}^-$	LF	< 2.1	imes 10 ⁻¹⁰	CL=90%
Г ₃₇	$\pi^+\mu^-e^+$	LF	< 7	imes 10 ⁻⁹	CL=90%
Г ₃₈	$\pi^-\mu^+e^+$	L	< 7	imes 10 ⁻⁹	CL=90%
Г ₃₉	$\pi^- e^+ e^+$	L	< 1.0	imes 10 ⁻⁸	CL=90%
Γ ₄₀	$\pi^- \mu^+ \mu^+$	L	[e] < 1.5	imes 10 ⁻⁴	CL=90%
Γ ₄₁	$\mu^+ \overline{\nu}_e$	L	[e] < 3.3	imes 10 ⁻³	CL=90%
Γ ₄₂	$\pi^0 e^+ \overline{\nu}_e$	L	< 3	imes 10 ⁻³	CL=90%
Г ₄₃	$\pi^+\gamma$				

- [a] See the Particle Listings below for the energy limits used in this measurement.
- [b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [c] Direct-emission branching fraction.
- [d] Structure-dependent part.
- [e] Derived from an analysis of neutrino-oscillation experiments.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, 2 decay rate, and 20 branching ratios uses 60 measurements and one constraint to determine 8 parameters. The overall fit has a χ^2 = 78.1 for 53 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

					Rate (10 0.5128 0.1708		Scale factor 1.5 1.1
<i>x</i> ₁	<i>x</i> 3	×4	×5	×6	x7	×8	
7	2	-18	-4	-2	-6	0	
-3	-1	2	0	2	6		
-50	-16	34	6	39			
-48	-17	14	2				
-27	-4	21					
-41	-12						
-58							
	$ \begin{array}{ } -58 \\ -41 \\ -27 \\ -48 \\ -50 \\ -3 \\ \hline 7 \\ x_1 \\ \hline \\ Mode \\ \hline \\ \mu^+ \nu_{\mu} \\ \pi^+ \pi^0 \\ \pi^+ \pi^+ \pi^- \end{array} $	$\begin{array}{ c c c } -58 \\ -41 & -12 \\ -27 & -4 \\ -48 & -17 \\ -50 & -16 \\ -3 & -1 \\ \hline 7 & 2 \\ \hline x_1 & x_3 \\ \hline \\ Mode \\ \hline \\ \mu^+ \nu_{\mu} \\ \pi^+ \pi^0 \\ \pi^+ \pi^+ \pi^- \end{array}$	$\begin{array}{ c c c c c } -58 & & & \\ -41 & -12 & & \\ -27 & -4 & 21 & \\ -48 & -17 & 14 & \\ -50 & -16 & 34 & \\ -3 & -1 & 2 & \\ \hline & & & & \\ \hline & & & & & \\ \hline & & & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Г ₆	$\pi^{0}\mu^{+}\nu_{\mu}$	$0.0257\ \pm 0.0006$	1.5
	Called $K_{\mu3}^+$.		
Г ₇	$\pi^0 e^+ \nu_e^{\mu \sigma}$	$0.0389 \ \pm 0.0005$	1.3
	Called K_{e3}^+ .		
Г ₈	$\pi^0 \pi^0 e^+ \nu_e$	$(1.69 \ \ +0.34 \ \ -0.29 \ \) imes 10^{-5}$	

K^{\pm} DECAY RATES

$\Gamma(\mu^+ u_{\mu})$						Г	1
$VALUE (10^{6} \text{ s}^{-1})$		DOCUMENT ID		TECN	CHG		
51.28 \pm 0.18 OUR FIT	Error inclu	des scale factor	of 1.5				
51.2 ±0.8		FORD	67	CNTR	±		
$\Gamma(\pi^+\pi^+\pi^-)$						Г	4
VALUE (10^{6} s^{-1})	EVTS	DOCUMENT ID		TECN	CHG		
4.52 ±0.04 OUR FIT	Error incl	udes scale factor	of 1.	8.			
4.511 ± 0.024		⁶ FORD	70	ASPK			
$\bullet \bullet \bullet$ We do not use the	e following	data for average	s, fits	, limits,	etc. • • •		

HTTP://PDG.LBL.GOV

4.529 ± 0.032	3.2M	⁶ FORD	70	ASPK	
$4.496 \!\pm\! 0.030$		⁶ FORD	67	CNTR :	±

⁶ First FORD 70 value is second FORD 70 combined with FORD 67.

$(\Gamma(K^+) - \Gamma(K^-)) / \Gamma(K)$

$K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ RATE DIFFERENCE/AVERAGE

VALUE (%)	DOCUMENT ID		TECN
-0.54 ± 0.41	FORD	67	CNTR

$\mathcal{K}^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ RATE DIFFERENCE/AVERAGE

Test of CP of	conservation.					
VALUE (%)	EVTS	DOCUMENT ID		TECN	CHG	
0.07 ± 0.12 OUR	AVERAGE					
0.08 ± 0.12		⁷ FORD	70	ASPK		
-0.50 ± 0.90		FLETCHER	67	OSPK		
• • • We do not a	use the followin	ng data for average	es, fits	s, limits,	etc. •	• •
-0.02 ± 0.16		⁸ SMITH	73	ASPK	±	
0.10 ± 0.14	3.2M	⁷ FORD	70	ASPK		
-0.04 ± 0.21		⁷ FORD	67	CNTR		

⁷ First FORD 70 value is second FORD 70 combined with FORD 67. ⁸ SMITH 73 value of $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ rate difference is derived from SMITH 73 value of $K^{\pm} \rightarrow \pi^{\pm} 2\pi^{0}$ rate difference.

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ RATE DIFFERENCE/AVERAGE

Test of	CP conservation.				
VALUE (%)	EVTS	DOCUMENT ID		TECN	CHG
0.0 ±0.6	OUR AVERAGE				
0.08 ± 0.58		SMITH	73	ASPK	±
$-1.1 \ \pm 1.8$	1802	HERZO	69	OSPK	

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ RATE DIFFERENCE/AVERAGE

0.8±1.2	HERZO	69	OSPK
VALUE (%)	DOCUMENT ID		TECN
lest of CPT conservation.			

$\mathcal{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ RATE DIFFERENCE/AVERAGE Test of *CP* conservation.

	vation.					
VALUE (%)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.9± 3.3 OUR AVERAG	БЕ.					
$0.8\pm$ 5.8	2461	SMITH	76	WIRE	±	E_{π} 55–90 MeV
$1.0\pm$ 4.0	4000	ABRAMS	73 B	ASPK	±	E_{π} 51–100 MeV
0.0 ± 24.0	24	EDWARDS	72	OSPK		E_{π} 58–90 MeV

K⁺ BRANCHING RATIOS

$\Gamma(\mu^+ u_\mu) / \Gamma_{ ext{total}}$					Γ_1/Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	I <u>CHG</u>	COMMENT
63.51 ± 0.18 OUR F	IT Error inclu	udes scale factor o	of 1.3.		
63.24±0.44	62k	CHIANG	72 OSP	Κ +	1.84 GeV/ <i>c K</i> +
• • • We do not us	se the following	data for averages	s, fits, limit	s, etc. ●	• •
$56.9 \hspace{0.1in} \pm 2.6$		⁹ ALEXANDER	57 EMU	IL +	
58.5 ± 3.0		⁹ BIRGE	56 EMU	IL +	
⁹ Old experiments	s not included i	n averaging.			
$\Gamma(\mu^+\nu_\mu)/\Gamma(\pi^+\gamma)$	$\pi^+\pi^-$)				Γ_1/Γ_4
VALUE	EVTS	DOCUMENT ID	TECN	<u>CHG</u>	
11.35 ± 0.12 OUR F	IT Error inclu	udes scale factor o	of 1.8.		
• • • We do not us	se the following	data for averages	s, fits, limit	s, etc. •	• •
$10.38 \!\pm\! 0.82$	427	¹⁰ YOUNG	65 EMU	IL +	
¹⁰ Deleted from ov YOUNG 65 mea	verall fit becaus asured (μu) dir	e YOUNG 65 con ectly.	strains his	results to	o add up to 1. Only
$\Gamma(e^+\nu_e)/\Gamma_{total}$					Γ2/Γ
$V_{AI/JF}$ (units 10^{-5})	CI% EVTS	DOCUMENT ID	TECN	сна	- 27 -
<u>VALOE (dilits 10) (</u>	<u>cers</u> <u>evis</u>	data for average	fite limit		
	e the following		s, iits, iiiiii	.s, etc. •	••
2.1 + 1.0	4	BOWEN	67B OSP	К +	
<160.0	95	BORREANI	64 HBC	+	
$\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_e)$	(μ_{μ})				Γ_2/Γ_1
VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	I CHG	_, _
2.45±0.11 OUR A	/ERAGE				
2.51 ± 0.15	404	HEINTZE	76 SPE	C +	
$2.37 \!\pm\! 0.17$	534	HEARD	75B SPE	C +	
2.42 ± 0.42	112	CLARK	72 OSP	Κ +	
• • • We do not us	se the following	data for averages	s, fits, limit	s, etc. •	••
$1.8 \begin{array}{c} +0.8 \\ -0.6 \end{array}$	8	MACEK	69 ASP	Κ +	
19 + 0.7	10	BOTTERILI	67 ASP	K +	
-0.5	10	DOTTERIE			
$\Gamma(\pi^+\pi^0)/\Gamma_{total}$					Г ₃ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
21.16 ± 0.14 OUR F	IT Error inclu	udes scale factor o	of 1.1.		
21.18 ± 0.28	16k	CHIANG	72 OSP	K +	1.84 GeV/ <i>c K</i> +
• • • We do not us	se the following	data for averages	s, fits, limit	s, etc. •	• •
$21.0\ \pm 0.6$		CALLAHAN	65 HLB	С	See $\Gamma(\pi^+ \pi^0)/\Gamma(\pi^+ \pi^+ \pi^-)$
21.6 ±0.6		TRILLING	65b RVU	E	• (* * *)
23.2 ±2.2		¹¹ ALEXANDER	57 EMU	IL +	
27.7 ±2.7		¹¹ BIRGE	56 EMU	IL +	
¹¹ Earlier experime	ents not averag	ed.			
HTTP://PDG.LI	BL.GOV	Page 8	Cr	eated: 6	5/23/1999 15:44
		-			· · · · · · · · · · · · · · · · · · ·

 $\Gamma(\pi^+\pi^0)/\Gamma(\mu^+\nu_\mu)$ Γ_3/Γ_1 DOCUMENT ID TECN CHG COMMENT EVTS **0.3331±0.0028 OUR FIT** Error includes scale factor of 1.1. 0.3316±0.0032 OUR AVERAGE $0.3329 \pm 0.0047 \pm 0.0010$ 45k USHER 92 SPEC $p\overline{p}$ at rest + ¹² WEISSENBE... 76 0.3355 ± 0.0057 SPEC + 0.305 ± 0.018 1600 ZELLER 69 ASPK ¹³ AUERBACH 0.3277 ± 0.0065 4517 67 OSPK + • • • We do not use the following data for averages, fits, limits, etc. • • • 0.328 ± 0.005 ¹² WEISSENBE... 74 STRC + 25k ¹²WEISSENBERG 76 revises WEISSENBERG 74. ¹³AUERBACH 67 changed from 0.3253 \pm 0.0065. See comment with ratio $\Gamma(\pi^0 \mu^+ \nu_{\mu})/$ $\Gamma(\mu^+\nu_{\mu}).$ $\Gamma(\pi^{+}\pi^{0})/\Gamma(\pi^{+}\pi^{+}\pi^{-})$ Γ_3/Γ_4 VALUE DOCUMENT ID TECN CHG <u>EVTS</u> **3.78±0.04 OUR FIT** Error includes scale factor of 1.5. **3.84±0.27 OUR AVERAGE** Error includes scale factor of 1.9. 3.96 ± 0.15 1045 CALLAHAN 66 FBC + 3.24 ± 0.34 134 YOUNG 65 EMUL + $\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{\rm total}$ Γ4/Γ VALUE (units 10^{-2}) **EVTS** DOCUMENT ID TECN CHG COMMENT 5.59±0.05 OUR FIT Error includes scale factor of 1.8. **5.52±0.10 OUR AVERAGE** Error includes scale factor of 1.3. See the ideogram below. ¹⁴ PANDOULAS 70 EMUL + 5.34 ± 0.21 693 DEMARCO $5.71 \!\pm\! 0.15$ 65 HBC 6.0 ± 0.4 44 YOUNG 65 EMUL + 5.54 ± 0.12 2332 CALLAHAN 64 HLBC + 5.1 ± 0.2 SHAKLEE 64 HLBC + 540 5.7 ± 0.3 ROE 61 HLBC \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. ¹⁵ CHIANG 1.84 GeV/ $c K^+$ 2330 72 OSPK + 5.56 ± 0.20 ¹⁶ TAYLOR 5.2 ± 0.3 EMUL + 59 ¹⁶ ALEXANDER 57 6.8 ± 0.4 EMUL + ¹⁶ BIRGE $5.6\ \pm 0.4$ 56 EMUL + ¹⁴ Includes events of TAYLOR 59. ¹⁵ Value is not independent of CHIANG 72 $\Gamma(\mu^+\nu_{\mu})/\Gamma_{total}$, $\Gamma(\pi^+\pi^0)/\Gamma_{total}$, $\Gamma(\pi^{+} \pi^{0} \pi^{0}) / \Gamma_{\rm total}, \ \Gamma(\pi^{0} \mu^{+} \nu_{\mu}) / \Gamma_{\rm total}, \ {\rm and} \ \Gamma(\pi^{0} e^{+} \nu_{e}) / \Gamma_{\rm total}.$

¹⁶ Earlier experiments not averaged.

$$\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{\rm total}$$
 (units 10^{-2})

$\Gamma(\pi^+\pi^0\pi^0)/\Gamma_{total}$					Г ₅ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1.73±0.04 OUR FIT	Error inclu	udes scale factor of	1.2.		
1.77 ± 0.07 OUR AVER	AGE Err	or includes scale fa	ctor	of 1.4. See the	e ideogram below.
1.84 ± 0.06	1307	CHIANG	72	OSPK +	1.84 GeV/ $c~K^+$
$1.53 {\pm} 0.11$	198	¹⁷ PANDOULAS	70	EMUL +	
$1.8 \ \pm 0.2$	108	SHAKLEE	64	HLBC +	
$1.7 \hspace{0.1in} \pm 0.2$		ROE	61	HLBC +	
$\bullet \bullet \bullet$ We do not use the	he followin	g data for averages	, fits	s, limits, etc. •	• •
1.5 ± 0.2		¹⁸ TAYLOR	59	EMUL +	
2.2 ±0.4		¹⁸ ALEXANDER	57	EMUL +	
$2.1 \hspace{0.1in} \pm 0.5$		¹⁸ BIRGE	56	EMUL +	
17		<u> </u>			

 $\frac{17}{10}$ Includes events of TAYLOR 59.

