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Abstract

A new formulation of the pressure gradient force for use in models with topography-

following coordinates is proposed and diagnostically analyzed by Song (this issue). Here,

we show that important properties of the continuous equations are retained by the re-

sulting numerical schemes, and we examine their performance in prognostic simulations.

We investigate numerical consistency with respect to global energy conservation, depth-

integrated momentum changes, and the represent of the bottom pressure torque. The

performances of the numerical schemes are tested in prognostic integrations of an ocean

model to demonstrate numerical accuracy and long-term integral stability. Two typical

geometries, an isolated tall searnount and an unforced basin with sloping boundaries,

are considered for the special case of no external forcing and horizontal isopycnals to

test numerical accuracy. These test problems confirm that the proposed schemes yield

accurate approximations to the pressure gradient force. Integral consistency conditions

are verified and the energetic of the “advective elimination” of the pressure gradient

error (Mellor et al., 1994) is considered.

A large-scale wind-driven basin with and without topography is used to test the

model’s long-term integral performance and the effects of bottom pressure torque on

the transport in western boundary currents. Integrations are carried out for 10 years in

each case and results show that the schemes are stable, and the steep topography causes

no obvious numerical problems. A realistic meandering western boundary current is

well developed with detached cold cyclonic and warm anticyclonic eddies as it extends

across the basin. In addition, the results with topography show earlier separation and

enhanced transport in the western boundary currents due to the bottom pressure torque.
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1 Introduction

The importance of the ocean’s bathymetry in controlling both large and small scale ocean cir-

culat ion patterns is apparent. Motivated by this fact, modelers have used various topography-

following coordinates in order to better resolve the ocean’s bathymetry (Blumberg and Mellor

1987, Gerdes 1993, Simmons and Burridge 1981, Song and Haidvogel 1994). Unfortunately,

errors in the pressure gradient force have been associated with the use of these coordinates,

and since both the major ocean currents and eddies are in approximate geostrophic bal-

ance, such errors are clearly a concern (Haney 1991). In part I, Song (this issue) proposed

a generalized pressure gradient formulation, and considered two specific formulations which

can reduce the pressure gradient errors in numerical ocean models. Truncation errors have

been analytically examined and diagnostically evaluated in several test cases. However, their

performances in prognostic integrations of ocean models have not been tested.

It is certainly desirable to minimize errors in numerical schemes, but some truncation

error will always exist in a model with finite resolution. Many schemes share the same order

of accuracy, but their solutions approach the true solution along different paths in function

space. Thus, for any finite resolution, the net effect of truncation error will depend on factors

other than just resolution. In particular, integral properties of the discrete scheme could play

an important role in constraining model errors, and discrete schemes are often designed so that

the solutions approach the true solution along a path on which desirable integral properties

are maintained (Bryan, 1969; Arakawa and Lamb, 1977; Arakawa and Suarez, 1983; Arakawa

and Konor, 1996). A scheme which retains integral properties of the continuous equations is

said to be discrete consistent with respect to these properties.

In this contribution, we examine whether or not certain important integral properties of the

continuous equations are retained by the proposed schemes and we examine their performance

in prognostic model simulations. The properties considered are the conservation of total

energy and momentum, and the accurate representation of the bottom pressure torque. To

evaluate the accuracy of the schemes, we consider two test problems. The first examines errors
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associated with an isolated tall seamount in an otherwise flat-bottomed basin (Beckmann

and Haidvogel, 1993; Yingshuo and Thompson, 1997), and the second considers the errors

associated with sloping boundaries around a flat-bottomed basin (Mellor et al., 1994; hereafter

referred to as MEO). We also use these two test problems to verify our theoretical conclusions

regarding momentum and energetic consistency.

Bottom topography has long been recognized as an important factor in the determina-

tion of the path of western boundary currents. For example, Holland (1967, 1973) shows

that the presence of sloping topography leads to earlier separation of the western boundary

currents and enhanced transport of the anticyclonic subtropical gyre with respect to the Sver-

drup transport. Major differences are attributed to the joint effect of baroclinicity and relief

(JEBAR), an important component of the bottom pressure torque (Greatbatch et al. 1991;

Mertz and Wright, 1992; Myers et al., 1995). To examine the performance of the pressure

gradient schemes in long-term, large-scale ocean modeling and to verify model robustness in

a case where the bottom pressure torque is significant, we consider two classical problems in

oceanography: the adiabatic, wind-driven, time-averaged circulation in a mid-latitude rectan-

gular basin, first with a flat bottom and then with sloping topography on the west side of the

basin. The model is run for 10 years in each case to reach a well-developed stage including

a strong western boundary current and detached eddies. The presence of topography leads

to significantly earlier separation of the boundary current and enhanced transport within the

basin due to JEBAR.

In the following section we show that the proposed discrete schemes conserve the basin-

integrated energy. The vertically integrated momentum along a closed bottom contour is not

represented exact ly, but the errors are shown to be very small. The accurate representation

of JEBAR effects by the present model formulation is also demonstrated analytically. The

conservation properties are verified in section 3 by examining two specific examples. In section

4, the numerical stability of the model during long term integrations, with and without

topography, is illustrated through examples. Final discussion and conclusions are given in

section 5.
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2 Discrete Consistency

In this section, we focus attention on the integral properties of the proposed schemes. Similar

integral properties are considered by Arakawa and Konor (1996) in their hybrid u —p coor-

dinates with the Charney-Phillips grid. Arakawa and Suarez (1983) state that, of the four

integral conditions considered Arakawa and Lamb (1977), they regard the two constraints

dealing with the pressure gradient force as most important. These are:

(A) Energetic Consistency: The finite-difference analogue of the energy conversion term

must have the same form in the kinetic energy and thermodynamic equations, and

(B) Momentum Consistency: The pressure gradient force must not generate vertically

integrated circulation along a contour of constant bottom pressure.

