Scalability of Integer Programming Computations
for Sensor Placement in Water Networks

Jonathan W. Berry* William E. Hart* Cynthia A. Phillips*

Abstract

Integer programming (IP) is a general optimization technology capable
of expressing most resource allocation decisions. More specifically, IP is the
optimization of a linear objective function subject to linear contraints and
additional nonlinear integrality constraints. For sensor placement problems,
discrete decision variables usually represent decisions to place or not place
a sensor at a particular network location. Discrete and rational derived
variables compute the effect of various attacks.

For the past two years, we have investigated a number of IP models for
sensor placement with varying public-health-related objectives and varying
assumptions about input data, water transport, and response. In those
studies, we used IP as a tool to explore tradeoffs between number of sensors
and population vulnerability. In this study, we focus on IP technology itself,
as applied to sensor placement problems.

In this paper, we empirically investigate the difficulty of solving some
sensor-placement [Ps on various computing platforms. We consider serial
solution using commercial codes and parallel platforms using the PICO
(Parallel Integer and Combinatorial Optimizer) parallel IP solver. We dis-
cuss algorithmic advances that might push the frontiers of tractability.

1 Introduction

In this paper we explore computational issues for solving integer programs used
to compute sensor placements in municipal water networks. Within the limits of
modeling assumptions and data uncertainty, these solutions are optimal when we
can compute them. Our papers to date [2, 4, 6, 25, 24] focus on the results of
the computations and their implications for water network security. Since these
results seem to provide useful or at least provocative information, we wish to be
able to solve increasingly large and more complex models as we attempt to model
increasingly realistic settings.

*Algorithms and Discrete Math Dept, Sandia National Laboratories, Albuquerque, NM; PH
(505)284-4021,(505)844-2217,(505)845-7296 { jberry,wehart,caphill, jwatson}@sandia.gov.
Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin Com-
pany, for the United States Department of Energy under contract DE-AC04-94AL85000.

Integer programming (IP) is the optimization of a linear function subject to
linear and integrality constraints. A mixed-integer program (MIP) in standard
form is:

(MIP) minimize '«

Axr=b
where (<zx<u
r, €2 Ve DC{l,...,n}

where z and ¢ are n-vectors, A is an m X n matrix, b is an m-vector, and Z is the
set of integers. We can convert an inequality constraint to an equality by adding a
variable to represent slack between the value of az and its bound b. For example, a
constraint of the form ax < b becomes ar—+s = b, s > 0. If all variables are integer
variables, this is a (pure) integer program (IP). If none are integer, this is a linear
program (LP). Otherwise is is a mixed-integer program (MIP). The objective can
be a maximization if that is the more natural optimization direction.

The only nonlinearity in MIP is the integrality constraints. These give MIP
its enormous practical modeling power, but they are also responsible for MIP’s
theoretical difficulty and its practical difficulty, especially for large problems. In
sensor placement models, integer variables represent decisions. In particular, bi-
nary variables (those for which 0 and 1 are the only possible values) represent
yes/no decisions for placing a sensor at a particular location.

Integer programs are usually solved to (near) optimality by intelligent search.
Theoretically, in the worst case, IPs can require runtime that is exponential in
the input size. However, in practice, even million-variable IPs can be solved
efficiently. Predicting the runtime of an IP computation is still one of the biggest
open questions in operations research. Practical efficiency seems to depend most
critically upon problem structure and how well one can exploit that structure.
Within similarly-structured problems, size becomes a limiting factor.

As TP instances increase in size, they eventually overwhelm serial solvers by
requiring too much time or memory. The classic branch-and-bound search al-
gorithm for MIPs is well suited for parallel platforms. Large-scale parallel MIP
solvers are research codes which will likely never match the performance of com-
mericial solvers for small numbers of processors. However, with a suflicient number
of processors, these solvers can potentially solve instances serial solvers cannot.

Scalability is a measure of parallel performance. Let T, be the running time
of the best serial code for a problem and let T}, be the running time of a parallel
solution using p processors. Then the speed up of the parallel computation is s, =
T,/T,. If speed up s, increases roughly proportionally to number of processors
p, the parallel program has (near) linear speed up. This is normally the best
possible performance if the total work is stable and parallel overhead is small.
Sometimes codes can achieve superlinear speed up due to cache effects or other
“lucky” events that reduce the total work of the computation. Sometimes in the
literature parallel performance is measured via efficiency, defined as E, = s,/p.
A scalable code (one with near-linear speed up) has efficiency close to 1. For any

given instance, there is a limit to the amount of exploitable parallelism, but a
good parallel solver scales well up to that limit.