 18 Earlier experiments not averaged.

HTTP://PDG.LBL.GOV Page 10

²⁰ Earlier experiments not averaged.

 $\Gamma(\pi^0 \mu^+ \nu_\mu) / \Gamma(\mu^+ \nu_\mu)$ Γ_6/Γ_1 DOCUMENT ID TECN CHG EVTS 0.0501±0.0013 OUR FIT Error includes scale factor of 1.5. 0.0488±0.0026 OUR AVERAGE 0.054 ± 0.009 240 ZELLER ASPK 69 +²¹ GARLAND 0.0480 ± 0.0037 424 68 OSPK +²² AUFRBACH 0.0486 ± 0.0040 307 67 **OSPK** + 21 GARLAND 68 changed from 0.055 \pm 0.004 in agreement with μ -spectrum calculation of GAILLARD 70 appendix B. L.G.Pondrom, (private communication 73). 22 AUERBACH 67 changed from 0.0602 \pm 0.0046 by erratum which brings the μ -spectrum calculation into agreement with GAILLARD 70 appendix B. $\Gamma(\pi^{0}\mu^{+}\nu_{\mu})/\Gamma(\pi^{+}\pi^{+}\pi^{-})$ Γ_6/Γ_4 TECN CHG COMMENT VALUE DOCUMENT ID 0.569±0.014 OUR FIT Error includes scale factor of 1.5. 0.517±0.032 OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below. ²³ HAIDT $0.503 \!\pm\! 0.019$ 1505 71 HLBC +²⁴ BISI 2845 65B BC HBC+HLBC 0.63 ± 0.07 + 0.90 ± 0.16 38 YOUNG 65 EMUL +• • We do not use the following data for averages, fits, limits, etc. • 1505 ²³ EICHTEN 0.510 ± 0.017 68 HLBC + ²³ HAIDT 71 is a reanalysis of EICHTEN 68. ²⁴ Error enlarged for background problems. See GAILLARD 70. WEIGHTED AVERAGE 0.517±0.032 (Error scaled by 1.8) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. HAIDT HLBC +71 BISI 65B BC 2.6 YOUNG 65 EMU 5.7 8.9 (Confidence Level = 0.012) 0.4 0.6 0.8 1.2 14 1 $\Gamma\left(\pi^{0}\mu^{+}\nu_{\mu}\right)/\Gamma\left(\pi^{+}\pi^{+}\pi^{-}\right)$

$\Gamma(\pi^0 \mu^+ \nu_\mu) / \Gamma(\pi^0 e^+$	ν _e)					Г ₆ /Г ₇
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.660 ± 0.015 OUR FIT	Error inc	ludes scale factor	of 1.	5.		
0.680 ± 0.013 OUR AVE	RAGE					
$0.705 \!\pm\! 0.063$	554	²⁵ LUCAS	73 B	HBC	_	Dalitz pairs only
$0.698 \!\pm\! 0.025$	3480	²⁶ CHIANG	72	OSPK	+	1.84 GeV/ <i>c K</i> +
$0.667 \!\pm\! 0.017$	5601	BOTTERILL	68 B	ASPK	+	
0.703 ± 0.056	1509	²⁷ CALLAHAN	66 B	HLBC		
$\bullet \bullet \bullet$ We do not use the	e following	data for averages	, fits	, limits,	etc. •	• •
0.670 ± 0.014		²⁸ HEINTZE	77	SPEC	+	
0.67 ± 0.12		WEISSENBE	76	SPEC	+	
0.608 ± 0.014	1585	²⁹ BRAUN	75	HLBC	+	
$0.596 \!\pm\! 0.025$		³⁰ HAIDT	71	HLBC	+	
0.604 ± 0.022	1398	³⁰ EICHTEN	68	HLBC		
²⁵ LUCAS 73B gives N($K_{\mu 3}) = 5$	54 \pm 7.6%, N(K_{e}	3) =	786 \pm	3.1%.	We divide.
²⁶ CHIANG 72 $\Gamma(\pi^0 \mu$	$(+\nu_{\mu})/\Gamma($	$\pi^0 e^+ u_e$) is stat	istica	ally inde	epende	nt of CHIANG 72
$\Gamma(\pi^0 \mu^+ \nu_\mu) / \Gamma_{\text{total}}$	and $\Gamma(\pi^0)$	$e^+ \nu_e) / \Gamma_{total}$				
²⁷ From CALLAHAN 66	B we use	only the $K_{\mu3}/K_{e3}$	3 rati	o and d	o not i	nclude in the fit the
ratios ${\it K_{\mu3}}/(\pi\pi^+\pi^0)$) and K_e	$_{3}/(\pi\pi^{+}\pi^{0})$, sinc	e th	ey show	large	disagreements with
the rest of the data.	<i>c</i>	`				
20 DD ALW Value f	rom fit to	λ_0 . Assumes μ -e	univ	ersality.		
²⁹ BRAUN 75 value is f	rom torm	factor fit. Assume	s μ-e	e univers	salıty.	
-50 HAIDT 71 is a rean	alysis of E	\pm ICHIEN 68. On	ly ind	dividual	ratios	included in fit (see
$\Gamma(\pi^{o} \mu^{+} \nu_{\mu}) / \Gamma(\pi^{+} \eta)$	$\pi^+\pi^-)$ ar	nd $\Gamma(\pi^0 e^+ \nu_e)/\Gamma($	(π^{+})	$\pi^+\pi^-)$).	
$[\Gamma(\pi^{+}\pi^{0}) + \Gamma(\pi^{0}\mu^{+})]$	-w.)]/E	total				([2+[c)/[
We combine these	two mode	total is for experiments i	meas	uring th	em in >	kenon bubble cham-
ber because of diff	iculties of	separating them t	here.			
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG	
24.34±0.15 OUR FIT	Error inclu	udes scale factor of	f 1.2			
24.6 ±1.0 OUR AVER	AGE Err	or includes scale fa	actor	of 1.4.		
25.4 ±0.9	886	SHAKLEE	64	HLBC	+	
23.4 ± 1.1		ROE	61	HLBC	+	
$\Gamma(\pi^0 e^+ u_e) / \Gamma_{ m total}$						Г ₇ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
4.82±0.06 OUR FIT	rror includ	les scale factor of	1.3.			
4.85 ± 0.09 OUR AVERA	GE					
4.86 ± 0.10	3516	CHIANG	72	OSPK	+	1.84 GeV/ $c K^+$
4.7 ±0.3	429	SHAKLEE	64	HLBC	+	
$5.0 \hspace{0.1in} \pm 0.5$		ROE	61	HLBC	+	
\bullet \bullet \bullet We do not use the	e following	data for averages	, fits	, limits,	etc. •	• •
5.1 ±1.3		³¹ ALEXANDER	57	EMUL	+	
3.2 ±1.3		³¹ BIRGE	56	EMUL	+	
01			-			

³¹ Earlier experiments not averaged.

 $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\mu^+ \nu_\mu)$ Γ_7/Γ_1 DOCUMENT ID TECN CHG EVTS **0.0759±0.0011 OUR FIT** Error includes scale factor of 1.4. 0.0752±0.0024 OUR AVERAGE 0.069 ± 0.006 350 ZELLER 69 ASPK + 0.0775 ± 0.0033 960 BOTTERILL 68C ASPK 0.069 ± 0.006 561 GARLAND 68 **OSPK** ³² AUERBACH 295 0.0791 ± 0.0054 67 OSPK 32 AUERBACH 67 changed from 0.0797 \pm 0.0054. See comment with ratio $\Gamma(\pi^0 \mu^+ \nu_{\mu})/$ $\Gamma(\mu^+
u_{\mu})$. The value 0.0785 \pm 0.0025 given in AUERBACH 67 is an average of AUERBACH 67 $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\mu^+ \nu_\mu)$ and CESTER 66 $\Gamma(\pi^0 e^+ \nu_e) / [\Gamma(\mu^+ \nu_\mu) + \mu]$ $\Gamma(\pi^+\pi^0)$]. $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\pi^+ \pi^0)$ Γ_7/Γ_3 VALUEEVTSDOCUMENT IDTECNCHGCOMMENT0.2280±0.0035OUR FITError includes scale factor of 1.3. 33 LUCAS 786 0.221 ± 0.012 73B HBC Dalitz pairs only _ 33 LUCAS 73B gives N(K_{e3}) = 786 \pm 3.1%, N(2 π) = 3564 \pm 3.1%. We divide. $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\pi^+ \pi^+ \pi^-)$ Γ_7/Γ_4 VALUE DOCUMENT ID TECN CHG **EVTS 0.862±0.011 OUR FIT** Error includes scale factor of 1.3. 0.860 ± 0.014 OUR AVERAGE 0.867 ± 0.027 2768 BARMIN 87 XEBC + BRAUN 0.856 ± 0.040 2827 75 HLBC + ³⁴ HAIDT 0.850 ± 0.019 4385 71 HLBC 854 BELLOTTI 67B HLBC 0.94 ± 0.09 0.90 ± 0.06 230 BORREANI 64 HBC • • We do not use the following data for averages, fits, limits, etc. • 0.846 ± 0.021 4385 ³⁴ EICHTEN 68 HLBC + $0.90\ \pm 0.16$ 37 YOUNG 65 EMUL + ³⁴ HAIDT 71 is a reanalysis of EICHTEN 68. $\Gamma(\pi^0 e^+ \nu_e) / \left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0) \right]$ $\Gamma_7/(\Gamma_1+\Gamma_3)$ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN CHG 5.70±0.08 OUR FIT Error includes scale factor of 1.4. 6.01 ± 0.15 OUR AVERAGE 35 WEISSENBE ... 76 SPEC 5.92 ± 0.65 **ESCHSTRUTH 68** OSPK 6.16 ± 0.22 5110 1679 CESTER 66 OSPK 5.89 ± 0.21 ³⁵ Value calculated from WEISSENBERG 76 ($\pi^0 e\nu$), ($\mu\nu$), and ($\pi\pi^0$) values to eliminate

dependence on our 1974 $(\pi 2\pi^0)$ and $(\pi \pi^+ \pi^-)$ fractions.

 $\Gamma(\pi^0 \pi^0 e^+ \nu_e) / \Gamma(\pi^0 e^+ \nu_e)$ Γ_8/Γ_7 VALUE (units 10^{-4}) CL% EVTS TECN CHG DOCUMENT ID $4.3^{+0.9}_{-0.7}$ OUR FIT $4.1^{+1.0}_{-0.7}$ OUR AVERAGE $4.2^{+1.0}_{-0.9}$ 25 BOLOTOV 86B CALO - $3.8^{+5.0}_{-1.2}$ 2 LJUNG 73 HLBC + • • We do not use the following data for averages, fits, limits, etc. • • • <37.0 90 0 ROMANO 71 HLBC + $\Gamma(\pi^0 \pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$ Γ₈/Γ VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN CHG 2.1 ±0.4 OUR FIT 2.54 ± 0.89 10 BARMIN 88B HLBC + $\Gamma(\pi^+\pi^-e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)$ Γ_9/Γ_4 VALUE (units 10^{-4}) TECN CHG DOCUMENT ID EVTS 6.99±0.30 OUR AVERAGE Error includes scale factor of 1.2. 7.21 ± 0.32 30k ROSSELET 77 SPEC +71 ASPK 7.36 ± 0.68 500 BOURQUIN 7.0 ± 0.9 106 SCHWEINB... 71 HLBC + 5.83 ± 0.63 269 ELY 69 HLBC + • • We do not use the following data for averages, fits, limits, etc. • • • 6.7 ± 1.5 69 BIRGE 65 FBC + $\Gamma(\pi^+\pi^-\mu^+\nu_\mu)/\Gamma_{\text{total}}$ Γ_{10}/Γ VALUE (units 10^{-5}) EVTS DOCUMENT ID TECN CHG • • • We do not use the following data for averages, fits, limits, etc. • • • $0.77 \substack{+0.54 \\ -0.50}$ 1 CLINE 65 FBC + $\Gamma(\pi^+\pi^-\mu^+\nu_{\mu})/\Gamma(\pi^+\pi^+\pi^-)$ Γ_{10}/Γ_4 <u>VALUE</u> (units 10^{-4}) E<u>VTS</u> DOCUMENT ID TECN CHG 2.57 ± 1.55 7 BISI 67 DBC +• • We do not use the following data for averages, fits, limits, etc. • • • ~ 2.5 1 GREINER 64 EMUL + $\Gamma(\pi^0 \pi^0 \pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$ Γ_{11}/Γ VALUE (units 10^{-6}) CL% EVTS DOCUMENT ID TECN CHG 88 SPEC -<3.5 90 0 BOLOTOV • • We do not use the following data for averages, fits, limits, etc. • • • <9 90 0 BARMIN 92 XEBC +