In addition, we show that the pressure gradient formulation results in a consistent repre-

sentation of the bottom pressure torque, I.e.,

(C) Bottom Torque Consistency: The pressure gradient scheme conserves the curl of the

vertically integrated pressure gradient force.

These measures of integral consistency are considered below by comparing the continuous

forms to their finite-difference analogues in the s-coordinate system. The derivations are based

on a numerical scheme using an Arakawa C-grid in the horizontal and staggered vertical levels

as shown in Fig. 1 of Part I. To examine these consistency conditions, we will use the following

notations

(2.1)

and the relations



where the subscripts z and s indicate that the gradients are taken along surfaces of constant

z and s, respectively. z is the vertical coordinate in a Cartesian coordinate system and s is a

general vertical coordinate, such as the generalized topography-following coordinate system

considered by Song and Haidvogel (1994). Analogous not at ions and relations also apply for

the y and z directions.

In Part I, Song (this issue) discussed two schemes for the pressure gradient force, the

standard and weighted Jacobian schemes. In this section, we will focus on the standard

scheme based on a Jacobian formulation in which

where

(2.3)

(2.4)

C = C(X, Y, t) is the sea surface elevation and b = –gp/po is the buoyancy. The formulation is

based on the Arakawa C-grid in the horizontal and a staggered grid in the vertical, as given

in Fig. 1 of Part I. ZK+ ~ is at the sea surface z = ~, z; is at the bottom z = –h, and

d’zk = zk+$ – zk-~. Using the last two relations in (2.1), we have the following equivalent

conservation form

(2.5)

which is useful for the derivations of the integral consistency conditions. Using the conserva-

tion form, our numerical scheme for the pressure difference at the kth-level of the s-coordinate

can be written as

Pxk = PXC - ~ {&(6’&Z) - &(6%zZ)}k,++ ,
k,=k

(2.6)

Pyk = P~ - ~ {&(&$sZ) – 6@’($,Z)}k,+L , (2.7)
kl=k 2
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in the x- and y-direction, respectively. For simplicity, in the following derivations we consider

PX< = PYC = O, and Jz and Jy are assumed uniform in both x and y directions.

2.1 Energetic Consistency

The hydrostatic, Boussinesq primitive equations in the z-system can be written as

#+u. VZu+w~+fxu+-&ZP =F,

ap ap
~+u37zp+u)z=Q,

(2.8)

(2.9)

(2.10)

Vz”u+wz=o. (2.11)

The corresponding equations in the s-system are (Song and Haidvogel, 1994)

where
D* 8(W*)

(2.16)—-’:+ v”(&*)+~>
Dt

and w = w — u . Vz is the vertical velocity in the s-system.

These actuations have kinetic energy density (KE) of u ou/2 and potential energy density

(PE) of -zgp/pO = zb (Gent, 1993). Taking the dot product of (2.12) with u and multiplying

(2.13) by gz/pO and using (2,15) we obtain

&(~KE)=:u~O{&-:vZ}dS+ ~UF,

()

az 9Z
; ~PE = –~b{w+u. Vz}+—-—Q.

(% p“

(2.17)

(2.18)

The rate of kinetic energy generated by the pressure gradient force is thus

az o 8Z

/{ZZ”” s }
~Vb – ~Vz ds
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Substituting into the KE equation and combining with the PE equation, we have the

total energy equation:

Integrating over the entire domain and applying conditions of no normal flow through solid

boundaries gives the conservation of total energy when F = O and Q = 0.

;Iu%[ KE+PE]dsdfl = ~ < KE+PE >= O,

where the pair of angle brackets <> indicates domain integration. Conservation of total

energy in the discrete scheme can be shown following Bleck (1978) or Arakawa and Lamb

(1978). Below, we discuss only the consistency of the energy conversions related to the

pressure gradient (i.e., the first term on the right sides of (2.17) and (2.18)).

First, consider the contribution of the pressure gradient force to the kinetic energy equa-

tion. This contribution arises from the first term on the right side of (2.17) which, for the

continuous equations, can be rewritten in the form (2.19). We use the form (2.6) to write the

integral over x of the contribution from the x-direction as

{(,:,-s,)+ma}i_,’~&z:_,u& ~ b Lzj/+,
2

i=l

(2.22)

Using the sum-by-parts relation, ~~=1 ai_2JZbi_ ~ = aL+$bL – a;bo – xfnl ~i~zai, the first term

in (2.22) can be written as

L .

— E{ (J
}

& .Zu) ~ Fdszkl++ ,
i=l kl=k

i

(2.23)
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since u vanishes at both ends for no normal flux conditions. The no flux boundary condition

also allows us to write the second term in (2.22) as

(2.24)

Similarly, from the y-direction, we obtain the contribution

Mx{ (J($, J?Jv) ~ Tsc$szkf++ ‘}–&@6b@k .— (2.25)
j=l k’=k j

Using the continuity equation, the first terms in (2.22) and (2,25) can be combined and

rewritten as follows.

Notice that the relation (2.2a), applied in the vertical direction, is used in the last step of the

derivation. Finally, adding (2.24)-(2.25) and using (2.26) gives

KML

~ ~ ~ {W6%,ZS i- &z’umzz’ -1-b.mmyz’). (2.27)
k=l j=l i=l

t,3, k “

It is now easily shown that the first term on the right side of (2. 18) yields the negative of this

expression, as required for energetic consistency.

2.2 Momentum Consistency

Conservation of momentum requires that the pressure gradient force generates no vertically

integrated circulation along a closed bottom pressure contour, i.e.,

f!~ bdz, where p = P/po is the dynamic pressure. To show that

continuous system, we first write the pressure gradient as:

VZp = Vp – bVz .

Vertical integration gives

a contourof pb

this is satisfied

‘= Ps –

for the

(2.28)
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The line integral of the tangential component of the gradient vector, taken along an

arbitrary closed curve, vanishes, Along contours of constant bottom pressure, pb, or bottom

depth, h, the second term also vanishes. Thus the pressure gradient force conserves momentum

along closed contours of either pb or h.