In this paper we show that parallel MIP calculations for sensor placement
problems can scale well at least with small numbers of processors and we show
that one can speed the computation by exploiting problem-specific structure. The
remainder of the paper is organized as follows. Section 2 discusses MIP models
for sensor placement in water networks. In Section 3, we describe the basic search
algorithm for solving MIP instances. This provides background for understanding
our discussion of solver performance. Section 4 surveys serial and parallel codes for
solving MIPs. Section 5 discusses experience with solving the most recent sensor
placement models. In particular, we explain why they are not currently suitable
for a parallel scalability study. Section 6 discusses serial solution of an older IP
model that frequently approximates the performance of the most recent models.
Section 7 discusses scalability of parallel solution of this problem. Section 8 shows
how exploiting problem structure can accelerate parallel MIP solvers. Section 9
describes possible future enhancements.

2 IP Models for Sensor Placement

Our most recent IP models for sensor placement require as data detailed informa-
tion about contamination transport during each of a set of possible attack scenar-
ios. Using the EPANET simulator, we determine for each node the first time it is
touched by measurable contaminant. We also record also how much contaminant
wotld have heen released to the network if a sensor at this node were the first to
detect the attack. The IP then places a limited number of sensors to minimize
the expected contaminant release over the set of attacks, assuming consumption
stops at the moment of detection. We call these dynamic models because they
track water dynamics.

The dynamic models precisely predict health effects modulo the quality of
the water transport modeling. That quality depends the accuracy of demand
data and other inputs to EPANET. Unfortunately, as described in Section 5, this
particular model has structural properties that make it less amenable to parallel
branch and bound (though it could benefit from some parallelism). Therefore,
in this paper we study scalability of the static or nontemporal sensor placement
problem introduced in [2]. Berry et. al. [3] show that this model makes predictions
that approximately agree with those of the dynamic model roughly three quarters
of the time. Therefore, we have used this clean model as a target for scalability
studies. All customizations we have developed apply to any sensor-placement
problem that has a simple limit on the number of sensors or has cost-based limits
with a small number of cost classes.

For completeness, we include a description of the IP as defined and explained
in [2]. This is a concrete example of the standard IP just described. The reader
might find it easier to consider a specific IP when reading about the branch and
bound algorithm for MIP in Section 3.

We model a water network as a graph G = (V, E). E is a set of edges rep-
resenting pipes. V is a set of vertices, or nodes, where pipes meet. Vertices can

represent sources, such as reservoirs or tanks, where water is introduced, and sinks
(demand points) where water is consumed. In general, the network is represented
at some scale or granularity, where nodes represent neighborhoods or regions of a
city. Each pipe connects two vertices v; and v; and is usually denoted (v;, v;).
We consider risk under a fixed number of flow patterns, where we require only
the direction of the flow on each edge. Thus a flow specifies for each edge (v;, v;),
(connecting vertex v; to v;), whether the flow is i-to-j, j-to-i or essentially zero
(based on a minimal threshold for the flow). We require the following input data:

o (¢ =(V,E), the network. V =1wvq,...v, and E = eq,...¢,,.

e «;,, the probability of an attack at node v; during flow pattern p condi-
tional on exactly one attack on a node during some flow pattern. We have
> vevpel..p Qp = 1, where P is the number of flow patterns.

e 0y, the density (number of people) at node v; while flow p is active.
0ip = 0 if node v; is not a demand node during flow f.

o fiip = fep € {0,1}. These parameters describe flow pattern p. fi;, = 1 if
there is positive flow along (directed) edge e = (v;, v;) during flow pattern
p and are 0 otherwise.
We have f;;,f5ip = 0. That is, water cannot flow in both directions of a pipe.

e Smax, the maximum number of sensors we can place.

Given a single attack on node v; during flow pattern p, a node v; # v; is
contaminated if there is a path from v; to v; where all edges have positive flow
during flow p and no sensor. More specifically, v; is contaminated if there is a
path v; = v1,v,...,v; = v such that (v, vp41) € £ and frpr), = 1 for all
k=1...1—1 and we place no sensors on any edge in the path. If a demand node
v; is contaminated during flow p, then all the people at node v; during time p are
exposed. We wish to minimize the expected number of exposed people.