$\Gamma(\pi^+\gamma\gamma)/\Gamma_{\text{total}}$	al iwan ha							Γ ₁₂ /Γ
All values g VALUE (units 10^{-7})	iven ne	FVTS	ne a		ion en	ergy spe	CHG	COMMENT
11 ± 2	<u></u> 1	21	3	6 кітсцілс	07	P797		COMMENT
	⊥⊥ use the	followir	nσ d	ata for average	91 s fits	limits	etc •	• •
< 10	00	0	ig u		0.05	D707	ctc. •	$T = 117 107 M_{\odot}$
< 10	90 00	0			90E 82		· _	$T\pi 117 - 127$ MeV
-420 + 520	90	0		ABRAMS	77	SPEC	·	$T_{\pi} = 127$ WeV
< 350	90	0		LJUNG	73	HLBC	+	6–102, 114–127 MeV
< 500	90	0		KLEMS	71	OSPK	+	$T\pi$ <117 MeV
-100 ± 600				CHEN	68	OSPK	+	T π 60–90 MeV
$1.5 \pm 0.7) \times 10$	$(-7)^{-7}$ for	rapolate 100 Me	d fro eV/c	\sim P $_{\pi^+} <$ 180 N	l-indep MeV/c	endent using (brancr Chiral F	Perturbation (6.0 \pm
$(\pi' 3\gamma)/tota$ Values given	l 1 here a	assume a	a ph	ase space pion	energy	/ spectr	um.	1 13/1
VALUE (units 10^{-4})		CL%	•	DOCUMENT ID	0.	TECN	CHG	COMMENT
<1.0		90		ASANO	82	CNTR	+	<i>T</i> (π) 117–127 MeV
\bullet \bullet \bullet We do not	use the	followir	ng d	ata for average	s, fits,	limits,	etc. •	• •
<3.0		90		KLEMS	71	OSPK	+	$T(\pi) > 117 \; { m MeV}$
$\Gamma(\mu^+ \nu_\mu \nu \overline{\nu}) / \Gamma_0$	total							Г ₁₄ /Г
VALUE (units 10^{-6})	CL%	EVTS		DOCUMENT ID		TECN	CHG	
<6.0	90	0	37	PANG	73	CNTR	+	
³⁷ PANG 73 assu	imes μ	spectrui	m fr	om ν - ν interac	tion of	f BARD	IN 70.	
$\Gamma(e^+\nu_e\nu\overline{\nu})/\Gamma(e^+\nu_e\nu\overline{\nu})$	(e ⁺ ν _e)						Γ ₁₅ /Γ ₂
VALUE	<u>CL%</u>	<u>EVTS</u>		DOCUMENT ID		TECN	<u>CHG</u>	
<3.8	90	0		HEINTZE	79	SPEC	+	
$\Gamma(\mu^+ u_\mu e^+ e^-)$	/Γ(π	+π ⁻ e ⁻	$^{+}\nu_{\epsilon}$.)				Г ₁₆ /Г9
VALUE (units 10^{-3})		EVTS		DOCUMENT ID		TECN	CHG	COMMENT
3.3±0.9		14	38	DIAMANT	76	SPEC	+	<i>m</i> _{e⁺e⁻ >140 MeV}
\bullet \bullet \bullet We do not	use the	followir	ng d	ata for average	s, fits,	limits,	etc. •	• •
27. ±8.		14	38	DIAMANT	76	SPEC	+	Extrapolated BR
³⁸ DIAMANT-BI DIAMANT-BI	ERGER ERGER	76 gives 76 valu	s thi 1e is	s result times ou the first value	ur 197 e extra	5 $\pi^+ \pi^-$ polated	⁻ <i>eν</i> Β to 0 t	R ratio. The second to include low mass
e ⁺ e ⁻ pairs. those of DIAN	More re 1ANT-1	ecent cal BERGEF	lcula R 76	itions (BIJNEN	S 93)	of this e	extrapo	lation disagree with

$\Gamma(e^+\nu_e e^+e^-)/\Gamma(e^+\nu_e e^-)/\Gamma(e^+\nu_e e^-)/\Gamma(e^-\nu_e e^-)/\Gamma(e^-\nu_e^$	$(\pi^{+}\pi^{-}e^{+})$	<i>ν_e</i>)					Г ₁₇ /Г9
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	-
$0.76^{+0.76}_{-0.38}$	4	³⁹ DIAMANT	76	SPEC	+	m _{e+e} -	>140
$\bullet \bullet \bullet$ We do not use	the followin	ng data for averages,	, fits	, limits,	etc. •	• •	

5.4
$$+5.4$$
 4 39 DIAMANT-... 76 SPEC + Extrapolated BR

 39 DIAMANT-BERGER 76 gives this result times our 1975 $\pi^+\,\pi^-\,e\,\nu$ BR ratio. The second DIAMANT-BERGER 76 value is the first value extrapolated to 0 to include low mass e^+e^- pairs. More recent calculations (BIJNENS 93) of this extrapolation disagree with those of DIAMANT-BERGER 76.

$\Gamma(e^+\nu_e\mu^+\mu^-)/\Gamma$	total					Г ₁₈ /Г
VALUE	<u>CL%</u>	DOCUMENT	ID	TECN		
<5 × 10 ⁻⁷	90	ADLER	98	B787		
$\Gamma(\mu^+\nu_\mu\mu^+\mu^-)/I$	total					Г ₁₉ /Г
VALUE (units 10^{-7})	CL%	DOCUMENT	ID	TECN	CHG	
<4.1	90	ATIYA	89	B787	+	
$\Gamma(\mu^+ u_\mu \gamma) / \Gamma_{ m total}$						Г ₂₀ /Г

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
5.50±0.28 OUR AVERA	GE					
6.6 ± 1.5	40,43	¹ DEMIDOV	90	XEBC		${\sf P}(\mu) < 231.5 \ {\sf MeV}/c$
6.0 ±0.9		BARMIN	88	HLBC	+	$P(\mu) < 231.5$ MeV/c
5.4 ±0.3	42	² AKIBA	85	SPEC		$P(\mu) < 231.5$ MeV/ c
• • • We do not use the	e following o	data for averages	, fits	, limits, e	etc. •	• •
	41 44	2				

3.5 ± 0.8		^{41,43} DEMIDOV	90	XEBC		$E(\gamma) > 20 \text{ MeV}$
$3.2 \ \pm 0.5$	57	⁴⁴ BARMIN	88	HLBC	+	$E(\gamma) > 20 \text{ MeV}$
$5.8\ \pm 3.5$	12	WEISSENBE	. 74	STRC	+	$\mathit{E}(\gamma)>$ 9 MeV

⁴⁰ P(μ) cut given in DEMIDOV 90 paper, 235.1 MeV/c, is a misprint according to authors (private communication).
 ⁴¹ DEMIDOV 90 quotes only inner bremsstrahlung (IB) part.

⁴²Assumes μ -e universality and uses constraints from $K \rightarrow e \nu \gamma$.

⁴³Not independent of above DEMIDOV 90 value. Cuts differ.

⁴⁴ Not independent of above BARMIN 88 value. Cuts differ.

$[(\pi^+\pi^0\gamma)/\Gamma_{total}]$

 Γ_{21}/Γ

-					==/
CL% EVTS	DOCUMENT ID		TECN	CHG	COMMENT
AVERAGE					
140	BOLOTOV	87	WIRE	_	$T\pi^-$ 55–90 MeV
2461	SMITH	76	WIRE	±	T π^\pm 55–90 MeV
2100	ABRAMS	72	ASPK	±	T π^+ 55–90 MeV
	<u>EVTS</u> AVERAGE 140 2461 2100	AVERAGE 140 BOLOTOV 2461 SMITH 2100 ABRAMS	EVTS DOCUMENT ID AVERAGE 140 BOLOTOV 87 2461 SMITH 76 2100 ABRAMS 72	EVTSDOCUMENT IDTECNAVERAGEBOLOTOV87WIRE140BOLOTOV87WIRE2461SMITH76WIRE2100ABRAMS72ASPK	CL%EVTSDOCUMENT IDTECNCHGAVERAGE140BOLOTOV87WIRE-2461SMITH76WIRE±2100ABRAMS72ASPK±

HTTP://PDG.LBL.GOV Page 17

• • • We do not use the following data for averages, fits, limits, etc. • • •

$1.5 \ +1.1 \ -0.6$			⁴⁵ LJUNG	73	HLBC +	T π^+ 55–80 MeV
$2.6 \begin{array}{c} +1.5 \\ -1.1 \end{array}$			⁴⁵ LJUNG	73	HLBC +	T π^+ 55–90 MeV
$6.8 \begin{array}{c} +3.7 \\ -2.1 \end{array}$		17	⁴⁵ LJUNG	73	HLBC +	T π^+ 55–102 MeV
$2.4\ \pm 0.8$		24	EDWARDS	72	OSPK	T π^+ 58–90 MeV
<1.0		0	⁴⁶ MALTSEV	70	HLBC +	T $\pi^+~<$ 55 MeV
<1.9	90	0	EMMERSON	69	OSPK	T π^+ 55–80 MeV
$2.2\ \pm 0.7$		18	CLINE	64	FBC +	T π^+ 55–80 MeV

⁴⁵ The LJUNG 73 values are not independent.

 46 MALTSEV 70 selects low π^+ energy to enhance direct emission contribution.

$\Gamma(\pi^+\pi^0\gamma(\text{DE}))/\Gamma_{\text{total}}$ Γ_{22}/Γ Direct emission part of $\Gamma(\pi^+ \pi^0 \gamma) / \Gamma_{total}$. *VALUE* (units 10^{-5}) DOCUMENT ID TECN CHG COMMENT 1.8 \pm 0.4 OUR AVERAGE $2.05 \pm 0.46 \substack{+0.39\\-0.23}$ BOLOTOV 87 WIRE $T\pi^-$ 55–90 MeV 76 WIRE $T\pi^{\pm}$ 55–90 MeV $2.3\ \pm 3.2$ SMITH \pm $T\pi^{\pm}$ 55–90 MeV 72 ASPK \pm $1.56 \!\pm\! 0.35 \!\pm\! 0.5$ ABRAMS $\Gamma(\pi^+\pi^+\pi^-\gamma)/\Gamma_{\rm total}$ Γ_{23}/Γ *VALUE* (units 10^{-4}) EVTS DOCUMENT ID TECN CHG COMMENT 1.04 ± 0.31 OUR AVERAGE 1.10 ± 0.48 89 XEBC $E(\gamma) > 5 \text{ MeV}$ 7 BARMIN **STAMER** 65 EMUL + $E(\gamma) > 11 \text{ MeV}$ 1.0 ± 0.4 $\Gamma(\pi^+\pi^0\pi^0\gamma)/\Gamma(\pi^+\pi^0\pi^0)$ Γ_{24}/Γ_5 VALUE (units 10^{-4}) COMMENT DOCUMENT ID TECN CHG $4.3^{+3.2}_{-1.7}$ 85 SPEC - $E(\gamma) > 10 \text{ MeV}$ BOLOTOV $\Gamma(\pi^0 \mu^+ \nu_\mu \gamma) / \Gamma_{\text{total}}$ Γ_{25}/Γ VALUE (units 10^{-5}) <u>CL%</u> <u>EVTS</u> DOCUMENT ID COMMENT TECN CHG <6.1 90 73 HLBC + LJUNG $E(\gamma) > 30 \text{ MeV}$ 0 $\Gamma(\pi^0 e^+ \nu_e \gamma) / \Gamma(\pi^0 e^+ \nu_e)$ Γ_{26}/Γ_7 *VALUE* (units 10^{-2}) EVTS DOCUMENT ID TECN CHG COMMENT 0.54 ± 0.04 OUR AVERAGE Error includes scale factor of 1.1. ⁴⁷ BARMIN 0.46 ± 0.08 82 91 XEBC $E(\gamma) > 10$ MeV, 0.6 < $\cos \theta_e \gamma <$ 0.9 ⁴⁸ BOLOTOV 192 0.56 ± 0.04 86B CALO $E(\gamma) > 10 \text{ MeV}$ ⁴⁹ ROMANO 0.76 ± 0.28 13 71 HLBC $E(\gamma) > 10 \text{ MeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.51 ± 0.25	82	⁴⁷ BARMIN	91	XEBC	$E(\gamma) > 10 MeV, \ \cos \! heta_{oldsymbol{ ho}} \gamma < $
0.48±0.20	16	⁵⁰ LJUNG	73	HLBC +	0.98 <i>Ε</i> (γ) >30 MeV
$0.22^{+0.15}_{-0.10}$		⁵⁰ LJUNG	73	HLBC +	$\mathit{E}(\gamma)>$ 30 MeV
$\begin{array}{c} 0.53 \!\pm\! 0.22 \\ 1.2 \ \pm\! 0.8 \end{array}$		⁴⁹ ROMANO BELLOTTI	71 67	HLBC + HLBC +	$egin{array}{l} {\it E}(\gamma) > 30 { m MeV} \ {\it E}(\gamma) > 30 { m MeV} \end{array}$

⁴⁷ BARMIN 91 quotes branching ratio $\Gamma(K \to e\pi^0 \nu \gamma)/\Gamma_{all}$. The measured normalization is $[\Gamma(K \to e\pi^0 \nu) + \Gamma(K \to \pi^+ \pi^+ \pi^-)]$. For comparison with other experiments we used $\Gamma(K \to e\pi^0 \nu)/\Gamma_{all} = 0.0482$ to calculate the values quoted here. ⁴⁸ $\cos\theta(e\gamma)$ between 0.6 and 0.9.

⁴⁹ Both ROMANO 71 values are for $\cos\theta(e\gamma)$ between 0.6 and 0.9. Second value is for comparison with second LJUNG 73 value. We use lowest $E(\gamma)$ cut for Summary Table value. See ROMANO 71 for E_{γ} dependence.

⁵⁰ First LJUNG 73 value is for $\cos\theta(e\gamma) < 0.9$, second value is for $\cos\theta(e\gamma)$ between 0.6 and 0.9 for comparison with ROMANO 71.

$\Gamma(\pi^0 e^+ \nu_e \gamma(SI))$ Structure-de	D))/Г epende	total ent part.							Г ₂₇ /Г
VALUE (units 10^{-5})		CL%	DOCUI	MENT ID		TECN	CHG		
<5.3		90	BOLC	νοτο	86 B	CALO	_		
$\Gamma(\pi^0\pi^0e^+\nu_e\gamma)$)/Γ _{to}	tal							Г ₂₈ /Г
VALUE (units 10^{-6})	CL%	EVTS	DOCUI	MENT ID		TECN	CHG	COMMENT	
<5	90	0	BARN	1IN	92	XEBC	+	$E_{\gamma}~>10$	MeV
$ \Gamma(\pi^+\pi^+e^-\overline{\nu}_e) $ Test of ΔS)/Γ _{tot} = ∆Q	al 7 rule.							Г ₂₉ /Г
VALUE (units 10^{-7})	CL%	EVTS	DOCUI	MENT ID		TECN	CHG		
$\bullet \bullet \bullet$ We do not	use the	e followin	g data for	averages	s, fits	, limits,	etc. •	• •	
< 9.0	95	0	SCHV	VEINB	71	HLBC	+		
< 6.9	95	0	ELY		69	HLBC	+		
<20.	95		BIRGI	Ē	65	FBC	+		
$\Gamma(\pi^+\pi^+e^-\overline{\nu}_e)$ Test of ΔS)/Γ (π = ΔQ	- + π e +) rule.	⁼ν _e)						Г ₂₉ /Г ₉
VALUE (units 10^{-4})	CL%	EVTS	DOCUI	MENT ID		TECN			
< 3	90	3	⁵¹ BLOC	Ή	76	SPEC			
$\bullet \bullet \bullet$ We do not	use the	e followin	g data for	averages	s, fits	, limits,	etc. •	• •	
<130.	95	0	BOUF	RQUIN	71	ASPK			
⁵¹ BLOCH 76 qu	otes 3	$.6 \times 10^{-6}$	⁴ at CL =	95%, w	e con	vert.			
$\Gamma(\pi^+\pi^+\mu^-\overline{\nu}_{\mu})$ Test of ΔS)/Γ _{to} = ΔQ	tal) rule.							Г ₃₀ /Г
VALUE (units 10^{-6})	CL%	EVTS	DOCUI	MENT ID		TECN	CHG		
<3.0	95	0	BIRG	Ξ	65	FBC	+		

 $\Gamma(\pi^+ e^+ e^-)/\Gamma_{\text{total}}$ Γ_{31}/Γ Test for $\Delta S = 1$ weak neutral current. Allowed by combined first-order weak and electromagnetic interactions. VALUE (units 10^{-7}) CL% EVTS DOCUMENT ID TECN CHG COMMENT 2.74±0.23 OUR AVERAGE ⁵² ALLIEGRO $2.75\!\pm\!0.23\!\pm\!0.13$ 500 92 SPEC +⁵³ BLOCH 41 $2.7 \hspace{0.1in} \pm 0.5$ 75 SPEC + • • We do not use the following data for averages, fits, limits, etc. • • • 90 < 17 CENCE 74 ASPK + Three track evts < 2.7 90 CENCE 74 ASPK + Two track events 72 OSPK \pm <320 90 BEIER < 44 90 BISI 67 DBC +< 8.8 67B FBC +90 CLINE < 24.5 90 1 CAMERINI 64 FBC + 52 ALLIEGRO 92 assumes a vector interaction with a form factor given by λ = 0.105 \pm 0.035 ± 0.015 and a correlation coefficient of -0.82.⁵³BLOCH 75 assumes a vector interaction. $\Gamma(\pi^+\mu^+\mu^-)/\Gamma_{\rm range}$ Γ_{32}/Γ veak interac-

Test for $\Delta S=1$ w	/eak neutra	l current. Allow	ed by	/ higher-	order electrow
tions.					
VALUE (units 10 ⁻⁸)	CL%	DOCUMENT ID		TECN	CHG
$5.0 \pm 0.4 \pm 0.9$	54	¹ ADLER	97 C	B787	
\bullet \bullet \bullet We do not use the	following c	lata for averages	, fits	, limits,	etc. • • •
< 23	90	ATIYA	89	B787	+
<240	90	BISI	67	DBC	+
<300	90	CAMERINI	65	FBC	+

 54 ADLER 97C gives systematic error 0.7×10^{-8} and theoretical uncertainty 0.6×10^{-8} , which we combine in quadrature to obtain our second error.