Now we want to show that our numerical scheme retains this property in

First, using the scheme given in equation (2.6), the vertically integrated

gradient in the x-direction is given by

its discrete form.

discrete pressure

The two bracketed sums represent estimates of the pressures at grid points (i, k) and (i +

$, k – ~), which we represent by

h’

~,k = – ~ (r~sz)i,kl+$
k,=k

and

(2.31)

(2.32)

respectively. It should be noted that & and & are not necessarily equal to

1
~:,k = j (pi,’-; + pi,’+}) (2.33)

and

(2.34)

respectively, even though they are similarly staggered relative to pi,k+~ which is the pressure

at locations (i, k + ~).
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Substituting (2.31 )-(2.32) into equation (2.30) and using the notation z~ = z’, we have

k=l
h’

(2.35)

where

Note that JXJSZ< JZh so that fl~ = O is well-defined even over a flat bottom. It should

also be noted that this might be a problem in cases where the slope of the vertical levels

may be greater than the bottom slope, such as in the isopycnal coordinate system or in an

unstructured vertical grid.

The quantity ~ is the bottom pressure at the locations where ~ is determined by (2.32),

and ~~ is a correction to this pressure required for consistency with the integrated bottom

torque along a closed bottom pressure contour. If we define

(2.37)

along the contour, where the z indicates the direction of the contour line from one p point to

any adjacent p point and the overbar indicates the midpoint, then (2.35) becomes

h’

{}
& ~j%z – F:c$zh . (2.38)

k=:l

Clearly, (2.38) is analogous to the continuous equation (2.29), i.e., the pressure gradient force

generates no vertically integrated circulation when integrated around a contour of constant

bottom pressure, or along a contour of constant depth. In the next section, we will test the

accuracy of this consistency relation for the closed contours surrounding a seamount.

The integral consistencies discussed above suggest that the numerical scheme will yield

consistent large scale properties when used in longterm integrations. Obviously, it is also
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highly desirable for a numerical scheme to give an accurate representation of the local cir-

culation. If we consider that thermal wind dominates the vertical structure and that this is

easily represented, then it follows that it is most critical to ensure that the vertically averaged

equations are accurately represented. If a vorticity equation for the depth integrated flow is

formed (e.g., Holland, 1973; Mertz and Wright, 1992), then the importance of the bottom

pressure torque is immediately obvious. The discrete representation of this term is discussed

below.

2.3 Bottom Torque Consistency

Accurate representation of the bottom pressure torque, ~(~b, h) (Sarkisyan and Ivanov

(1971)), is critical for many oceanographic applications. For example, it is a key part of the

vorticity balance required to obtain a realistic circulation in the North Atlantic ocean (Holland

1973, Greatbatch et al. 1991, hlyers et al. 1995). One component of this torque, which has

received much attention because of its importance, is the joint effect of barocliniciLy and relief

(JEBAR), which represents a correction to the topographic stretching term to account for

the fact that the bottom velocity rather than the depth-averaged flow provides the vortex

stretching (Mertz and Wright, 1992). Diagnostic calculations such as those presented by

hfellor et al. (1982), and the previous studies discussed therein, clearly illustrate both the

difficulty and the importance of accurately representing this term.

Beckmann and Haidvogel (1993) show that the original pressure gradient scheme (OPG)

based on equation (1.1) does not accurately represent the bottom torque. They present a

modified scheme which is shown to guarantee the correct representation of this effect, but

the resulting scheme general] y has larger local error than the OPG. Here, we show that the

formulation of the pressure gradient force discussed in Part I retains the correct bottom

pressure torque.

From equation (2.29), the vertically integrated pressure gradient

/

o
— VZpd.z =: –V

–h
{[:~pdj-pbv,,

force can be written as

(2.39)

and the bottom pressure torque, which results from taking the curl of the vertically integrated
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pressure gradient force, is given by

(2.40)

Similarly, from (2.38), the discrete form of the integrated pressure gradient force in the x-

direction can be written as

{}
- ~ 6..2 Px, = -6. g ($*zp, – p;&.h , (2.41)

k=l k=l

and in the y-direction as

(2.42)

The curl of these expressions,

J. (jz’d,’) – & (pi?c$.’) , (2.43)

gives the analogous form of (2.40). Thus the bottom pressure torque is accurately represented

without requiring any modifications of our numerical scheme.

In the remainder of this study, we examine several particular ocean modeling problems

which provide further evidence of the utility of these schemes in prognostic integrations. These

problems will also be used to verify the integral consistency relations discussed in this section.

3 Performance in Unforced Examples

In this section, we consider two problems in order to evaluate the performance of the pressure

gradient schemes in the S-Coordinate Rutgers University Model (SCRUM, Song and Haidvogel

1994, Song 1996) in highly idealized situations for which the exact solution is known. The

primary differences from the examples of Part I are that the density field evolves prognostically

with time and the calculations are 3-dimensional rather than 2-dimensional. The test problems

follow Beckman and Haidvogel (1993) and Mellor et al. (1994) to evaluate model errors

associated with a tall seamount and continental slopes, respectively. Both problems are

unforced so that the effects of pressure gradient errors can be easily evaluated.
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3.1 An Isolated Seamount

The seamount test case provides a measure of the errors in the pressure gradient term in

the presence of steep topography and can be directly compared to the results of Beckmann

and Haidvogel (1993) and McCalpin (1995). The configuration is a tall, steep seamount in a

channel, closed to the north and south and recirculating through the east and west boundaries.

The computational domain has dimensions of approximately 320 km by 320 km, and is divided

into 40 x 40 grid cells. The isolated seamount is located in the center of the channel and its

topography is described by a Gaussian profile

h(z, y) = 5000 – 4500e-(r/1J2,

where r = 4( x – X.)2 + (y – yc)z is the distance from the center of the domain and 1 =

40 km is the width of the seamount. By using an unevenly spaced horizontal grid, finer

resolution is achieved near the center of the domain with a 2:1 variation in grl d spacing from

the center to the edges. The enhancement is applied in the same manner in both the x and y

directions. The maximum values of slope and ](JZh)/h I are about 0.096 and 0.35, respectively.