The MIP formulation uses the following variables:

e Decision variable s;; = 1 if we place a sensor on (undirected) edge (i, 7) and
0 otherwise.
A sensor on edge (i, j) detects contaminants moving in either direction. For
ease of exposition, we will use both variables s;; and s;;, but they will be
equal and, as a pair, represent the placement of only one sensor.

o Derived variables ¢;,; = 1 if node v; is contaminated by an attack at node
v; during flow pattern p, and 0 otherwise.

The mathematical formulation of the MIP is:

n P n
(SP1) minimize Y > > @ipCipidjp

i=1 p=1j=1
Cipi = 1 Vi=1l...n,p=1...P
Sij = Sji Vi=1l...n—1,1<j
where Cipj = Cipk — Skj V(k.j) € E st frjp=1
Z(i,j)eE,i<j i < Smax
Sij c {0, 1} \V/(Z,]) €l

The first set of constraints ensures that when a node is directly attacked, it is
contaminated. The second set indicates that a single sensor covers a pipe for flow
in both directions. The third set propagates contamination from a node v, to a
node v; if node vy, is contaminated, there is positive flow along a directed edge from
v to v; and there is no sensor on that edge. The next constraint enforces the limit
on total number of sensors. The final set forces integrality of the sensor-placement
decisions. If these variables are set integrally, then the contamination indicator
variables ¢;,; are also integral, even though they are not explicitly forced to be
binary values in the MIP. The objective function exerts pressure to minimize these
variables. The first and third set of constraints propagate values of 1 whenever
there are no sensor to prevent the propagation.

3 Branch and Bound for Integer Programming

All general integer programming solvers are based on the branch and bound (B&B)
and/or branch and cut algorithms. We’ll now describe the fundamental algorithms
applied to solve general MIPs. See, for example, [1] for a more general description
of (parallel) branch and bound.

Basic B&B iteratively subdivides the feasible region (the set of all z’s that
satisfy the linear and integrality constraints) and recursively searches each piece.
B&B is often more efficient than straight enumeration because it eliminates re-
gions that provably contain no optimal solution. For a minimization problem, it
computes a lower bound on the value of the optimal solution in each subregion.
If this bound is worse (higher) than the value of the incumbent (the best feasible
solution found so far), then there is no optimal feasible solution in the subregion.
We now describe bounding and splitting methods for general MIPs. Omne can
modify these and other basic B&B pieces to exploit problem-specific structure.

Every MIP has a natural, usually-nontrivial bound. If we relax (remove) the
integrality constraints, a MIP becomes a linear program (LP). The optimal value
of this LP relazation is a lower bound for a minimization problem and an upper
bound for a maximization; we assume minimization for this discussion. If the
LP solution coincidentally obeys all integrality constraints, then it is an optimal
solution to the MIP as well. LPs are theoretically solvable in polynomial time [15]
and are usually solved efficiently in practice with tools described below.

The B&B algorithm grows a search tree as follows. The first incumbent value
is infinity. The initial problem is the root r. Compute the LP bound z(r) for
the root. If the LP is infeasible, then the MIP is infeasible. If the LP solution is
integer feasible, this is an optimal solution for the MIP. Optionally, search for an

incumbent using either a problem-specific heuristic that exploits problem structure
or a general MIP heuristic method. If the incumbent value matches the lower
bound z(r), then we can fathom (eliminate) the node; it contains nothing better
than the incumbent. Otherwise branch, or split the problem. If the LP relaxation
is not integer feasible, there is some 7 € D such that the optimal solution to the LP
relaxation z* has 5 ¢ Z. Create two new sub-MIPs as children of the root: one
with the restriction z; < {xﬂ and one with the restriction z; > {xﬂ For binary
variables, one child has z; = 0 and the other has #; = 1. The feasible regions of
the two children are disjoint and any solution with {xﬂ <z < ﬁrﬂ, including
x*, is no longer feasible in either child. Thus the LP relaxation of a child differs
from the LP relaxation of the parent. Recursively solve each subproblem. At any
point in the computation, let P be the pool of active (unresolved) subproblems.
Then L = minyep z(p) is a global lower bound on the original problem. B&B
terminates when there are no active subproblems or when the relative or absolute
gap between L and the incumbent value is sufficiently small.