$\Gamma(\pi^+ \nu \overline{\nu}) / \Gamma_{\text{total}}$

 Γ_{33}/Γ

Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-9})	CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
$0.42^{+0.97}_{-0.35}$		1	ADLER	97	B787			

• • • We do not use the following data for averages, fits, limits, etc. • • •

<	2.4	90		ADLER	96	B787		
<	7.5	90		ATIYA	93	B787	+	T(π) 115–127 MeV
<	5.2	90		⁵⁵ ATIYA	93	B787	+	
<	17	90	0	ATIYA	93 B	B787	+	$T(\pi)$ 60–100 MeV
<	34	90		ATIYA	90	B787	+	
<	140	90		ASANO	81 B	CNTR	+	T(π) 116–127 MeV
<	940	90		⁵⁶ CABLE	73	CNTR	+	$T(\pi)$ 60–105 MeV
<	560	90		⁵⁶ CABLE	73	CNTR	+	<i>T</i> (π) 60–127 MeV
<5	7000	90	0	⁵⁷ LJUNG	73	HLBC	+	
<	1400	90		⁵⁶ KLEMS	71	OSPK	+	T(π) 117–127 MeV

⁵⁵ Combining ATIYA 93 and ATIYA 93B results. Superseded by ADLER 96.

HTTP://PDG.LBL.GOV

Page 20

Created: 6/23/1999 15:44

 56 KLEMS 71 and CABLE 73 assume π spectrum same as K_{e3} decay. Second CABLE 73 limit combines CABLE 73 and KLEMS 71 data for vector interaction. 57 LJUNG 73 assumes vector interaction.

$\Gamma(\mu^- \nu e^+ e^+)/Test of lept$	/Γ(π+ on fami	$\pi^- e^+$	ν _e) per conse	ervation.					Г ₃₄ /Г9
VALUE (units 10^{-3})	CL%	EVTS	DOC	CUMENT ID		TECN	CHG		
<0.5	90	0	⁵⁸ DIA	MANT	76	SPEC	+		
⁵⁸ DIAMANT-BE	ERGER	76 quot	es this r	esult times	s our	1975 π^-	$+\pi^-e$	ν BR ratio.	
$\Gamma(\mu^+ \nu_e) / \Gamma_{\text{tota}}$	l Iv lento	n family	number	conservat	ion				Г ₃₅ /Г
VALUE	<u>CL%</u>	<u>EVTS</u>	DOC	CUMENT ID		TECN	CHG	COMMENT	
<0.004	90	0	⁵⁹ LY(ONS	81	HLBC	0	200 GeV <i>F</i> row bar beam	ζ^+ nar- nd $ u$
• • • We do not	use the	followir	ng data i	for average	es, fits	s, limits,	etc. •	• •	
< 0.012	90		2ª CO	OPER	82	HLBC		Wideband	u beam
⁵⁹ COOPER 82 lepton family	and LY number	ONS 81 violatio	limits c n in the	on ν_e obset absence o	rvatio f mix	n are he ing.	ere inte	erpreted as l	limits on
$\Gamma(\pi^+\mu^+e^-)/\Gamma$ Test of lept	total on fami	ily numb	oer conse	ervation.					Г ₃₆ /Г
VALUE (units 10^{-10})	CL%	EVTS	DOC	UMENT ID		TECN	CHG	<u>COMMENT</u>	
< 2.1	90	0	LEE	-	90	SPEC	+		
\bullet \bullet \bullet We do not	use the	followir	ng data i	for average	s, fits	s, limits,	etc. •	• •	
<11	90	0	CAI	MPAGNAR	RI 88	SPEC	+	In LEE 90	
<48	90	0	DIA	MANT	76	SPEC	+		
$\Gamma(\pi^+\mu^-e^+)/\Gamma$ Test of lept	- total on fami	ily numb	oer conse	ervation.					Г ₃₇ /Г
VALUE (units 10^{-9})	CL%	EVTS	DOC	CUMENT ID		TECN	CHG		
< 7	90	0	⁶⁰ DIA	MANT	76	SPEC	+		
\bullet \bullet \bullet We do not	use the	followir	ng data i	for average	s, fits	s, limits,	etc. •	• •	
<28	90		⁶⁰ BEI	ER	72	OSPK	±		
⁶⁰ Measurement	actually	y applies	to the	sum of the	$\pi^+\mu$	$\iota^- e^+$ a	nd π^-	$\mu^+ e^+$ mod	des.
$\Gamma(\pi^-\mu^+e^+)/\Gamma$	total	n numbe	r conser	vation.					Г ₃₈ /Г
VALUE (units 10^{-9})	CL%	EVTS	DOC	CUMENT ID		TECN	CHG		
< 7	90	0	61 DIA	MANT	76	SPEC	+		
• • • We do not	use the	followir	ng data i	for average	s, fits	, limits,	etc. •	• •	
<28	90		⁶¹ BEI	ER	72	OSPK	±		
61 Measurement	actually	/ applies	to the	sum of the	$\pi^+\mu$	$\iota^- e^+$ a	nd π^-	$\mu^+ e^+$ mod	des.
$\Gamma(\pi^+\mu^-e^+)/\Gamma$	total								Г ₃₇ /Г
VALUE (units 10^{-8})		CL%	<u>D0</u> 0	<u>CUMENT ID</u>		TECN	<u>CHG</u>		
• • • We do not	use the	followir	ng data i	for average	s, fits	s, limits,	etc. •	• •	
<1.4		90	BEI	ER	72	OSPK	±		
HTTP://PDG.	LBL.G	OV	F	^o age 21		Crea	ated: (5/23/1999	9 15:44

$\Gamma(\pi^{-} a^{+} a^{+})/\Gamma$					Fee /F
Test of total lent	on numb	er conservation			1 39/1
VALUE (units 10^{-5})		DOCUMENT ID)	TECN	CHG
• • • We do not use th	e follow	ing data for averag	ges, fits	, limits,	etc. • • •
<1.5		CHANG	68	HBC	_
$\Gamma(\pi^- e^+ e^+)/\Gamma(\pi^+)$ Test of total lepto	π[—] e⁺ i on numb	′e) er conservation.			Г <u>з</u> 9/Г9
VALUE (units 10^{-4}) CL%	EVTS	DOCUMENT ID)	TECN	CHG
<2.5 90	0	⁶² DIAMANT	76	SPEC	+
⁶² DIAMANT-BERGE	R 76 quo	otes this result time	es our	1975 BF	R ratio.
$\Gamma(\pi^-\mu^+\mu^+)/\Gamma_{ ext{total}}$ Forbidden by tota	l lepton	number conservat	ion.		Г ₄₀ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID)	TECN	
<1.5	90	⁶³ LITTENBER	G 92	HBC	
63 LITTENBERG 92 is	from re	troactive data ana	lysis of	CHANG	G 68 bubble chamber data.
Γ(μ ⁺ ν _e)/Γ _{total} Forbidden by tota	l lepton	number conservati	ion.		Г ₄₁ /Г
VALUE (units 10^{-3})	CL%	DOCUMENT ID)	TECN	COMMENT
<3.3	90	⁶⁴ COOPER	82	HLBC	Wideband $ u$ beam
⁶⁴ COOPER 82 limit of violation in the abse	on $\overline{\nu}_e$ o ence of n	bservation is here nixing.	interpr	reted as	a limit on lepton number
$\Gamma(\pi^0 e^+ \overline{\nu}_e) / \Gamma_{\text{total}}$ Forbidden by tota	l lepton	number conservati	ion.		Г ₄₂ /Г
VALUE	CL%	DOCUMENT ID)	TECN	COMMENT
<0.003	90	⁶⁵ COOPER	82	HLBC	Wideband $ u$ beam
⁶⁵ COOPER 82 limit over the second	on $\overline{\nu}_e$ o ence of n	bservation is here nixing.	interpr	reted as	a limit on lepton number
$\Gamma(\pi^+\gamma)/\Gamma_{ ext{total}}$ Violates angular r	nomentı	ım conservation. N	Not list	ed in Su	Г₄₃/Г mmary Table.
VALUE (units 10^{-6})	CL%	DOCUMENT ID)	TECN	<u>CHG</u>
• • • We do not use th	e follow	ing data for averag	ges, fits	s, limits,	etc. • • •
<1.4	90	ASANO	82	CNTR	+
<4.0	90	⁶⁶ KLEMS	71	OSPK	+

 $^{66}\,\mathrm{Test}$ of model of Selleri, Nuovo Cimento 60A 291 (1969).

HTTP://PDG.LBL.GOV Page 22 Created: 6/23/1999 15:44

K^+ LONGITUDINAL POLARIZATION OF EMITTED μ^+

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
<-0.990	90	⁶⁷ AOKI	94	SPEC	+	
• • • We do not use the	followin	g data for averages	, fits	, limits,	etc. •	• •
$<-0.990 \ -0.970 \pm 0.047 \ -1.0 \ \pm 0.1 \ -0.96 \ \pm 0.12$	90	IMAZATO ⁶⁸ YAMANAKA ⁶⁸ CUTTS ⁶⁸ COOMBES	92 86 69 57	SPEC SPEC SPRK CNTR	+ + + +	Repl. by AOKI 94
⁶⁷ AOKI 94 measures ξI summing the statistic significant region ($ \xi $	$\mathcal{P}_{\mu}=-0$ al and sy $\mathcal{P}_{\mu} <1)$.9996 \pm 0.0030 \pm (stematic errors in q and assuming that	0.004 uadra $\xi=1$	18. The ature, no 1, its ma	above ormaliz ×imum	limit is obtained by ing to the physically value.

⁶⁸ Assumes $\xi = 1$.

A REVIEW GOES HERE – Check our WWW List of Reviews

ENERGY DEPENDENCE OF K^{\pm} DALITZ PLOT

 $|\text{matrix element}|^2 = 1 + gu + hu^2 + kv^2$ where $u = (s_3 - s_0) \ / \ m_\pi^2$ and $v = (s_1 - s_2) \ / \ m_\pi^2$

LINEAR COEFFICIENT g_{τ^+} FOR $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ Some experiments use Dalitz variables x and y. In the comments we give $a_v =$ coefficient of y term. See note above on "Dalitz Plot Parameters for $\breve{K}
ightarrow 3\pi$ Decays." For discussion of the conversion of a_V to g, see the earlier version of the same note in the Review published in Physics Letters 111B 70 (1982).

		j.)
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.2154 ± 0.003	5 OUR AVERAGE	E Error includes below.	scale	factor o	f 1.4.	See the ideogram
-0.2221 ± 0.006	5 225k	DEVAUX	77	SPEC	+	$a_y = .2814 \pm .0082$
-0.2157 ± 0.002	8 750k	FORD	72	ASPK	+	$a_V^{}=.2734\pm.0035$
-0.200 ± 0.009	39819	⁶⁹ HOFFMASTE	R72	HLBC	+	5
• • • We do not	t use the following	g data for average	s, fits	, limits,	etc.	• • •
-0.196 ± 0.012	17898	⁷⁰ GRAUMAN	70	HLBC	+	$a_y = 0.228 \pm 0.030$
-0.218 ± 0.016	9994	⁷¹ BUTLER	68	HBC	+	$a_v = 0.277 \pm 0.020$
-0.22 ± 0.024	5428 ⁷¹	^{,72} ZINCHENKO	67	HBC	+	$a_y = 0.28 \pm 0.03$

⁶⁹ HOFFMASTER 72 includes GRAUMAN 70 data.
⁷⁰ Emulsion data added — all events included by HOFFMASTER 72.
⁷¹ Experiments with large errors not included in average.

⁷² Also includes DBC events.

Linear energy dependence for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

QUADRATIC COEFFICIENT *h* FOR $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	_	
0.012 ±0.008	OUR AVERAGE	Error includes below.	scale	factor o	f 1.4.	See the	ideogram
-0.0006 ± 0.0143	225k	DEVAUX	77	SPEC	+		
0.0187 ± 0.0062	750k	FORD	72	ASPK	+		
-0.009 ± 0.014	39819	HOFFMASTE	R72	HLBC	+		

Quadratic coefficient *h* for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

QUADRATIC COEFFICIENT *k* FOR $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	_	
-0.0101 ± 0.0034 OUR	AVERAGE	Error includes s below.	cale	factor of	2.1.	See the i	deogram
-0.0205 ± 0.0039	225k	DEVAUX	77	SPEC	+		
-0.0075 ± 0.0019	750k	FORD	72	ASPK	+		
$-0.0105 \!\pm\! 0.0045$	39819	HOFFMASTER	R72	HLBC	+		

Quadratic coefficient k for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

LINEAR COEFFICIENT g_{τ^-} FOR $K^- \rightarrow \pi^- \pi^- \pi^+$ Some experiments use Dalitz variables x and y. In the comments we give $a_y =$ coefficient of y term. See note above on "Dalitz Plot Parameters for $K \rightarrow 3\pi$ Decays." For discussion of the conversion of a_V to g, see the earlier version of the same note in the Review published in Physics Letters 111B 70 (1982).