Hydrostatic consistency is violated with the maximum value of l(sJXh)/hJsl being about 7

with 20 evenly spaced vertical levels.

The stratified fluid has a density profile of the form

Ptotd = Po + p(~)+ P’,

~(z) = 28. – ~ezilOOO,

p’(z) = O.lezllOOO kg m-3,

where p. = 1000kg m–3 and y = 3 kg m– 3. The degree of stratification is quantified by the

Burger number

s=
N2H2
— % 9.4,

j;l’

where N’ = –g6Zp/poH, and H is the maximum water depth. As in Beckmann and Haidvogel

(1993), the quantity p.+ ~(z) is treated as a known horizontally uniform background density

12



stratification which is removed prior to calculating the pressure gradient. The isopycnal

disturbance p’ is also horizontally uniform, but throughout the integration it is treated as a

local density perturbation which is not removed prior to calculating the pressure gradient.

The model starts from a state of rest with no surface forcing. Constant horizontal and vertical

viscosities of 500 and 10–3 m2s-1 are used, respectively. The boundary conditions are free-slip

and the bottom friction is formulated linearly (= ru with r=10-4 m s-l). The horizontal and

vertical diffusivities are both zero.

The model is run for 30 days with three different formulations: uniformly spaced cr-

coordinates with the standard Jacobian pressure gradient formulation, and s-coordinates with

O = 3 with both the standard and weighted Jacobian formulations. For the uniformly spaced

o-coordinate system with the standard Jacobian formulation, the peak velocity is 0.0005

m s–l. This value is less than the values of 0.012 m S–l (Fig. 6a, time series) and 0.001 m s–l

(Fig. 8, 4th order - medium stratification case) obtained respectively in the tests of Beckmann

and Ha.idvogel (1993) and McCalpin (1995). If we improve the near surface resolution by

choosing O = 3 (still using the standard Jacobian formulation), the peak velocity is reduced

to 0.0003 m s-l. If we use the weighted Jacobian formulation, we obtain the results shown in

Fig. 1 for velocity u, v, w, and density change relative to the initial conditions through the

center of the seamount. The magnitude of the peak velocity is about 0.0001 m s-l at day 30

and has changed little since day 10 as shown in Fig. la and Fig. lb. The density change in

sigma-t units between day 30 and day O is 0.00032 as shown in Fig. ld. This error is only

slightly less than that obtained with uniformly spaced sigma levels, and either result is clearly

acceptable for realistic oceanographic applications.

These results add support to the contention that the new pressure gradient schemes,

in combination with the general vertical coordinate, can accurately represent the combined

effects of steep topography (6Zh/JZ = 0.096) and strong stratification (S= 9.4). Even in the

case of sigma coordinates in combination with the standard Jacobian formulation,

the hydrostatic consistency condition is strongly violated, results are acceptable

applications.

in which

for most
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We now use this problem to test the momentum consistency of the pressure gradient

scheme, for which analytical considerations were presented in section 2. To do so, we calculate

the line integral of the vertically averaged velocity along a contour of constant depth

1
LVr = —

!27rr c,
v“tdl,

and compare it to the mean speed along the same contour,

(3.1)

(3.2)

where w is the vertically averaged velocity and I[vll is the L2 norm of v, C, is the depth

contour at radius r from the center of the seamount, and t is the unit tangent vector along

C’,. Results for LV, and MVr are plotted in Figs. 2a and b as functions of time for r = 40

and 80 km. The maximum value of LV, /MV. is less than 5 x 10-4, which is not significantly

different from zero if errors in estimating these quantities are taken into account. There are

two separate factors which contribute to LV, being slightly different from zero. First, the

discrete representation of a line integral around a circular contour introduces some error.

Second, the free surface in our model makes a fixed radius only an approximation to either

a contour of constant depth or constant bottom pressure. Nevertheless, these results show

that the pressure gradient force generates insignificant vertically integrated circulation along

a contour of constant bottom depth compared to the mean current speed around the same

contour.

Finally, we note that the values of MVr illustrated in Fig. 2 reflect the erroneous velocity

along the circle Cr, and LV~ is the corresponding net momentum generated by the pressure

gradient error. Since the

is expected for them just

3.2 A Test Basin

pressure gradient errors satisfy our numerical scheme,LV, <<MV,

as for any other pressure driven flow.

An unforced basin is now considered in order to directly compare with the results of MEO.

This test is of special interest since the pressure gradient formulation used by MEO is very

similar to our standard Jacobian formulation for the special case O = O (the o-coordinate
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system). The model domain has a continental shelf/slope on each wall of a periodic channel,

which is equivalent to the two-dimensional case used in MEO. The width of the channel is

800 km with 41 grid nodes. The analytical form of the topography is

h(x) = hmin + (hm.Z – hmin) ~-(r/08

where hmin = 100 m, hmoZ = 4000 m, r = x – L/2, 1 = 3L/8, and L = 800 km.

Following MEO, we initialize the model with the density,

~ ~ 1028 – 3eZ11000, (3.3)

which is a reasonable approximation to the area-averaged, vertical distribution of the density

in the North Atlantic Ocean. In contrast with the seamount test problem, the reference state

P(Z) is not subtracted prior to the pressure gradient calculation (this would give precisely the

null solution). Constant horizontal and vertical viscosities of 2000 and 1 x 10–3 m2s–1 are

used. The horizontal and vertical diffusivities are both zero and there is no surface forcing.
.

The model is run diagnostically for 90 days, then prognostically for another 270 days.

Results for along-shore velocity u and cross-shore pressure gradient errors across the basin

at day 90 (the end of the diagnostic integration) are plotted in Figs. 3a and b, respectively.