Splitting causes exponential work explosion in cases where the B&B strategy
fails. Therefore most MIP systems use branch-and-cut: they add general and/or
problem-specific valid inequalities (cutting planes) to improve the lower bound
on a subproblem to delay branching as long as possible (or avoid it altogether
if the lower bound rises above the incumbent value). Given an optimal non-
integral solution to the LP relaxation of a (sub)problem, z*, a cutting plane is a
coustraint axz = b such that az’ = b for all possible (optimal) integer solutions z’
but az* # b. Adding this constraint to the system (cutting) makes the current
LP optimal infeasible. The branch-and-cut algorithm processes a subproblem by
solving the LP relaxation, finding and adding cuts, resolving the LP, and iterating
until cutting becomes too difficult or unproductive. Finally the node splits.

4 TP and LP Software

ILOG’s commerical MIP solver CPLEX [10] is excellent for moderate-sized in-
stances. CPLEX runs in serial or on small SMPs (symmetric multiprocessors,
machines with a few processors and large shared memory). For example, CPLEX
can run in parallel on an integrated dual-processor system. There are a number of
free serial solvers such as MINTO [18], ABACUS [14], Ip_solve, and GLPK (Gnu
Linear Programming Kit), CPLEX dominates all of these in practice.

ILOG (the company that develops CPLEX) has invested in a huge research
effort that includes proprietary cut management algorithms. In general, if one
has paid for a serial (or small-scale SMP) CPLEX license, and CPLEX can solve
a problem, then it is currently the best solution option.

There are a number of parallel MIP solvers, none of them commercial. SYM-
PHONY [20], and COIN/BCP [16, 17] are designed for small-scale, distributed-
memory systems such as clusters. BLIS [22], under development, is designed as a
more scalable version of SYMPHONY and BCP. It will be part of the optimization
software available through COIN-OR (Computational Infrastructure for Opera-
tions Research [8]) once it is available. Ralphs et. al. discuss of all three [21].

FATCOP [7] is designed for grid systems. The grid offers vast computational
resources, but it is not a suitable “platform” for sensitive computations such as
those involving national security or company proprietary information.

For our parallel tests, we use our own parallel MIP solver PICO [12] (Parallel
Integer and Combinatorial Optimizer). The parallel branch-and-bound search
strategy in PICO is particularly well-suited for solving MIPs on tightly-coupled
massively-parallel distributed-memory architectures, such as those available at the
national laboratories. This is the only parallel code explicitly designed for such a
platform. Because its our own code, we can easily tune search parameters.

PICO has a number of features designed for efficient branch and bound on
massively-parallel machines. See [12, 11] for more details. In particular, PICO
has an initial ramp-up phase followed by a parallel-subproblem phase. In the ramp-
up phase, there are few open subproblems relative to the number of processors,
so the processors cooperate to solve a single subproblem at a time. This solves
each subproblem faster than it would have been solved in serial. Furthermore, it
ensures careful branching decisions early in the computation when they are most
important. Once there is enough work to keep processors busy or when individual
subproblems no longer have sufficient parallelism, PICO switches to a phase where
processors solve separate subproblems in parallel.

We used the AMPL modeling language [13] to translate the mathematical
description of a general integer programming problem (plus a data file customizing
the problem to a particular instance) into the format integer programming solvers
require. Mathematical programming languages like AMPL allow developers to
express a MIP using natural (multidimensional) variables rather than the usual
linear representation of general MIP solvers. AMPL models are a formalization
(almost a direct translation) of a mathematical MIP representation. For example,
there are classes of variables and classes of contraints. PICO provides scripts that
accept an AMPL MIP model and automatically generate derived PICO classes
that are aware of the AMPL names. A developer can then write incumbent
heuristics and other customized procedures using the natural problem variables.
AMPL is a commercial code. MathProg is a free code that can process AMPL
models, but it’s not as fast as AMPL.

Linear programs have no integrality constraints. They’re usually solved with
iterated linear algebra computations. Commercial tools such as CPLEX [10] LP
solver, XPRESS [26], or OSL [19] are generally much faster than free tools such as
COIN-LP [8]. The difference is most pronounced for the root problem (computing
the LP relaxation of the full original problem). Computing LP relaxations for the
other subproblems is generally at least an order of magnitude faster than solving
the root because solvers can use information about the closely-related (solved)
parent problem to re-bound a child node. Thus CLP is usually sufficient to bound
these subproblems. PICO (or any highly parallel IP code) must use free solvers
because there are no commercial licenses for this level of parallelism (if there there
were, it would be prohibitively expensive). PICO has a mechanism whereby one
can solve the root problem using a serial commercial license, then pass the solution
into a parallel computation that uses CLP to bound the subproblems.