VALUE	EVTS	DOCUMENT ID		TECN	<u>СНĜ</u>	COMMENT
-0.217 ± 0.007	OUR AVERA	GE Error includes s	cale	factor o	f 2.5.	
$-0.2186\!\pm\!0.0028$	750k	FORD	72	ASPK	_	$a_y = .2770 \pm .0035$
$-0.193\ \pm 0.010$	50919	MAST	69	HBC	—	$a_{y} = 0.244 \pm 0.013$
• • • We do not a	use the follow	ing data for averages	s, fits	s, limits,	etc. •	• •
$-0.199 \ \pm 0.008$	81k	⁷³ LUCAS	73	HBC	_	$a_v = 0.252 \pm 0.011$
-0.190 ± 0.023	5778	^{74,75} MOSCOSO	68	HBC	_	$a_v = 0.242 \pm 0.029$
$-0.220\ \pm 0.035$	1347	⁷⁶ FERRO-LUZZI	61	HBC	_	$a_v = 0.28 \pm 0.045$

 73 Quadratic dependence is required by ${\cal K}^0_L$ experiments. For comparison we average only

those K^{\pm} experiments which quote quadratic fit values. ⁷⁴ Experiments with large errors not included in average.

⁷⁵ Also includes DBC events.
 ⁷⁶ No radiative corrections included.

QUADRATIC	COEFFICIENT	h FOR K ⁻	\rightarrow	π^{-}	π^{-}	π^+	
-----------	-------------	----------------------	---------------	-----------	-----------	---------	--

VALUE	EVTS	DOCUMENT ID		TECN	CHG
$0.010 \pm 0.006 $ O	UR AVERAGE				
$0.0125 \!\pm\! 0.0062$	750k	FORD	72	ASPK	_
-0.001 ± 0.012	50919	MAST	69	HBC	_

	FICIENT	$k \operatorname{FOR} K^{-} \rightarrow \underline{\text{DOCUMENT ID}}$	π^{-}	π π ⁺	<u>CHG</u>			
-0.0084 ± 0.0019 OUR	AVERAGE							
$-0.0083 \!\pm\! 0.0019$	750k	FORD	72	ASPK	_			
-0.014 ± 0.012	50919	MAST	69	HBC	_			
$(\mathbf{g}_{\tau^+} - \mathbf{g}_{\tau^-}) / (\mathbf{g}_{\tau^+})$	$(\mathbf{g}_{\tau^+} - \mathbf{g}_{\tau^-}) / (\mathbf{g}_{\tau^+} + \mathbf{g}_{\tau^-})$ FOR $\mathcal{K}^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^-$							
VALUE (%)	<u>EVTS</u>	DOCUMENT ID		TECN				
-0.70±0.53	3.2M	FORD	70	ASPK				
LINEAR COEFFICIENT g FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ Unless otherwise stated, all experiments include terms quadratic in $(s_{3} - s_{0}) / m^{2}_{\perp}$. See mini-review above.								
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT		
0.652 ± 0.031 OUR AVE	RAGE Erro	or includes scale	facto	or of 2.7.	See t	the ideogram below.		
$0.736\!\pm\!0.014\!\pm\!0.012$	33k	BATUSOV	98	SPEC	+			
$0.582\!\pm\!0.021$	43k	BOLOTOV	86	CALO	-			
0.670 ± 0.054	3263	BRAUN	76 B	HLBC	+			
0.630 ± 0.038	5635	SHEAFF	75	HLBC	+			
0.510 ± 0.060	27k	SMITH	75	WIRE	+			
$0.67 \hspace{0.1in} \pm 0.06$	1365	AUBERT	72	HLBC	+			
$0.544 \!\pm\! 0.048$	4048	DAVISON	69	HLBC	+	Also emulsion		
$\bullet \bullet \bullet$ We do not use th	e following o	data for averages	, fits	, limits,	etc. •	• •		
0.806 ± 0.220	4639 7	⁷ BERTRAND	76	EMUL	+			
0.484 ± 0.084	574 78	^B LUCAS	73 B	HBC	_	Dalitz pairs only		
0.527 ± 0.102	198 7	⁷ PANDOULAS	70	EMUL	+			
0.586 ± 0.098	1874 78	⁸ BISI	65	HLBC	+	Also HBC		
0.48 ± 0.04	1792 ⁷⁸	⁸ KALMUS	64	HLBC	+			

 77 Experiments with large errors not included in average. 78 Authors give linear fit only.

Linear energy dependence for $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

QUADRATIC COEFFICIENT *h* FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

See mini-review above.

VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN CHG COMMENT</u>
0.057 ± 0.018 OUR A	VERAGE	Error includes sca	le fa	ctor of 1.4. See the ideogram
		below.		_
$0.128\!\pm\!0.015\!\pm\!0.024$	33k	BATUSOV	98	SPEC +
0.037 ± 0.024	43k	BOLOTOV	86	CALO –
0.152 ± 0.082	3263	BRAUN	76 B	3 HLBC +
$0.041\!\pm\!0.030$	5635	SHEAFF	75	HLBC +
0.009 ± 0.040	27k	SMITH	75	WIRE +
-0.01 ± 0.08	1365	AUBERT	72	HLBC +
$0.026 \!\pm\! 0.050$	4048	DAVISON	69	HLBC + Also emulsion
\bullet \bullet \bullet We do not use th	e followin	g data for averages	, fits	s, limits, etc. ● ● ●
0.164 ± 0.121	4639	⁷⁹ BERTRAND	76	EMUL +
$0.018 \!\pm\! 0.124$	198	⁷⁹ PANDOULAS	70	EMUL +

⁷⁹Experiments with large errors not included in average.

Quadratic coefficient *h* FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

QUADRATIC COEFFICIENT *k* FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>
$0.0197 {\pm} 0.0045 {\pm} 0.0029$	9 33k	BATUSOV	98	SPEC	+

A REVIEW GOES HERE – Check our WWW List of Reviews

$K_{\ell_3}^{\pm}$ FORM FACTORS

In the form factor comments, the following symbols are used.

$$\begin{split} f_+ & \text{and } f_- \text{ are form factors for the vector matrix element.} \\ f_S & \text{and } f_T \text{ refer to the scalar and tensor term.} \\ f_0 &= f_+ + f_- t/(m_K^2 - m_\pi^2). \\ \lambda_+, \lambda_-, \text{ and } \lambda_0 \text{ are the linear expansion coefficients of } f_+, f_-, \text{ and } f_0. \\ \lambda_+ & \text{refers to the } K_{\mu3}^{\pm} \text{ value except in the } K_{e3}^{\pm} \text{ sections.} \\ d\xi(0)/d\lambda_+ & \text{ is the correlation between } \xi(0) \text{ and } \lambda_+ & \text{ in } K_{\mu3}^{\pm}. \\ d\lambda_0/d\lambda_+ & \text{ is the correlation between } \lambda_0 \text{ and } \lambda_+ & \text{ in } K_{\mu3}^{\pm}. \\ t &= \text{ momentum transfer to the } \pi \text{ in units of } m_\pi^2. \\ \text{DP = Dalitz plot analysis.} \\ \text{PI } = \pi \text{ spectrum analysis.} \\ \text{POL} &= \mu \text{ polarization analysis.} \\ \text{BR } &= K_{\mu3}^{\pm}/K_{e3}^{\pm} \text{ branching ratio analysis.} \end{split}$$

E = positron or electron spectrum analysis.

RC = radiative corrections.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{e3}^{\pm} DECAY)

For radiative correction of K_{e3}^{\pm} Dalitz plot, see GINSBERG 67 and BECHERRAWY 70.

VALUE		EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.0276	5 ± 0.0021 OUR A	VERAGE					_
0.018	± 0.007	3k	ARTEMOV	97 B	SPEC	_	DP
0.0284	$\pm 0.0027 \pm 0.0020$	0 32k	⁸⁰ AKIMENKO	91	SPEC		PI, no RC
0.029	± 0.004	62k	⁸¹ BOLOTOV	88	SPEC		PI, no RC
0.027	± 0.008		⁸² BRAUN	73 B	HLBC	+	DP, no RC
0.029	± 0.011	4017	CHIANG	72	OSPK	+	DP, RC neglig- ble
0.027	± 0.010	2707	STEINER	71	HLBC	+	DP, uses RC
0.045	± 0.015	1458	BOTTERILL	70	OSPK		PI, uses RC
0.08	± 0.04	960	BOTTERILL	68C	ASPK	+	e^+ , uses RC
-0.02	$^{+0.08}_{-0.12}$	90	EISLER	68	HLBC	+	PI, uses RC
0.045	$^{+0.017}_{-0.018}$	854	BELLOTTI	67 B	FBC	+	DP, uses RC
+0.016	± 0.016	1393	IMLAY	67	OSPK	+	DP, no RC
+0.028	$^{+0.013}_{-0.014}$	515	KALMUS	67	FBC	+	e^+ , PI, no RC
-0.04	± 0.05	230	BORREANI	64	HBC	+	e^+ , no RC
-0.010	± 0.029	407	JENSEN	64	XEBC	+	PI, no RC
+0.036	± 0.045	217	BROWN	6 2B	XEBC	+	PI, no RC
• • • W	/e do not use the	following c	lata for averages, f	fits, l	imits, et	c. • •	•

0.025 \pm 0.007 ⁸³ BRAUN 74 HLBC + $K_{\mu3}/K_{e3}$ vs. t

 $^{80}\,\rm AKIMENKO$ 91 state that radiative corrections would raise λ_+ by 0.0013.

⁸¹BOLOTOV 88 state radiative corrections of GINSBERG 67 would raise λ_+ by 0.002.

⁸² BRAUN 73B states that radiative corrections of GINSBERG 67 would lower λ_{+}^{e} by 0.002 but that radiative corrections of BECHERRAWY 70 disagrees and would raise λ_{+}^{e} by 0.005.

⁸³ BRAUN 74 is a combined $K_{\mu3}$ - K_{e3} result. It is not independent of BRAUN 73C ($K_{\mu3}$) and BRAUN 73B (K_{e3}) form factor results.

$\xi_A = f_-/f_+$ (determined from $K_{\mu3}^{\pm}$ spectra)

The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary

Table.								
VALUE	$d\xi(0)/d\lambda_{\perp}$	+ EVTS		DOCUMENT ID		TECN	CHG	COMMENT
-0.33±0.14 (DUR EVAL	UATION	Erro	or includes scale $d\xi(0)/d\lambda_+=-$	e fact 14.	or of 1. From a	6. Cor fit dise	relation is cussed in note or
				$K_{\ell 3}$ form facto 1982).	rs in	1982 ec	lition,	PL 111B (April
-0.27 ± 0.25	-17	3973		WHITMAN	80	SPEC	+	DP
-0.8 ± 0.8	-20	490	84	ARNOLD	74	HLBC	+	DP
-0.57 ± 0.24	-9	6527	85	MERLAN	74	ASPK	+	DP
-0.36 ± 0.40	-19	1897	86	BRAUN	73 C	HLBC	+	DP
-0.62 ± 0.28	-12	4025	87	ANKENBRA	72	ASPK	+	PI
$+0.45 \pm 0.28$	-15	3480	88	CHIANG	72	OSPK	+	DP
-1.1 ± 0.56	-29	3240	89	HAIDT	71	HLBC	+	DP
-0.5 ± 0.8	-26	2041	90	KIJEWSKI	69	OSPK	+	PI
$+0.72 \pm 0.93$	-17	444		CALLAHAN	66 B	FBC	+	PI
• • • We do r	not use the	e following	data	for averages, fi	ts, li	mits, etc	C. ● ●	•
$-0.5 \ \pm 0.9$	none	78		EISLER	68	HLBC	+	PI, $\lambda_+=0$
$0.0 \ +1.1 \ -0.9$		2648	91	CALLAHAN	66 B	FBC	+	μ , $\lambda_+=$ 0
$+0.7$ ±0.5		87		GIACOMELLI	64	EMUL	+	$MU+BR,\lambda_{+}=0$
-0.08 ± 0.7			92	JENSEN	64	XEBC	+	DP+BR
$+1.8\ \pm0.6$		76		BROWN	62 B	XEBC	+	$DP+BR,\ \lambda_{\perp}=0$

⁸⁴ ARNOLD 74 figure 4 was used to obtain ξ_A and $d\xi(0)/d\lambda_+$.

⁸⁵ MERLAN 74 figure 5 was used to obtain $d\xi(0)/d\lambda_{\perp}$.

⁸⁶ BRAUN 73C gives $\xi(t) = -0.34 \pm 0.20$, $d\xi(t)/d\lambda_{+} = -14$ for $\lambda_{+} = 0.027$, t = 6.6. We calculate above $\xi(0)$ and $d\xi(0)/d\lambda_{+}$ for their $\lambda_{+} = 0.025 \pm 0.017$.

 87 ANKENBRANDT 72 figure 3 was used to obtain $d\xi(0)/d\lambda_+$.

⁸⁸ CHIANG 72 figure 10 was used to obtain $d\xi(0)/d\lambda_+$. Fit had $\lambda_- = \lambda_+$ but would not change for $\lambda_- = 0$. L.Pondrom, (private communication 74).

⁸⁹ HAIDT 71 table 8 (Dalitz plot analysis) gives $d\xi(0)/d\lambda_+ = (-1.1+0.5)/(0.050-0.029)$ = -29, error raised from 0.50 to agree with $d\xi(0) = 0.20$ for fixed λ_+ .

- 90 KIJEWSKI 69 figure 17 was used to obtain $d\xi(0)/d\lambda_+$ and errors.
- ⁹¹ CALLAHAN 66 table 1 (π analysis) gives $d\xi(0)/d\lambda_+ = (0.72-0.05)/(0-0.04) = -17$, error raised from 0.80 to agree with $d\xi(0) = 0.37$ for fixed λ_+ . t unknown.
- ⁹² JENSEN 64 gives $\lambda_{+}^{\mu} = \lambda_{+}^{e} = -0.020 \pm 0.027$. $d\xi(0)/d\lambda_{+}$ unknown. Includes SHAK-LEE 64 $\xi_B(\kappa_{\mu3}/\kappa_{e3})$.