After 90 days of diagnostic integration, the magnitude of the peak velocity is about 0.04

ins-l, of the same order as, but somewhat less than the peak value of order 0.07 m s-l

obtained by MEO. This error is generated by the pressure gradient force shown in Fig. 3b,

which persists throughout the diagnostic integration. After day 90, we switch to prognostic

integration and the peak velocity decreases rapidly, reaching about 0.002 m s-l by day 270,

as shown in Fig. 4a, This error is similar to that reported by MEO for day 270 of their model

run and is negligible for most applications. During the prognostic integration, the density

field is changed only slightly near the boundaries with weak upwelling associated with the

clockwise circulation in the surface layers driven by the pressure gradient error (Fig. 4b). The

maximum density change relative to initial conditions is –0.016 at units, compared to 0.07 at

units reported by MEO. It is interesting to note that the ratio of our maximum density error
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to that of MEO’S is about 0.23 whereas the corresponding ratio of velocity errors is about

0.57. Using the thermal wind relation, this difference is consistent with the spatial scales of

the errors in the present model being about 2.5 times smaller than those in MEO’S model.

A important point to note is that the systematic errors in estimating horizontal gradients

in the presence of a topography-following coordinate system, result in the model ‘%eeing’)

erroneous isopycnal slopes in the initial state which actually has flat isopycnals (~init ==~(z)).

These erroneous isopycnal slopes correspond to an “error density field” which has potential

energy associated wit h it, and this erroneous potential energy can actually dominate the

erroneous kinetic energy that has received much more attention.

The model rest state (p,.,~ (z, y, z)) is achieved when the real isopycnals are tilted so as to

cancel the error field, and can be determined simply by allowing the currents to spin down

under the influence of bottom friction. Note that the final rest state does not depend on the

details of the spin-down procedure; it is simply the state for which real pressure gradients due

to tilting isopycnals balance the erroneous pressure gradients associated with the numerical

scheme. As the model relaxes to this rest state, potential energy is released from the error

density field and transformed into kinetic energy where it is dissipated. To illustrate this point,

we have calculated the kinetic energy and potential energy referenced to the the density field

p,m~at the end of our model run (day 360), which we use as our best approximation for p,..t.

Note that MEO also reference their potential energy to the end state of their model run,

presumably for the same reason as it is done here.

The spatially averaged kinetic and potential energies (cm2s-2) relative to the end state are

plotted for the diagnostic spin-up and prognostic continuation in Fig. 5a. The early stages of

the diagnostic run are dominated by a kind of geostrophic adjustment in which the density

field is kept fixed and only the velocity field adjusts. The kinetic energy increases rapidly

during the first few hours as the velocity adjusts to the erroneous pressure gradients. During

the next few days, the kinetic energy decreases slightly and the changes over the remaining

90 days are smaller yet. In contrast with our results, MEO find that their kinetic energy
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decreases significantly during the initial 90 days of their diagnostic integration. However,

even at the end of this period, the kinetic energy remains close to 1.5 cm2s-2 which is much

larger than the 0.18 cm2s-2 achieved after just a few days of integration in the present case.

Our results for this example remain similar (both qualitatively and quantitatively) whether

we use s-coordinates or a-coordinates and whether we use the standard Jacobian formulation

or the weighted Jacobian formulation. It is noteworthy that the increased total KE seen

in the MEO results in comparison with the present results is again consistent with larger

spatial scales for the error fields in the MEO results. Based on the ratio of maximum error

velocities (= 1.75) and the previously mentioned ratio of horizontal scales (= 2.5), we might

expect MEO’S total KE to be approximately 7.7 (= 2.5 x 1.752) times our values, which is

encouragingly consistent with the value of 8.3 obtained from detailed calculations.

It should be noted that the changes in total energy during diagnostic integration do not

violate any principles of energy conservation. Immediately after the run is initiated, potentt~al

energy is converted to kinetic energy which is then subject to dissipation. The kinetic energy

is continuously renewed from the potential energy pool which is maintained at its initial level

by the specification of the density field. The unspecified buoyancy sources which maintain

the density field also balance the energy budget.

Under prognostic integration, our model currents decrease abruptly, consistent with the

“advective elimination’) of the pressure gradient error discussed by MEO. However, the error

decreases much more abruptly in the present case. After 180 days of prognostic integration,

both the potential and kinetic energies are very small ( 2.24 x 10-6 and 2.25 x 10-6 m2s-2,

respectively). For horizontal viscosity of 2000 m2 s– 1, the decay time of order ten days

implies a horizontal length scale of order 50 km which is in reasonable agreement with the

scales seen in Fig. 5a. Additional calculations reveal that the damping associated with

vertical variations makes a smaller, but still significant contribution. Note that the more

rapid spin down evident from comparison of Fig. 5a with MEO’S Fig. 3 is again consistent

with the smaller spatial scales of the error field obtained from the present calculation. Thus,

the main differences between our results and MEO’S apparently reflect the larger spatial scale
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of the errors obtained by M130. The precise reason for the difference in spatial scales remains

unknown.

In order to further verify the consistency of the pressure gradient scheme, we have calcu-

lated the net energy conversion term in the KE equation:

VGP = –///V “Vpdv ,
v

(3.4)

and compared it to the corresponding energy conversion term in the potential energy ecluation:

PEtoKE = –~ ///“p’wdv. (3.5)
PO

VGP is the volume integral of the first term of equation (2.17) and PEtoKE is minus the

volume integral of the first term on the right of (2.18). VGP must balance PEtoKE in order

to guarantee energy consistency, and the analytical results presented in section 2, indicate

that this should be true

Fig. 5b shows the time integral of VGP, KEioPE

lines) as functions of time, starting from day 90. As

(solid lines), and PEtoKE (dashed

expected, VGP is almost equal to

PEtoKE. Indeed, the agreement is excellent, given that our analytical proof was for the

semi-discrete equations. The equivalence of these two curves (to the accuracy that we can

calculate them) confirms that the numerical representations of the energy conversion terms

in the kinetic and potential energy equations are consistent.