A parallel interior point solver such as pPCx [9] could provide moderate speed
up at the root. The core computational problem is the solution of a linear system
of the form AD?ATxz = b where A is the original constraint matrix and D is a diag-
onal matrix that changes each iteration. Parallel direct Cholesky solvers for such
systems are robust, but currently do not provide reasonable speed up beyond a few
dozen processors. Sandia National Laboratories is leading a research effort to find
more scalable interior-point LP solvers using iterative linear systems solvers [5].
There are open research problems in solving this linear system iteratively and in
computing the information needed to effectively solve the subproblems.

5 Solving High-Fidelity MIP formulations

The dynamic IP formulation explicitly models water flow in a network and would
have been our formulation of choice for this research. In practice, however, the LP
relaxation of the root has an integral setting of the decision variables. Thus usually
the IP “search tree” has only one node. The problem is still quite challenging to
solve, but it cannot benefit from PICO-style parallelism in its simplest form. Its
solution requires scalable parallel linear programming solvers such as the research
code parPCx under development at Sandia National Laboratories [5].

6 Serial Computation

In the experiments we ran for this paper, serial (or dual-processor threaded) com-
putations with CPLEX were generally about one to two orders of magnitude
faster than equivalent runs with PICO (where PICO did not use cutting planes).
However, as problems become larger or models become more complex, CPLEX is
eventually unable to solve them.

We used three data sets for our experiments. The first set is an EPANET test
set with 97 nodes and 117 pipes. The second is a local water network with 470
nodes and 621 pipes. The third is a skeletonized model of a real city with 3648
nodes and 3803 pipes. CPLEX generally solves the 97-node problem in about 35
seconds (after problem loading) on a linux workstation (3.06Ghz Xeon with Gb of
RAM). It solves the 470-node problem in about 9.5 minutes. However, solving the
large problem for 25 sensors requires 42.5 hours using two processors on a 64-bit
linux workstation with 2.2 Ghz AMD Opteron 848 processors. If we modify the
problem to place sensors on nodes rather than edges, the IP becomes even harder.

7 Parallel Speedup

A sufficiently scalable IP solver should be able to solve some problems too difficult
for commercial serial solvers. To test the scalability of parallel computations for
this TP, we solved the 97-node data set using PICO on a 32-node, 64-processor
cluster of Xeon 2.8Ghz processors with 2Gb of RAM connected with gigabit ether-
net. PICO computed bounds with the free LP solver CLP, which is considerably
slower than commercial LP solvers. We ran without PICO’s built-in general-
purpose incumbent heuristic because it found no incumbents and added to the
processing time. This instance has unusual structure. The search tree is small
and quite stable regardless of the number of processors. Thus there are frequently

not enough unsolved subproblems to keep large numbers of processors busy on
individual problems. We set a solver parameter to avoid crossing into the parallel
phase until there were at least two available subproblems for each processor. As a
consequence, the computation never left ramp up. There is considerable work at
the root and at some later subproblems computing gradients in order to make wise
branching choices. This work is (almost) fully parallelizable during ramp up and
is the source of the speed up we observed. But parallel speed up is limited by the
constant fraction of nodes that did not require gradient initialization. We show
the results in the “No Heuristic” columns of table 1. In problems with relatively
easy LP solves and lots of subproblems, we normally observe higher speed up.

8 Exploiting Structure

One way to accelerate IP solvers is to use problem-specific information. In this
section we describe a simple incumbent heuristic for general sensor placement
problems using randomized rounding. An incumbent heuristic finds a feasible
integer solution quickly. It speeds the search by allowing early pruning. Also, it
gives a bound on the minimum quality of a feasible sensor placement.

Randomized rounding has been used to compute provably good approxima-
tions for some combinatorial optimization problems[23]. It’s a natural idea in its
simplest form. Suppose all integer variables are binary. In the LP relaxation z*
of the IP, for each decision variable z;, we have 0 < zf < 1. Treat each value
x} as a probability and round the variable x; to 0 or 1 based on this probabil-
ity. Specifically, generate a random number r; between 0 and 1 for each variable
;. It r; <7, set x; = 1 and otherwise, set z; = 0. One must then compute
the values of the other variables, for example, by resolving the LP with the new
values of the decision variables. This is not a good strategy for a general MIP
because the computed solution is almost never feasible for the linear constraints
Az = b. However, we can exploit the special structure of the fundamental sensor
placement problem FSP to use randomized rounding effectively.