$\xi_{B} = f_{-}/f_{+}$ (determined from $K_{\mu3}^{\pm}/K_{e3}^{\pm}$)

The $K_{\mu3}^{\pm}/K_{e3}^{\pm}$ branching ratio fixes a relationship between $\xi(0)$ and λ_+ . We quote the author's $\xi(0)$ and associated λ_+ but do not average because the λ_+ values differ. The fit result and scale factor given below are not obtained from these ξ_B values. Instead they are obtained directly from the fitted $K_{\mu3}^{\pm}/K_{e3}^{\pm}$ ratio $\Gamma(\pi^0 \mu^+ \nu_{\mu})/\Gamma(\pi^0 e^+ \nu_e)$,

with the exception of HEINTZE 77. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table

VALUE	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
-0.33±0.14 OUF	R EVALUATION	Error includes s	cale factor of	1.6.	Correlation is
		$d\xi(0)/d\lambda_{+}=-$	–14. From a	fit dis	scussed in note on
		$K_{\ell 3}$ form facto 1982).	ors in 1982 ec	dition,	PL 111B (April
-0.12 ± 0.12	55k	⁹³ HEINTZE	77 CNTR	+	$\lambda_{+}=0.029$
\bullet \bullet \bullet We do not	use the followin	g data for average	s, fits, limits,	etc.	• • •
$0.0\ \pm 0.15$	5825	CHIANG	72 OSPK	+	$\lambda_+=$ 0.03, fig.10
$-0.81 \!\pm\! 0.27$	1505	⁹⁴ HAIDT	71 HLBC	+	$\lambda_{+}^{-}=0.028$, fig.8
$-0.35 \!\pm\! 0.22$		⁹⁵ BOTTERILL	70 OSPK	+	$\lambda_{+} = 0.045 \pm 0.015$
$+0.91\!\pm\!0.82$		ZELLER	69 ASPK	+	$\lambda_{+}=0.023$
$-0.08 \!\pm\! 0.15$	5601	⁹⁵ BOTTERILL	68b ASPK	+	$\lambda_{+} = 0.023 \pm 0.008$
$-0.60 \!\pm\! 0.20$	1398	⁹⁴ EICHTEN	68 HLBC	+	See note
$+1.0$ ±0.6	986	GARLAND	68 OSPK	+	$\lambda_{+}=0$
$+0.75 \pm 0.50$	306	AUERBACH	67 OSPK	+	$\lambda_{+}=0$
$+0.4$ ±0.4	636	CALLAHAN	66B FBC	+	$\lambda_{+}=0$
$+0.6 \pm 0.5$		BISI	65B HBC	+	$\lambda_{+}=0$
$+0.8 \pm 0.6$	500	CUTTS	65 OSPK	+	$\lambda_{+}=0$
$-0.17\substack{+0.75 \\ -0.99}$		SHAKLEE	64 XEBC	+	$\lambda_+=0$

 $^{93}\,\mathrm{Calculated}$ by us from λ_0 and λ_+ given below.

⁹⁴EICHTEN 68 has λ_+ = 0.023 \pm 0.008, t = 4, independent of λ_- . Replaced by HAIDT 71. 95 BOTTERILL 70 is re-evaluation of BOTTERILL 68B with different $\lambda_+.$

$\xi_{C} = f_{-}/f_{+}$ (determined from μ polarization in $K_{\mu 3}^{\pm}$)

The μ polarization is a measure of $\xi(t)$. No assumptions on λ_{+-} necessary, t (weighted by sensitivity to $\xi(t)$) should be specified. In λ_{+} , $\xi(0)$ parametrization this is $\xi(0)$ for $\lambda_{+}=0$. $d\xi/d\lambda = \xi t$. For radiative correction to muon polarization in $K_{\mu3}^{\pm}$, see GINSBERG 71. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table.

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.33 ± 0.14 OUR EV	VALUATIO	Error includes so $d\xi(0)/d\lambda_{+}=-$	cale fa - 14.	actor of From a	1.6. C fit disc	orrelation is cussed in note on
		$K_{\ell 3}$ form facto 1982).	rs in	1982 ed	lition, I	PL 111B (April
-0.25 ± 1.20	1585	⁹⁶ BRAUN	75	HLBC	+	POL, <i>t</i> =4.2
-0.95 ± 0.3	3133	⁹⁷ CUTTS	69	OSPK	+	Total pol. t=4.0
-1.0 ± 0.3	6000	⁹⁸ BETTELS	68	HLBC	+	Total pol. t=4.9
\bullet \bullet \bullet We do not use	the following	ng data for averages	, fits	, limits,	etc. •	• •
-0.64 ± 0.27	40k	⁹⁹ MERLAN	74	ASPK	+	POL, $d\xi(0)/d\lambda_+$ = +1.7
-1.4 ± 1.8	397	¹⁰⁰ CALLAHAN	66 B	FBC	+	Total pol.
$-0.7 \ \begin{array}{c} +0.9 \\ -3.3 \end{array}$	2950	¹⁰⁰ CALLAHAN	66 B	FBC	+	Long. pol.
$+1.2 \ +2.4 \ -1.8$	2100	¹⁰⁰ BORREANI	65	HLBC	+	Polarization
-4.0 to $+1.7$	500	¹⁰⁰ CUTTS	65	OSPK	+	Long. pol.

⁹⁶ BRAUN 75 $d\xi(0)/d\lambda_{+} = \xi t = -0.25 \times 4.2 = -1.0$.

 97 CUTTS 69 t = 4.0 was calculated from figure 8. $d\xi(0)/d\lambda_+ = \xi t = -0.95 \times 4 = -3.8$. 98 BETTELS 68 $d\xi(0)/d\lambda_+ = \xi t = -1.0 \times 4.9 = -4.9.$

 $^{99}\,\mathrm{MERLAN}$ 74 polarization result (figure 5) not possible. See discussion of polarization experiments in note on " $K_{\ell,3}$ Form Factors" in the 1982 edition of this Review [Physics Letters **111B** (1982).

100 t value not given.

Im(ξ) in $K_{\mu 3}^{\pm}$ DECAY (from transverse μ pol.)

lest of <i>I</i> reversal	invariance.					
VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
-0.017 ± 0.025 OUR A	/ERAGE					
$-0.016\!\pm\!0.025$	20M	CAMPBELL	81	CNTR	+	Pol.
$-0.3 \begin{array}{c} +0.3 \\ -0.4 \end{array}$	3133	CUTTS	69	OSPK	+	Total pol. fig.7
-0.1 ± 0.3	6000	BETTELS	68	HLBC	+	Total pol.
0.0 ± 1.0	2648	CALLAHAN	66 B	FBC	+	MU
$+1.6 \pm 1.3$	397	CALLAHAN	66 B	FBC	+	Total pol.
$0.5 \ {+1.4 \atop -0.5}$	2950	CALLAHAN	66 B	FBC	+	Long. pol.
\bullet \bullet \bullet We do not use th	e following c	lata for averages	, fits	, limits,	etc. •	• •
-0.010 ± 0.019	32M ¹⁰¹	BLATT	83	CNTR		Polarization
101 Combined result of I	MORSE 80 ($(\kappa^0_{\mu3})$ and CAM	PBE	LL 81 (<i>I</i>	К <mark>+</mark>).	

 λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN $\kappa_{\mu3}^{\pm}$ DECAY) See also the corresponding entries and footnotes in sections ξ_A , ξ_C , and λ_0 . For radiative correction of $\kappa_{\mu3}^{\pm}$ Dalitz plot, see GINSBERG 70 and BECHERRAWY 70.

VALUE	<u> </u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.032±0.008 O	UR EVALUATION	Error includes cussed in note PL 111B (April	scale on <i>K</i> I 198	e factor ℓ_{ℓ_3} form ℓ_{ℓ_3}	of 1.6. factors	From a fit dis- s in 1982 edition,
0 014+0.024	3k	ARTEMOV	97B	SPEC	_	NP
$+0.050\pm0.013$	3973	WHITMAN	80	SPEC	+	DP
0.025 ± 0.030	490	ARNOLD	74	HLBC	+	DP
0.027 ± 0.019	6527	MERLAN	74	ASPK	+	DP
$0.025 \!\pm\! 0.017$	1897	BRAUN	73C	HLBC	+	DP
$0.024 \!\pm\! 0.019$	4025 102	ANKENBRA	72	ASPK	+	PI
$-0.006 \!\pm\! 0.015$	3480	CHIANG	72	OSPK	+	DP
$0.050 \!\pm\! 0.018$	3240	HAIDT	71	HLBC	+	DP
$0.009 \!\pm\! 0.026$	2041	KIJEWSKI	69	OSPK	+	PI
0.0 ± 0.05	444	CALLAHAN	66 B	FBC	+	PI
\bullet \bullet \bullet We do not	use the following d	lata for averages	, fits	, limits,	etc. •	• •
0.029 ± 0.024	3000 103	ARTEMOV	97	SPEC	_	DP
102 ANKENBRAN	NDT 72 λ_+ from fig	gure 3 to match	<i>dξ</i> (C	$D)/d\lambda_+$.	Text g	gives 0.024 \pm 0.022.
¹⁰³ Superseded b [,]	V ARTEMOV 97B.					

λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K^{\pm}_{\mu 3}$ DECAY)

Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_0 using

the associat	ed λ^{μ}_+ and	$d\xi/d\lambda$				
VALUE	$d\lambda_0/d\lambda_+$	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
0.006±0.007 O	UR EVALL		Error includes scal $d\lambda_0/d\lambda_+ = -0$	e factor of 1).16. From a	.6. Co fit dis	rrelation is cussed in note
			on $K_{\ell 3}$ form fa $({ m April}\ 1982).$	ctors in 1982	2 editio	on, PL 111B
$+0.058 \pm 0.020$	0.0	3k	¹⁰⁴ ARTEMOV	97B SPEC	_	DP
$+0.029 \pm 0.011$	-0.37	3973	WHITMAN	80 SPEC	+	DP
$+0.019 \pm 0.010$	+0.03	55k	¹⁰⁵ HEINTZE	77 SPEC	+	BR
$+0.008 \pm 0.097$	+0.92	1585	¹⁰⁶ BRAUN	75 HLBC	+	POL
-0.040 ± 0.040	-0.62	490	ARNOLD	74 HLBC	+	DP
-0.019 ± 0.015	+0.27	6527	¹⁰⁷ MERLAN	74 ASPK	+	DP
-0.008 ± 0.020	-0.53	1897	¹⁰⁸ BRAUN	73C HLBC	+	DP
-0.026 ± 0.013	+0.03	4025	¹⁰⁹ ANKENBRA	72 ASPK	+	PI
$+0.030 \pm 0.014$	-0.21	3480	¹⁰⁹ CHIANG	72 OSPK	+	DP
-0.039 ± 0.029	-1.34	3240	¹⁰⁹ HAIDT	71 HLBC	+	DP
-0.056 ± 0.024	+0.69	3133	¹⁰⁶ CUTTS	69 OSPK	+	POL
-0.031 ± 0.045	-1.10	2041	¹⁰⁹ KIJEWSKI	69 OSPK	+	PI
-0.063 ± 0.024	+0.60	6000	¹⁰⁶ BETTELS	68 HLBC	+	POL
$+0.058 \pm 0.036$	-0.37	444	¹⁰⁹ CALLAHAN	66B FBC	+	PI
\bullet \bullet \bullet We do not	use the fol	lowing d	ata for averages, fits	, limits, etc.	• • •	
$+0.062 \pm 0.024$	0.0	3000	¹¹⁰ ARTEMOV	97 SPEC	_	DP
-0.017 ± 0.011			¹¹¹ BRAUN	74 HLBC	+	$rac{\kappa_{\mu3}}{t}/\kappa_{e3}$ vs.

 $^{104}\,{\rm ARTEMOV}$ 97B does not give $d\lambda_0/d\lambda_+$ so we take it to be zero.

 $^{105}\,{\sf HEINTZE}$ 77 uses $\lambda_+=0.029\pm0.003.\,$ $d\lambda_0/d\lambda_+$ estimated by us.

 $^{106}\lambda_0$ value is for $\lambda_+ = 0.03$ calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_+$.

¹⁰⁷ MERLAN 74 λ_0 and $d\lambda_0/d\lambda_+$ were calculated by us from ξ_A , λ_+^{μ} , and $d\xi(0)/d\lambda_+$. Their figure 6 gives $\lambda_0 = -0.025 \pm 0.012$ and no $d\lambda_0/d\lambda_+$.

¹⁰⁸ This value and error are taken from BRAUN 75 but correspond to the BRAUN 73C λ_{+}^{μ} result. $d\lambda_0/d\lambda_{+}$ is from BRAUN 73C $d\xi(0)/d\lambda_{+}$ in ξ_A above.

 $^{109}\lambda_0$ calculated by us from $\xi(0), \, \lambda_+^{\mu}$, and $d\xi(0)/d\lambda_+$.

¹¹⁰ ARTEMOV 97 does not give $d\lambda_0/d\lambda_+$ so we take it to be zero. Superseded by ARTE-MOV 97B.

¹¹¹ BRAUN 74 is a combined $K_{\mu3}$ - K_{e3} result. It is not independent of BRAUN 73C ($K_{\mu3}$) and BRAUN 73B (K_{e3}) form factor results.

$|f_{S}/f_{+}|$ FOR K_{e3}^{\pm} DECAY

	+ couplings.					
VALUE	<u>CL%_EVTS</u>	DOCUMENT ID		TECN	CHG	<u>COMMENT</u>
0.084 ± 0.023 OUR AV	ERAGE Error	includes scale fa	ctor o	of 1.2.		
$0.070 \!\pm\! 0.016 \!\pm\! 0.016$	32k	AKIMENKO	91	SPEC		$\lambda_{\pm}, f_{\mathbf{S}}, f_{\mathbf{T}},$
						ϕ fit
$0.00 \hspace{0.1 cm} \pm 0.10$	2827	BRAUN	75	HLBC	+	
0.14 + 0.03	2707	STEINER	71	HLBC	+	$\lambda_{\perp}, f_{\mathbf{S}}, f_{\mathbf{T}},$
-0.04						ϕ fit

HTTP://PDG.LBL.GOV

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.13	90	4017	CHIANG	72 OSPK +
<0.23	90		BOTTERILL	68c ASPK
<0.18	90		BELLOTTI	67B HLBC
<0.30	95		KALMUS	67 HLBC +

$|f_T/f_+|$ FOR K_{e3}^{\pm} DECAY Ratio of tensor to f_+ couplings.