Finally, we offer the following physical discussion of the “advective elimination” of the

pressure gradient error proposed by MEO. When starting the prognostic integration from

day 90, the model “sees” an initial state with erroneous horizontal isopycnal slopes, i.e., the

initial pressure gradient error as plotted in Fig. 3b. Due to this erroneous force, a current field

develops which, due to viscous dissipation, tends to relax to a rest state, for which the real

isopycnal slopes counter the error slopes. During the relaxation, the potential energy stored

in the original error buoyancy field is effectively converted to kinetic energy as required for

energetic consistency (VGP = PEtoKE). After conversion to kinetic energy, the energy is

dissipated by viscous effects. It is important to realize that the error field is governed by the
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finite difference equations and hence satisfies the conditions for energetic consistency, just as

the total fields do, as required for the success of long term integrations (Arakawa and Lamb,

1977).

4 Performance in Forced Examples

In the previous section, two unforced test cases were considered in order to evaluate the influ-

ence of the pressure gradient error under the simplest possible conditions. The results clearly

indicate that the new formulations of the pressure gradient warrant further investigation.

This section is intended to investigate the performance of the formulations in somewhat more

realistic examples for which analytical solutions are not available, but qualitative features are

known from previous studies.

We consider the classical problem of determining the circulation in a rectangular, mid-

latitude basin driven by a double-gyre wind stress field. The computational domain is 3600 km

by 2800 km. A grid of 180 x 140 cells is used (20 km resolution) for eddy-permitting (but not

fully resolving) resolution. There are 20 vertical levels and we use Song and Haidvogel’s (1993)

s-coordinate system with O = 3. The background stratification (i.e., the initial buoyancy field)

is given by

~(z) = p(z, t = O) = 28 – 5.8039 exp(z/800)[0.6 – 0.4 tanh(z/800)],

and the model is started from a state of rest. The ~-plane approximate ion,

f= fo+8Y >

is used with ~. = .9 x 10-4, /3 = 2 x 10–11, and y = O is at the center of the domain. The

driving force is provided by a double-gyre wind stress field,

T’ = ] X 10-4 cos(27ry/LV), TV = o,

where LV is the north-south extent of the basin. In the following experiments, constant lateral

and vertical viscosities of 300 and 1 x 10-3 m2s–1 and diffusivities of 100 and 1 x 10-4 m2s-1
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are used, respectively. The momentum boundary condition is free-slip and the bottom friction

is formulated linearly with drag coefficient 1 x 10-4 m s–l.

Based on the above model configuration, we conduct two experiments, one with a flat

bottom ancl the other with a slope region on the western side of the basin. Although we cannot

quantify the pressure gradient errors in these cases, verification of the expected qualitative

behavior is essential in testing the performance of the numerical schemes for use in long-term

integration of large-scale problems. We expect the ocean to develop a double-gyre circulation

with a western boundary current which should separate from the boundary and shed eddies

and rings as it extends across the basin (Haidvogel et al. 1992, McWilliams and Gent 1994).

We note that even this simple problem has not previously been investigated in a free surface,

generalized topography-following coordinate model.

Experiment A: With A Flat Bottom

In our first experiment, the bottom is flat and at a depth of 5000m. In this case, the

model is essentially a free-surface z-coordinate model because the constant s levels very nearly

coincide with constant z levels (there is a slight difference due to the fact that s = O follows

the free surface). In addition to testing the stability of the numerical scheme, this experiment

demonstrates how the free-surface model performs in a simulation which includes strong

boundary currents and an internal jet, a demonstration which has not been shown previously.

The model is run prognostically for 10 years and the velocity and density fields at about

100 meter depth, at the end of the run, are shown in Fig. 6. Similar to the results reported

by Haidvogel et al. (1992), in their free-slip boundary condition case, the western boundary

current separates at or near the center of the domain, where the wind stress curl is zero and

the current meanders to the east. Cold cyclonic eddies and warm anticyclonic eddies are

detached from the south and north sides of the zonal jet, respectively (Span and Robinson,

1990). The zonal transport stream function is given in Fig. 7a and the meridional transport

streamfunction is given in Fig. 7b. The zonal circulation shows a concentrated cell with

eastward surface flow near the western boundary, above approximately 500 m depth. The
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maximum transport is approximately 6 Sv, and the eastward flow extends from the western

boundary to the center of the basin above about 500 meter depth. The meridional overturning

circulation shows a three-cell pattern: a broad sinking cell at the northern boundary of about

4 Sv; a similar upwelling cell at the southern boundary; and a concentrated, narrow umbrella-

like cell at the center of the domain of about 3 Sv. These results are generally consistent with

expectations based on previous studies such as Holland (1978) and McWilliams et al. (1990).

Experiment B: With A Western Slope

In our second experiment, a continental slope is added to the western side of the basin.

No other changes are made. The bottom depth varies only in the east-west direction, with a

narrow western shelf at a depth of 1200 meters, a broad continental slope region about 500

kilometers wide, and a deep basin with constant depth of 5000 meters as in the flat bottom

case.