For the FSP integer program, any sensor placement is feasible as long as it
uses no more than S, sensors. Of course, some of these sensor placements will
have terrible performance. If we were to randomly select over all size- N subsets of
sensor locations, we wouldn’t expect to obtain a good solution. However, we hope
that the locations the LP picks fractionally have some overall merit. We wish to
select a size-Spax subset appropriately biased by the LP values.

Let P be a probability distribution in the size-Sp.x subsets of sensor place-
ments defined as follows. Randomly and independently select each variable x;
with probability x¥. We call this a pass. If we select exactly Spa. sensor locations
in the pass, choose that set. Otherwise do another pass. For a set .S with |S| = n,
P(S) is the probability this procedure will select S.

This rounding procedure generally requires an unacceptable amount of time.
For an LP relaxation z*, we will generally have >, xf = Spax, so the expected
number selected in each trial is Spa.x. However, there is still a tiny probability of
selecting a set of size exactly Smax.

Our algorithm efficiently directly selects a size-Spax subset according to the

Processors | Heuristic (CH) | CH Speed up | No Heuristic (NH) | NH speed up
1 4743 4587

2 2782 1.70 3165 1.45

4 1129 4.20 1677 2.74

8 685 6.92 1010 4.54

16 366 13.0 640 7.17

32 252 18.8 446 10.2

Figure 1: Parallel runs for a 97-node data set using an incumbent heuristic for
general sensor placement problems and using no heuristic. This is wallclock time
in seconds, which includes time to send the problem to the parallel machines.

probability distribution P without iterating. If there are L possible locations, then
the procedure requires O(LSy.y) base computations (that is, roughly a constant
times LSpyax computations) to build a data structure. Then it selects a subset
using a single random number in O(L) additional time. Because the decoding is
so fast, it’s generally worth selecting several random sensor locations and choosing
the best one. For this paper we tried only one location per node. A detailed
description is beyond the scope of this paper.

We applied this customized incumbent heuristic to the 97-node data set. The
problem always solved during ramp up even with default parameters. It had
good speed up through 16 processors as shown in Table 1. Finding an incumbent
earlier in the search allowed earlier pruning so these runs usually produced search
trees with at most 13 nodes, while the no-heuristic runs had trees with about 60
nodes. Thus the runs with the heuristic were generally at least 1/3 faster than
corresponding runs without the heuristic. We also saw (relative) superlinear speed
up for the 470-node data set. This requires 45000 seconds with 8 processors, but
only 16800 for 16 processors.

9 Future Improvements

There are a number of ways one can further customize IP computations for sensor
placement problems. For specific formulations, one can find new classes of cutting
planes to improve lower bounds. One can might be able to determine locations
that must or cannot have sensors in an optimal solution in a preprocessing phase.

We have developed a new branching strategy for general sensor placement
problems that targets the constraint on the number of sensors. Generally the
number of sensors is small compared to the number of possible locations, so an
LP relaxation can assign tiny fractional values to variables. Branching on a single
sensor decision variable creates a weak child (the one restricted to not place a
sensor in some location). The resulting IP is almost the same as the parent. We
generalize an idea called special ordered sets, used in the IP community to improve
branching when one can only select a single variable from a set of candidates. We
branch on constraints that restrict the number of sensors allowed in a set of loca-
tions. By using specialized four-way branch we create children all of which have
LP relaxations that differ significantly from the parent. In many cases, the new

10

constraints are special-ordered sets. PICO does not yet have the infrastructure to
customize branching to this degree. However, we plan to add this.

We are actively developing PICO, continuously improving its performance.
However, its niche will still largely be to solve problems we cannot solve in other
ways. Thus we will soon add explicit external memory management to PICO.
This allows the computation to use external disks to increase its memory and
hence the size of the active subtree it can manage. Parallel platforms frequently
have less memory per node than regular workstations. Because external disks are
reasonably cheap and have high capacity, this feature could enable solution of
problems that fail due to lack of memory even on 64-bit workstations.

References

[1] D.Bader, W. Hart, and C. Phillips. Parallel algorithm design for branch and bound.
In H. J. Greenberg, editor, Tutorials on Emerging Methodologies and Applications
in Operations Research. Kluwer Academic Press, 2004.