VALUE	CL%	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	CHG	COMMENT
0.38 ± 0.11 OUR A	/ERAGE	Error inc	ludes scale facto	r of 🛛	1.1.		
$0.53^{+0.09}_{-0.10}{\pm}0.10$		32k	AKIMENKO	91	SPEC		$\lambda_{+}, f_{S}, f_{T}, \phi_{fit}$
0.07 ± 0.37		2827	BRAUN	75	HLBC +	F	φπ
$0.24\substack{+0.16 \\ -0.14}$		2707	STEINER	71	HLBC +	F	$\lambda_+, f_S, f_T, \phi_{fit}$
• • • We do not use	the follo	wing data f	or averages, fits,	limi	ts, etc. • •	• •	φπ
<0.75	90	4017	CHIANG	72	OSPK +	F	
<0.58	90		BOTTERILL	68 C	ASPK		

BELLOTTI

67B HLBC

67 HLBC +

< 1.1KALMUS 95 f_T/f_+ FOR $K^{\pm}_{\mu 3}$ DECAY

90

< 0.58

Ratio of tensor to f_{\perp} couplings.

VALUE	EVTS	DOCUMENT ID		TECN
0.02 ± 0.12	1585	BRAUN	75	HLBC

DECAY FORM FACTORS FOR $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e}$

Given in ROSSELET 77, BEIER 73, and BASILE 71c.

DECAY FORM FACTOR FOR $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$

Given in BOLOTOV 86B and BARMIN 88B.

$K^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ FORM FACTORS

For definitions of the axial-vector F_A and vector F_V form factor, see the "Note on $\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ and $K^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ Form Factors" in the π^{\pm} section. In the kaon literature, often different definitions $a_K = F_A/m_K$ and $v_K = F_V / m_K$ are used.

$F_A + F_V$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \rightarrow e \nu_e \gamma$ TECN COMMENT DOCUMENT ID

VALUE	EVIS	DOCUMENT ID		TECN	COMMENT	
0.148±0.010 OUR AV	'ERAGE					
$0.147 \!\pm\! 0.011$	51	¹¹² HEINTZE	79	SPEC	$K \rightarrow e \nu \gamma$	
$0.150 \substack{+0.018 \\ -0.023}$	56	¹¹³ HEARD	75	SPEC	$K ightarrow e u \gamma$	

¹¹² HEINTZE 79 quotes absolute value of $|F_A + F_V| \sin \theta_c$. We use $\sin \theta_c = V_{us} = 0.2205$. ¹¹³ HEARD 75 quotes absolute value of $|F_A + F_V| \sin \theta_c$. We use $\sin \theta_c = V_{us} = 0.2205$.

HTTP://PDG.LBL.GOV Page 35

$F_A + F_V$,	SUN	I OF AXIAL-VE	ECTOR AND	VEC	CTOR I	FORM FACTO	or for
$K \rightarrow \mu \nu_{\mu}$	$_{u}\gamma$				TECH		
VALUE		<u> </u>	<u>DOCUMENT ID</u>	05	<u>TECN</u>	COMMENT	
		90 II	' AKIBA data fan avana ma	85	SPEC	$K \rightarrow \mu \nu \gamma$	
• • • vve d	ο ποτ	use the following	data for averages	5, TITS	s, iimits,	etc. • • •	
-1.2 to	1.1	90	DEMIDOV	90	XEBC	$K \rightarrow \mu \nu \gamma$	
¹¹⁴ AKIBA	85 qu	otes absolute value	2.				
$F_{A} - F_{V}$.	DIF	FERENCE OF	AXIAL-VECTO	DR /	AND V	ECTOR FOR	M FAC-
TOR FOR	K -	$\rightarrow e \nu_{a} \gamma$		-			_
VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
<0.49		90 11	⁵ HEINTZE	79	SPEC	$K \rightarrow e \nu \gamma$	
115 HEINT7	7F 79	quotes $ E_A - E_V $	$ < \sqrt{11} F_A +$	Εv		,	
				' V	• =		
$F_A - F_V$,	DIF	FERENCE OF /	AXIAL-VECTO	DR /	AND V	ECTOR FOR	M FAC-
TOR FOR	K -	$\rightarrow \mu \nu_{\mu} \gamma$					
VALUE		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
-2.2 to 0.3	OUR	EVALUATION					
-2.2 to 0.6		90	DEMIDOV	90	XEBC	$K \rightarrow \mu \nu \gamma$	
-2.5 to 0.3		90	AKIBA	85	SPEC	$K \rightarrow \mu \nu \gamma$	
		la l		CES			
		r		CLJ	•		
ADLER	98	PR D58 012003	S. Adler+			(BNL 787	Collab.)
ADLER	98 97	NP B516 3 PRL 79 2204	V.Y. Batusov+ S. Adler+			(BNL 787	Collab.)
ADLER	97C	PRL 79 4756	S. Adler+			(BNL 787	Collab.)
ARTEMOV	97	PAN 60 218 Translated from YAF	V.M. Artemov+ 60 277.	-			(JINR)
ARTEMOV	97B	PAN 60 2023	V.M. Artemov+	-			
KITCHING	97	PRL 79 4079	P. Kitching+			(BNL 787	Collab.)
ADLER	96	PRL 76 1421	+Atiya, Chiang,	Frank,	, Haggerty	, Kycia+ (BNL 787	Collab.)
KOPTEV	95	Translated from ZET	+Mikirtych yants, FP 61 865.	Shch	erbakov+		(PNPI)
AOKI	94 02	PR D50 69	+Yamazaki, Imaz	ato, I	Kawashima	+ (INUS, KEK, T	FOKMS)
Allso	93 93C	PRL 70 2521 PRL 71 305 (erratum) Atiya, Chiang,	наgg Frank,	erty, ito+ , Haggerty	(BNL 787 (BNL 787	Collab.)
ATIYA	93B	PR D48 R1	+Chiang, Frank,	Hagg	erty, Ito+	(BNL 787	Collab.)
BIJNENS	93 02	NP B396 81 PPI 68 278	+Ecker, Gasser		(RNI	(CERN,	BERN)
BARMIN	92 92	SJNP 55 547	+Barylov, Cherni	ıkha,	Davidenko	+	(ITEP)
ΙΜΑΖΑΤΟ	02	Translated from YAF	55 976.	naka⊥	(KF		
IVANOV	92	THESIS		nana	(112		(PNPI)
LITTENBERG	92	PRL 68 443	+Shrock			(BNL,	ŠTON)
	92 01	PK D45 3961 PL 8250 225	+Fero, Gee, Graf	, Mar (SEDI	ndelkern, S D IINID -	Schultz, Schultz	
BARMIN	91	SJNP 53 606	+Barylov, Davide	nko,	Demidov+	EL, CIVINS, SOFU	(ITEP)
DENISOV	91	Iranslated from YAF JETPL 54 558	53 981. +Zhelamkov. Ivai	nov. I	apina. Le	vchenko. Malakhov+	- (PNPI)
	00	Translated from ZET	FP 54 557.	, L	p, EC		
Also ATIYA	92 90	THESIS PRL 64 21	Ivanov +Chiang, Frank	Hage	erty. Ito. I	Kvcia+ (BNL 787	(PNPI) Collab.)
ATIYA	90B	PRL 65 1188	+Chiang, Frank,	Hagg	erty, Ito, I	Kycia+ (BNL 787	Collab.)
DEMIDOV	90	SJNP 52 1006	+Dobrokhotov, L	yublev	, Nikitenk	(o+	(ITEP)
LEE	90	PRL 64 165	+Alliegro, Campa	ignari-	+ (BNL, I	FNAL, VILL, WASH	, YALE)
ATIYA	89	PRL 63 2177	+Chiang, Frank,	Hagg	erty, Ito, I	Kycia+ (BNL 787	Collab.)
DAKIVIIN	89	Translated from YAF	+Barylov, Davide 50 679.	nko,	Demidov,	Doigolenko+	(ITEP)
BARMIN	88	SJNP 47 643 Translated from YAF	+Barylov, Davide 47 1011.	nko,	Demidov,	Dolgolenko+	(ITEP)

HTTP://PDG.LBL.GOV Page 36 Created: 6/23/1999 15:44

BARMIN	88B	SJNP 48 1032	+Barylov, Davidenko, Demidov, Dolgolenko+ (ITEP)
	88	I ranslated from	YAF 48 1719. Chinanka Dzhilkibaov Isakov Klubakov (ASCI)
BOLOTOV	00	Translated from	ZETFP 47 8.
CAMPAGNARI	88	PRL 61 2062	+Alliegro, Chaloupka+ (BNL, FNAL, PSI, WASH, YALE)
GALL	88	PRL 60 186	+Austin+ (BOST, MIT, WILL, CIT, CMU, WYOM)
BARMIN	87	SJNP 45 62	+Barylov, Davidenko, Demidov+ (ITEP)
BOLOTOV	87	SINP 45 1023	+Gninenko Dzhilkibaev Isakov Klubakov+ (INRM)
2020101	0.	Translated from	YAF 45 1652.
BOLOTOV	86	SJNP 44 73	+Gninenko, Dzhilkibaev, Isakov+ (INRM)
	86R	SIND 11 68	YAF 44 117. ↓Cninenko Dzbilkibaev Isakov⊥ (INRM)
DOLOTOV	000	Translated from	YAF 44 108.
YAMANAKA	86	PR D34 85	+Hayano, Taniguchi, Ishikawa+ (KEK, TOKY)
Also	84	PRL 52 329	Hayano, Yamanaka, Taniguchi+ (TOKY, KEK)
AKIBA	85 or	PR D32 2911	+Ishikawa, Iwasaki+ (IOKY, IINI, ISUK, KEK)
BOLUTOV	85	Translated from	+Gninenko, Dzniikidaev, Isakov+ (IIVRIVI) 7FTFP 42 300
BLATT	83	PR D27 1056	+Adair, Black, Campbell+ (YALE, BNL)
ASANO	82	PL 113B 195	+Kikutani, Kurokawa, Miyachi+(KEK, TOKY, INUS, OSAK)
COOPER	82	PL 112B 97	+Guy, Michette, Tyndel, Venus (RL)
PDG	82	PL 111B	Roos, Porter, Aguilar-Benitez+ (HELS, CIT, CERN)
	82B 81B	PL 111B 70 PL 107B 150	Koos, Porter, Aguilar-Benitez+ (HELS, CIT, CERN)
CAMPBELL	81	PRI 47 1032	+Black Blatt Kasha Schmidt+ (YALE BNI)
Also	83	PR D27 1056	Blatt, Adair, Black, Campbell+ (YALE, BNL)
LUM	81	PR D23 2522	+Wiegand, Kessler, Deslattes, Seki+ (LBL, NBS+)
LYONS	81	ZPHY C10 215	+Albajar, Myatt (OXF)
MORSE	80	PR D21 1750	+Leipuner, Larsen, Schmidt, Blatt+ (BNL, YALE)
WHIIMAN	80 70	PR D21 652	+Abrams, Carroll, Kycia, Li+ (ILLC, BNL, ILL)
HEINTZE	79 70	NP D140 35 NP B140 365	+Vasserman, Zolotorev, Krupin+ (NOVO, KIAE) +Heinzelmann, Igo_{-} Kemenes+ (HEIDP CERN)
ABRAMS	77	PR D15 22	+Carroll, Kycia, Li, Michael, Mockett+ (BNL)
DEVAUX	77	NP B126 11	+Bloch, Diamant-Berger, Maillard+ (SACL, GEVA)
HEINTZE	77	PL 70B 482	+Heinzelmann, Igo-Kemenes+ (HEIDP, CERN)
ROSSELET	77	PR D15 574	+Extermann, Fischer, Guisan+ (GEVA, SACL)
BERTRAND	76	NP B114 387	+Sacton+ (BRUX, KIDR, DUUC, LOUC, WARS)
BRAUN	76R	PL 00B 393	+Bunce, Devaux, Diamant-Berger+ (GEVA, SACL) +Martyn Erriguez+ (AACH3 BARI BELC CERN)
DIAMANT-	76	PI 62B 485	Diamant-Berger Bloch Devaux+ (SACI GEVA)
HEINTZE	76	PL 60B 302	+Heinzelmann, Igo-Kemenes, Mundhenke+ (HEIDP)
SMITH	76	NP B109 173	+Booth, Renshall, Jones+ (GLAS, LIVP, OXF, RHEL)
WEISSENBE	76	NP B115 55	Weissenberg, Egorov, Minervina+ (ITEP, LEBD)
BLOCH	75	PL 56B 201	+Brehin, Bunce, Devaux+ (SACL, GEVA)
CHENC	75 75	NP 689 210 ND 8254 381	+Corneissen+ (AACH3, BARI, BRUX, CERN)
HEARD	75	PL 55B 324	+Heintze, Heinzelmann+ (CERN, HEIDH)
HEARD	75B	PL 55B 327	+Heintze, Heinzelmann+ (CERN, HEIDH)
SHEAFF	75	PR D12 2570	` (WISC)
SMITH	75	NP B91 45	+Booth, Renshall, Jones+ (GLAS, LIVP, OXF, RHEL)
ARNOLD	74	PR D9 1221	+Roe, Sinclair (MICH)
CENCE	74 7/	PR D10 776	+Harris Jones Morgado+ (HAWA J BL WISC)
Also	73	Thesis unpub.	Clarke (WISC)
KUNSELMAN	74	PR C9 2469	(WYOM)
MERLAN	74	PR D9 107	+Kasha, Wanderer, Adair+ (YALE, BNL, LASL)
WEISSENBE	74	PL 48B 474	Weissenberg, Egorov, Minervina+ (ITEP, LEBD)
ABRAMS	73B	PRL 30 500	+Carroll, Kycia, Li, Menes, Michael+ (BNL)
BEIER	73	PE 43D 431 PRI 30 300	Buchenstoss+ (CERN, KARLK, KARLE, HEID, STOH) +Buchholz Mann Parker Roberts (PENN)
BRAUN	73B	PL 47B 185	+Cornelssen (AACH3, BARI, BRUX, CERN)
Also	75	NP B89 210	Braun, Cornelssen+ (AACH3, BARI, BRUX, CERN)
BRAUN	73C	PL 47B 182	+Cornelssen (AACH3, BARI, BRUX, CERN)
Also	75	NP B89 210	Braun, Cornelssen+ (AACH3, BARI, BRUX, CERN)
CABLE	13 72	PK D8 3807	+Hildebrand, Pang, Stiening (EFI, LBL)
Also	72	PRI 28 523	+Cine (WISC) Liung (WISC)
Also	72	PRL 28 1287	Cline, Ljung (WISC)
Also	69	PRL 23 326	Camerini, Ljung, Sheaff, Cline (WISC)
LUCAS	73	PR D8 719	+Taft, Willis (YALE)
LUCAS	73B	PR D8 727	+Taft, Willis (YALE)