The model is again run prognostically for 10 years and the final velocity and density fields

at about 100 meters depth are shown in Fig. 8. As expected, cold cyclonic eddies and warm

anticyclonic eddies still detach from the south and north sides of the boundary currents,

similar to the flat bottom case. However, the separation latitude of the western boundary

current shifts south of the zero wind stress curl line by about 500 km and a wedge of northern

water is a.dvected further southward along the slope. The zonal transport stream function

is given in Fig. 9a and the meridional transport streamfunction is given in Fig. 9b. The

maximum transports associated with both zonal and meridional circulations are substantially

enhanced compared to the flat bottomed case. Although the near-surface eastward transport is

about the same as in the flat bottom case, there is a strong eastward transport near the bottom

over the lower slope increasing to 11 Sv. These values are nearly twice the corresponding values

for the case with no topography. In the meridional overturning circulations, the three-cell

pattern in the flat bottom case no longer exists, being replaced by two larger cells, a broad

enhanced sinking at the northern boundary of about 8 Sv, which is twice that found in the

flat bottom experiment, and a concentrated downwelling cell at the southern boundary of
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about 30 Sv, which is about 10 times the maximum overturning

case. Note that the enhanced transports are concentrated over

southern part of the basin.

transport in the flat bottom

the continental slope in the

From these results, it is clear that the sloping topography plays an important role in the

basin-scale circulations considered here. Perhaps the most obvious effects of the sloping to-

pography are the southward advection of a wedge of northern water and the earlier separation

of the northward flowing western boundary current. According to the results of Myers et al.

(1996), these two effects are causally related through the JEBAR term.

Another obvious influence of the sloping topography is the enhancement of both zonal

and meridional overturning transports. By analyzing a simplified depth-integrated steady-

state vorticit y equation, Holland (1973) describes the physical mechanics responsible for the

enhanced transports. In our eddy-resolving simulation, the basin-scale circulation has not

reached steady state, but after ten years of integration it approaches a statistically steady

state,

We now determine a quantitative estimate of the bottom pressure torque effect in order

to confirm its importance in determining the differences in the circulations seen in our two

experiments. The vertically integrated vorticity equation can be obtained by taking the curl

of the momentum equations for the vertically averaged velocity components. The resulting

equation can be written as

%=%] = *%-%
a(fw) a(fvfq—

ax – tly
8ADV i)ADZ

+ — _—
ax ay

a(T# – T~) 8(T: – T~) /. #.\
t ‘-

ax-”–’” ‘ay
(4,0)

where ti and u are the vertically averaged

depth, ADZ and ADV are the horizontal

bottom pressure, (~~, ~~) and (~~, ~f) are

velocity components, H = ~ + h is the total water

advection and diffusion terms, pb is the dynamic

the surface and bottom stress terms, respectively.
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For steady-state flow, or under the rigid lid approximation, the term containing the Coriolis

parameter reduces to –/?ilH, where ~ ==al//dy.

The importance of the bottom pressure torque is most easily revealed by examining the

vorticit y balance at a latitude removed from intense eddy activity. Fig. 10 shows the zonal

distributions of vorticity terms at the latitude of the maximum (negative) wind-stress curl,

about 700 km south of the basin center, for the two basin circulations. Only results for the

western half of the basin (out to 1800 km from the western boundary) are plotted. The

vorticity tendency and the surface and bottom stress terms are relatively small in both cases

and are not shown. In the flat bottom case (Fig. 10a ), the bottom pressure torque (dashed

line) vanishes and the Coriolis term (solid line) is is very nearly balanced by the advection

and diffusion term (dash-dot line). The maximum (negative) value of the Coriolis term near

the western boundary reflects the strong northward transport (i.e., –@H < O) within the

Munk boundary layer.

With the effect of a slope region included along the western boundary, these features

are significantly modified (Fig. 10b). The maximum values of the vorticit y terms shift 600

km offshore to the slope region. The bottom pressure torque (dashed line) is dominant in

this region and is in approximate balance with the Coriolis term (solid line), with a smaller

contribution from the advection and diffusion term (dash-dot line). The individual terms in

the vorticity balance are three times bigger than those in the flat bottom case.

In each of these model runs, the wind stress is the only external force driving the fluid.

However, as Holland (1973) points out, the dynamical balance is strongly modified by the

presence of topography. In particular, the stretching of vortex tubes associated with the

bottom velocity can be large: a horizontal velocity as small as 0.1 ins-l perpendicular to a

continent al slope with gradient 10–3 is able to produce a depth integrated torque comparable

to that associated with a typical wind stress curl. In our second experiment, a maximum

slope of 2% has been used, which is typical of the mean slope off the west coast of North

America. With this slope, we find that the bottom torque is up to 10 times the magnitude of
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the driving wind stress curl.

In summary, our flat-bottomed experiment illustrates that the model is stable and capable

of resolving the evolution of the western boundary current along with its associated eddy

activity. In this case, there is effectively no pressure gradient error associated with the use ofs-

coordinates since the s levels nearly coincide with constant z levels. In our second experiment,

a mean slope typical of that off the west coast of North America is included. The success of this

experiment, using the same parameters and time-step as in the flat bottom case, indicates that

any errors due to the coordinate transformation have not caused serious numerical problems.

It also indicates, at least qualitatively, that the proposed pressure gradient schemes are able

to handle the slopes and bottom torques present in the regions of strong western boundary

currents. Finally, our results are at least qualitatively consistent with earlier work (Holland

1973, Myers et al. 1996) suggesting that the sloping topography plays a dominant role in

the enhanced circulations and earlier separation of the Gnlf Stream due to the joint effect of

baroclinicity and relief (JEBAR).

5 Summary and Conclusions

The difficulty in handling the interaction of sleep topography with boundary currents and

eddies in numerical ocean models is well known (e.g., Gerdes, 1993). Correctly representing

the JEBAR contribution to the bottom torque is particularly challenging with topography-

following coordinates due to the fact that this contribution is largest where there is a combi-

nation of steep topography and strong stratification (Beckman and Haidvogel, 1993).

To improve the simulation of oceanic flow with numerical models using topography-

following coordinate systems, Song (this issue) introduced two general pressure gradient for-

mulations. These formulations are based on integrating the Jacobian of density and vertical

coordinate to obtain a discrete representation of the horizontal pressure gradient at any given

level. The standard Jacobian formulation is based on centered differences in the cornputa-
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tional s-coordinate system while the weighted Jacobian formulation uses a particular vertical

weighting such that the buoyancy gradient estimates are effectively centered in the more

usual z-coordinate space. Both schemes are general, can be used with any vertical coordinate

system (see Part I) and are easily implemented.