[2] J. Berry, L. Fleischer, W. E. Hart, C. A. Phillips, and J.-P. Watson. Sensor place-
ment in municipal water networks. J. Water Planning and Resources Management,
2005. (to appear).

[3] J. Berry, W. Hart, C. Phillips, J. G. Uber, and J-P Watson. Validation and
assessment of integer programming sensor placement models. In Proceedings of
the World Water and Environmental Resources Conference. ASCE, 2005.

[4] J. Berry, W. E. Hart, C. A. Phillips, and J. Uber. A general integer-programming-
based framework for sensor placement in municipal water networks. In Proceedings
of the World Water and Environment Resources Conference, 2004.

[5] E. G. Boman, O. Parekh, and C. Phillips. LDRD final report on massively-parallel
linear programming: the parPCx system. Technical Report SAND2004-6440, San-
dia National Laboratories, February 2005.

[6] R. Carr, H. J. Greenberg, W. E. Hart, and C. A. Phillips. Addressing modeling
uncertainties in sensor placement for community water systems. In Proceedings of
the World Water and Environment Resources Conference, 2004.

[7] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant Condor-PVM mixed integer
programming solver. SIAM Journal on Optimization, 11(4):1019-1036, 2001.

[8] Computational INfrastructure for Operations Research home page, 2004. http:
//www.coin-or.org/.

[9] T. Coleman, J Czyzyk, C. Sun, M. Wager, and S. Wright. pPCx: Parallel software
for linear programming. In Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing, 1997.

[10] ILOG, CPLEX home page, 2004. http://www.ilog.com/products/cplex/.

[11] J. Eckstein, W. Hart, and C. Phillips. Massively-parallel mixed-integer program-
ming: algorithms and applications. In M. A. Heroux, P. Raghava, and H. D. Simon,

11

[12]

[26]

editors, Frontiers of Parallel Processing for Scientific Computing, Software, Envi-
ronments, and Tools. STAM Press, 2005.

J. Eckstein, W. E. Hart, and C. A. Phillips. PICO: An object-oriented framework
for parallel branch-and-bound. In Inherently Parallel Algorithms in Feasibility and
Optimization and Their Applications, Elsevier Scientific Series on Studies in Com-
putational Mathematics, pages 219-265, 2001. PICO has evolved considerably since
the time of this report. We hope to write an updated report soon.

R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Boyd & Fraser Publishing Company, 1993.

Michael Jiinger and Stefan Thienel. The ABACUS system for branch-and-cut-and-
price algorithms in integer programming and combinatorial optimization. Software:
Practice and Ezperience, 30:1325—-1352, 2001.

L. Khachian. A polynomial time algorithm for linear programming. Soviet Math-
ematics, Doklady, 20:191-194, 1979.

L. Ladanyi. BCP (Branch, Cut, and Price). Available from http://www-124.ibm.
com/developerworks/opensource/coin/.

F. Margot. BAC: A BCP based branch-and-cut example. Technical Report
RC22799, IBM, 2003.

G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. Minto, a mixed
integer optimizer. Operations Research Letters, 15:47-58, 1994,

IBM Optimization Solutions and Library, home page, 2004. http://www-306.
ibm.com/software/data/bi/osl/.

T. K. Ralphs. Symphony 4.0 users manual, 2004. Available from www.
branchandcut.org.

T. K. Ralphs, L. Ladanyi, and M. J. Saltzman. Parallel branch, cut, and price for
large-scale discrete optimization. Mathematical Programming, 98(1-3), 2003.

T. K. Ralphs, L. Ladanyi, and M. J. Saltzman. A library for implementing scalable
parallel search algorithms. The Journal of SuperComputing, 28(2):215-234, 2004.

Aravind Srinivasan. Approximation algorithms via randomized rounding: A survey.
citeseer.ist.psu.edu/493290.html.

J.-P. Watson, H. J. Greenberg, and W. E. Hart. A multiple-objective analysis
of sensor placement optimization in water networks. In Proceedings of the World
Water and Environment Resources Conference, 2004.

J-P. Watson, W. E. Hart, and J. Berry. Scalable high-performance heuristics for
sensor placement in water distribution networks. In Proceedings of the World Water
and Environmental Resources Conference. ASCE, 2005.

Dash Optimization, XPRESS-MP, 2004. http://www.dashoptimization.com/.

12