HTTP://PDG.LBL.GOV Page 37 Created: 6/23/1999 15:44

PANG	73	PR D8 1989	+Hildebrand Cable Stiening (FEL ARIZ LBL)
Alco	72	PL 40B 600	(able Hildebrand Pang Stioning (EEL LBL)
AISO	12	FL 40B 099	Cable, Filidebrand, Fang, Stienning (LFI, LDL)
SMITH	73	NP B60 411	+Booth, Renshall, Jones+ (GLAS, LIVP, OXF, RHEL)
ABRAMS	72	PRL 29 1118	+Carroll, Kycia, Li, Menes, Michael+ (BNL)
	72	PRI 28 1472	Ankenbrandt Larsen (BNI LASI ENAL VALE)
	70		
AUBERT	72	NC 12A 509	+Heusse, Pascaud, Vialle+ (ORSAY, BRUX, EPOL)
BEIER	72	PRL 29 678	+Buchholz, Mann, Parker (PENN)
CHIANG	72	PR D6 1254	+Rosen Shapiro Handler Olsen+ (ROCH WISC)
	72	DDI 20 1274	Cork Elioff Korth McPoynolds Newton (100)
	12	FRL 29 1274	+Cork, Lilon, Kerth, Mickeyholds, Newton+ (LDL)
EDWARDS	72	PR D5 2720	+Beier, Bertram, Herzo, Koester+ (ILL)
FORD	72	PL 38B 335	+Piroue, Remmel, Smith, Souder (PRIN)
HOFEMASTER	72	NP B36 1	+Koller Taylor+ (STEV SETO LEHI)
	710		Durbin Dismont Downey Kong (STEV, SETO, EEIII)
BASILE	/IC	PL 30B 019	+Brenin, Diamant-Berger, Kunz+ (SACL, GEVA)
BOURQUIN	71	PL 36B 615	+Boymond, Extermann, Marasco+ (GEVA, SACL)
GINSBERG	71	PR D4 2893	(MIT)
HAIDT	71	PR D3 10	(AACH BARL CERN EPOL NIÌM-Ì
	C 0		(//(CH, D/(H, CEDN, EDOL, NUM, ODCA)))
Also	69	PL 29B 091	Haidt+ (AACH, BARI, CERN, EPOL, NIJM, ORSAY+)
KLEMS	71	PR D4 66	+Hildebrand, Stiening (CHIC, LRL)
Also	70	PRI 24 1086	Klems Hildebrand Stiening (I RL CHIC)
Also	70R	DDI 25 473	Klome Hildebrand Stiening (LPL CHIC)
AISU	700	T RE 23 473	(LICE, CITIC)
011	71	PR D3 52	+Pritchard (LOQM)
ROMANO	71	PL 36B 525	+Renton, Aubert, Burban-Lutz (BARI, CERN, ORSAY)
SCHWEINB	71	PL 36B 246	Schweinberger (AACH BELG CERN NUM+)
CTEINED	71	DL 26D 511	(AACH PAPI CEDN EDOL OPSAV NUM PADOL)
SIEINER	/1	PL 30D 321	(AACH, DARI, CERN, EPOL, ORSAT, NIJIVI, PADO+)
BARDIN	70	PL 32B 121	+Bilenky, Pontecorvo (JINR)
BECHERRAWY	70	PR D1 1452	(ROCH)
BOTTERILI	70	PL 31B 325	\pm Brown Clear Corbett Culligan \pm (OXE)
	70		+ Director Derested Creater (ONI)
FURD	70	PRL 25 1370	+Piroue, Remmei, Smith, Souder (PRIN)
GAILLARD	70	CERN 70-14	+Chounet (CERN, ORSAY)
GINSBERG	70	PR D1 229	(HAIF)
CRALIMAN	70	PR D1 1277	Koller Taylor Pandoulas (STEV SETO LEHI)
GIAOWAN	10		\pm (STEV, SETO, LEIII)
Also	69	PRL 23 737	Grauman, Koller, Taylor+ (STEV, SETO, LEHI)
MALTSEV	70	SJNP 10 678	+Pestova, Solodovnikova, Fadeev+ (JINR)
		Translated from YAF	10 1195.
PANDOULAS	70	PR D2 1205	+Taylor Koller Grauman+ (STEV SETO)
	60	DD 104 1200	Stiening Wiegend Deutsch (IDI MIT)
CUTIS	09	PR 104 1300	+Stiening, Wiegand, Deutsch (LRL, WIT)
Also	68	PRL 20 955	Cutts, Stiening, Wiegand, Deutsch (LRL, MIT)
DAVISON	69	PR 180 1333	+Bacastow, Barkas, Evans, Fung, Porter+ (UCR)
FLY	69	PR 180 1310	+Gidal Hagonian Kalmus+ (LOUC WISC LRL)
	605		
EMIMERSON	69	PRL 23 393	+Quirk (OXF)
HERZO	69	PR 186 1403	+Banner, Beier, Bertram, Edwards+ (ILL)
KIJEWSKI	69	Thesis UCRL 18433	(LBL)
	60	DP 185 1676	Molissings Nagashima Towkshung (ROCH BNI)
LODROVICZ	09	T K 105 1070	The share the state of the stat
Also	66	PRL 17 548	Lobkowicz, Melissinos, Nagashima+ (ROCH, BNL)
MACEK	69	PRL 22 32	+Mann, McFarlane, Roberts+ (PENN, TEMP)
MAST	69	PR 183 1200	+Gershwin, Alston-Garniost, Bangerter+ (LRL)
SELLERI	60	NC 60A 201	()
	09	NC 00A 291	
ZELLER	69	PR 182 1420	+Haddock, Helland, Pahl+ (UCLA, LRL)
BETTELS	68	NC 56A 1106	(AACH, BARI, BERG, CERN, EPOL, NIJM, ORSAY+)
Also	71	PR D3 10	Haidt (AACH, BARI, CERN, EPOL, NIIM+)
BOTTERILI	68R	PRI 21 766	\pm Brown Clegg Corbett \pm (OXE)
DOTTENILL	000	DD 174 1001	$+ D \qquad (OXF)$
BOTTERILL	08C	PR 174 1001	+Brown, Clegg, Corbett+ (UXF)
BUTLER	68	UCRL 18420	+Bland, Goldhaber, Goldhaber, Hirata+ (LRL)
CHANG	68	PRI 20 510	+Yodh Ehrlich Plano $+$ (UMD RÙTG)
	60	DDI 20 72	(UPL MIT)
	00	FKL 20 73	+Culls, Rijewski, Stiening+ (LRL, MIT)
EICHTEN	68	PL 27B 586	(AACH, BARI, CERN, EPOL, ORSAY, PADO, VALE)
EISLER	68	PR 169 1090	+Fung, Marateck, Meyer, Plano (RUTG)
FSCHSTRUTH	68	PR 165 1487	+Franklin Hughes+ (PRIN PENN)
	60	DD 167 1005	Trainic Devens Pesen (COLU PUTC W/ISC)
GARLAND	00	FK 107 1225	+ Tsipis, Devolis, Rosell $+$ (COLO, ROTG, WISC)
MUSCUSU	68	I hesis	(ORSAY)
AUERBACH	67	PR 155 1505	+Dobbs, Mann+ (PENN, PRIN)
Also	74	PR D9 3216	Auerhach
Errotum	17	IN D9 3210	Aucidaell
Erratum.	c=		- D - W
RETTOIII	67	Heidelberg Cont.	+Pullia (MILA)
BELLOTTI	67B	NC 52A 1287	+Fiorini, Pullia (MILA)
Also	66B	PL 20 690	Bellotti, Fiorini, Pullia+ (MILA)
RISI	67	PL 258 572	Lester Chiesa Vigono (TODI)
	67		TCester, Cillesa, Vigolie (TORI)
ROTTERILL	67	PRL 19 982	+Brown, Corbett, Culligan+ (OXF)
Also	68	PR 171 1402	Botterill, Brown, Clegg, Corbett+ (OXF)

HTTP://PDG.LBL.GOV Page 38

BOWEN CLINE	67B 67B	PR 154 1314 Herceg Novi Tbl. 4	$+ Mann, \ McFarlane, \ Hughes +$	(PPA)
Proc. Inter	nation	al School on Elementary	Particle Physics.	
FLETCHER	67	PRL 19 98	+Beier. Edwards+	(ILL)
FORD	67	PRL 18 1214	+Lemonick, Nauenberg, Piroue	(PRIN)
GINSBERG	67	PR 162 1570		(MASB)
IMLAY	67	PR 160 1203	+Eschstruth, Franklin+	(PRIN)
KALMUS	67	PR 159 1187	+Kernan	(LRL)
ZINCHENKO	67	Thesis Rutgers		(RÙTG)
CALLAHAN	66	NC 44A 90		(WISC)
CALLAHAN	66B	PR 150 1153	+Camerini+ (W	ISC. LRL. UCR. BARI)
CESTER	66	PL 21 343	+Eschstruth, Oneill+	(PPA)
See footnot	te 1 ir	n AUERBACH 67.		()
Also	67	PR 155 1505	Auerbach, Dobbs, Mann+	(PENN, PRIN)
BIRGE	65	PR 139B 1600	+Ely, Gidal, Camerini, Cline+	(LRL, WISC)
BISI	65	NC 35 768	+Borreani, Cester, Ferraro+	(TORI)
BISI	65B	PR 139B 1068	+Borreani, Marzari-Chiesa, Rinaudo+	(TORI)
BORREANI	65	PR 140B 1686	+Gidal, Rinaudo, Caforio+	(BARI, TORI)
CALLAHAN	65	PRL 15 129	+Cline	(WISC)
CAMERINI	65	NC 37 1795	+Cline, Gidal, Kalmus, Kernan	(WISC, LRL)
CLINE	65	PL 15 293	+Fry) (WISC)
CUTTS	65	PR 138B 969	+Elioff, Stiening	`(LRL)
DEMARCO	65	PR 140B 1430	+Grosso, Rinaudo	(TORI, CERN)
FITCH	65B	PR 140B 1088	+Quarles, Wilkins	(PRIN, MTHO)
GREINER	65	ARNS 15 67		(LRL)
STAMER	65	PR 138B 440	+Huetter, Koller, Taylor, Grauman	(STEV)
TRILLING	65B	UCRL 16473		(LRL)
Updated fro	om 19	65 Argonne Conference,	page 5.	
YOUNG	65	Thesis UCRL 16362		(LRL)
Also	67	PR 156 1464	Young, Osborne, Barkas	(LRL)
BORREANI	64	PL 12 123	+Rinaudo, Werbrouck	(TORI)
CALLAHAN	64	PR 136B 1463	+March, Stark	(WISC)
CAMERINI	64	PRL 13 318	+Cline, Fry, Powell	(WISC, LRL)
CLINE	64	PRL 13 101	+Fry	(WISC)
GIACOMELLI	64	NC 34 1134	+Monti, Quareni+	(BGNA, MUNI)
GREINER	64	PRL 13 284	+Osborne, Barkas	(LRL)
JENSEN	64	PR 136B 1431	+Shaklee, Roe, Sinclair	(MICH)
KALMUS	64	PRL 13 99	+Kernan, Pu, Powell, Dowd	(LRL, WISC)
SHAKLEE	64	PR 136B 1423	+Jensen, Roe, Sinclair	(MICH)
BARKAS	63	PRL 11 26	+Dyer, Heckman	(LRL)
BOYARSKI	62	PR 128 2398	+Loh, Niemela, Ritson	(MIT)
BROWN	62B	PRL 8 450	+Kadyk, Trilling, Roe+	(LRL, MICH)
BARKAS	61	PR 124 1209	+Dyer, Mason, Norris, Nickols, Smit	(LRL)
BHOWMIK	61	NC 20 857	+Jain, Mathur	(DELH)
FERRO-LUZZI	61	NC 22 1087	+Miller, Murray, Rosenfeld+	(LRL)
NORDIN	61	PR 123 2166		(LRL)
ROE	61	PRL 7 346	+Sinclair, Brown, Glaser+	(MICH, LRL)
FREDEN	60B	PR 118 564	+Gilbert, White	(LRL)
BUKKOWES	59	PKL 2 11/	+Caldwell, Frisch, Hill+	(MIT)
	59	PK 114 359	+narris, Urear, Lee, Baumel	(COLU)
	50 57		+Noch, Lohrmann, Nikolic+	(BEKN)
	5/ 57	INC 0 4/8	+Joinston, Oceanaign	
	31 57	FUNU. CONS. PNYS.	+Crowe, Dumona	(INAAS, LKL, CIT)
	57 56	FIX 100 1040 NC 4 834	+COIK, Galbraith, Lambertson, Wenze	
	50	DP 102 027	- Coldbabar Langutti Cilbert	
ILVEF	20	1 11 102 921	⊤Goluliabel, Lalillutti, Gilbell+	(LKL)

- OTHER RELATED PAPERS ------

LITTENBERG	93	ARNPS 43 729	+Valencia			(BNL, FNAL)		
Rare and R		, , , , , , , , , , , , , , , , , , ,						
RITCHIE	93	RMP 65 1149	+Wojcicki					
"Rare K Decays"								
BATTISTON	92	PRPL 214 293	+Cocolicchio, Fo	gli, Paver		(PGIA, CERN, TRSTT)		
Status and Perspectives of K Decay Physics								
BRYMAN	89	IJMP A4 79				(TRIU)		
"Rare Kaon Decays"								
CHOUNET	72	PRPL 4C 199	+Gaillard, Gailla	rd		(ORSAY, CERN)		
FEARING	70	PR D2 542	+Fischbach, Smi	th		(STON, BOHR)		
HAIDT	69B	PL 29B 696	+ (AA	CH, BARI,	CERN,	EPOL, NÌJM, ORSAY+)		

HTTP://PDG.LBL.GOV Page 39 Created: 6/23/1999 15:44

CRONIN Rapporteur	68B talk.	Vienna Conf. 241		(PRIN)
WILLIS Rapporteur	67 talk.	Heidelberg Conf. 273		(YALE)
CABIBBO	66	Berkeley Conf. 33		(CERN)
ADAIR	64	PL 12 67	+Leipuner	(YALÈ, BNL)
CABIBBO	64	PL 9 352	+Maksymowicz	CERN)
Also	64B	PL 11 360	Cabibbo, Maksymowicz	(CERN)
Also	65	PL 14 72	Cabibbo, Maksymowicz	(CERN)
BIRGE	63	PRL 11 35	+Ely, Gidal, Camerini+	(LRL, WISC, BARI)
BLOCK	62B	CERN Conf. 371	+Lendinara, Monari	(NWES, BGNA)
BRENE	61	NP 22 553	+Egardt, Qvist	(NORD)