To further understand the behavior of the proposed pressure gradient schemes, we have

investigated the integral properties of the schemes. In each case, a combination of theoretical

and numerical analyses have been used to demonstrate the properties of the schemes.

The particular integral properties considered here are the conservation of momentum and

energy and the accurate representation of the bottom pressure torque. The validity of the

first two properties has been illustrated for two unforced test examples involving steep slopes

and isolated topographic features in the presence of strong stratification. All tests are car-

ried out with a general vertical coordinate model (SCRUM) which allows us to examine the

performance in both the o-system and the s-system. Our results confirm that pressure gradi-

ent errors associated with the use of topography-following coordinates may be substantially

reduced through the choices of the numerical scheme and coordinate system.

The performance of the schemes in long-term integrations has been evaluated using double-

gyred wind-forcing of a large scale basin, both with and without a continental slope on the west

side of the basin. The model is run for 10 years in each case and it generates realistic western

boundary currents and detached eddies. By comparing results from these two experiments, we

find that the presence of the topography results in a southward shift of the separation latitude

for the model Gulf Stream. Our results are consistent with Holland’s (1973) conclusion that

the bottom pressure torque contributes significantly to the vorticity balance, resulting in

enhancement oft he western boundary current, and with Myers et al.’s (1996) conclusion that

changes in JEBAR have an important influence on the separation of the Gulf Stream.

The difficulty, mainly due to pressure gradient errors (Deleersnijder and Beckers, 1992),

in representing the combined effects of steep topography and strong boundary currents in

topography-following coordinate models has been recognized for many years. The poor rep-
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resentation of sloping topography in z-coordinate models is also well-known (Gerdes, 1993).

Each of these model shortcomings have the potential to result in substantial errors in the

representation of the bottom torque, which is a critical aspect of ocean dynamics. Our find-

ings indicate that, at least with the pressure gradient formulations considered here, models

using topography-following coordinates can reasonably represent the bottom pressure torque.

For either type of coordinate system, special care should be taken with regard to this issue.

Additional tests in more realistic applications are still clearly required.
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Figure Captions

Figurel: Cross sections through thecenter of the seamount: a) thealong-shore velocity;

b) thecross-shore velocity; c) thevertical velocity; d) thedensity change relativeto theinitial

conditions. Units are in m s ‘1 foru,v, w, and inkgm-3forp.

Figure 2: a) Line integral of vertically averaged velocity and b) mean velocity along

seamount isobaths as a function of time (in days), where rl = 40km and r2 = 80km are the

radii of isobaths of the seamount.

Figure 3: Cross sections through the center of the basin after the 90 day diagnostic run:

a) the along-shore velocity (m s-1) and b) the cross-shore pressure gradient errors.

Figure 4: a) The along-shore velocity (m S-l) and b) the density change relative to

initial conditions (sigma-t units) after continuing the run of Fig. 3 for another 180 days

pro~nostically.

Figure 5: a) Spatially averaged kinetic energy and potential energy relative to the end

state at 360 day as a function of time, b) the time integral of pressure gradient terms and

PEtoKE terms as a function of time.

Figure 6: Results for the velocity field superposed on the density field at 10 years (3650

days) simulation of double-gyre wind-driven basin with flat bottom. Contour units are in

sigma-t.

Figure 7: Transport streamfunctions corresponding

of a double-gyre wind-driven basin with flat bottom, a)

transports. Contour units are in Svertrup (106m3s-1 ).

to the end of a 10 years simulation

zonal transports and (b) meridional

Figure 8: Same as Fig. 6, but with the effect of a western slope included.

Figure 9: Same as Fig. 7, but with the effect of a western slope included.

Figure 10: The zonal distribution of terms in the right-hand-side of the vorticity equation

(4.6) at the latitude of the maximum (negative) wind-stress curl, about 700 km south of the

basin center. Only half of the western domain is plotted. The unites are m S-2.
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al. UIXI = 20,DAY = 30.0) b). V(XI = 20,DAY = 30.0)

03NT0Ki FRC41 -.WIX1275T0.OOO1O75BY.000005

c). WIXI = 20,DAY = 30,0)
1-

NTWRFROH- .00WIXW5TO .000CW125BY .WIOO025

‘,,

‘,

CWTOUl FROM -.0000B5 TO .KWIB5 BY .00W

d). RHO(XI = 20,DAY = 30.0)

CCNTW FROH -.00032 TO .00002 BY .0W12

Figure 1: Cross sections through the center of the seamount: a) the along-shore velocity; b)

the cross-shore velocity; c) the vertical velocity; d) the density change relative to the initial

conditions. Units are in m s– 1 for u, v, w, and in kg m–3 for p.
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Figure 2: a) Line integral of vertically averaged velocity and b) mean velocity along seamount

isobaths as a function of time (in days), where rl = 40km and r2 = 80krn are the radii of

isobaths of the seamount.
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a). U(XI = 6,DAY = 90.01

CONTOUR FROM -.0375 TO .0425 BY .005
b). lKiy(XI = 6,DAY = 90.0)

CONTOUR FROM -.0000045 TO .0000045 BY ,0000005

Figure3: Cross sections through the center of the basin after the 90 day diagnostic run: a)

the along-shore velocity(m s–l) andb) the cross-shore pressure gradient errors.
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a). U(XI = 6,DAY = 270.0)

\

CONTOUR FROM - ,002375 TO .002625 BY .00025
b). RHO(XI = 6,DAY = 270.01

CONTOUR FROM - .016 TO .003 BY .001

Figure4: a) The along-shore velocity (ins-l) and b) the density change relative to initial

conditions (sigma-t units) after continuing the run of Fig. 3 for another 180 days prognosti-

tally.
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Figure 5: a) Spatially averaged kinetic and potential energies relative to the end state at 360

days as a function of time, b) the time integral of the pressure gradient term and PEtoKE

term as functions of time.
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