Aquifer Test Data Analyses (Phase II, Part 2)

January 2003

Prepared for U.S. Department of Energy Grand Junction Office Grand Junction, Colorado

Work Performed Under DOE Contract Number DE–AC13–02GJ79491 Task Order Number ST03–104

U.S. Department of Energy Grand Junction Office

Calculation Cover Sheet						
Calc. No. Moab 01–2003–03–03–00 Discipline: Hydrogeology Number of Sheets: 30						
Project: Moab Ground Water						
Site: Moab, Utah						
Feature: Aquifer Test Data Analyses (Phase II, Part 2)						
Sources of Data: August, September, and November 2002 Hydrogeologic Investigation						
Sources of Formulae and References:						
Driscoll, F.G., 1986, Groundwater and Wells, 2nd Edition, Johnson Division, St. Paul, Minnesota.						
Hantush, M.S. and C.E. Jacob, 1955, "Non-steady radial flow in an infinite leaky aquifer," <i>Am. Geophys. Union Trans.</i> , v. 36, no. 1, p. 95–100.						
Kruseman, G.P., and N.A. DeRidder, 1994. <i>Analysis and Evaluation of Pumping Test Data</i> , International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.						
McWhorter, D.B., and D.K. Sunada, 1977. <i>Ground-Water Hydrology and Hydraulics, Water Resources</i> <i>Publications</i> , Fort Collins, Colorado.						
Shepard Miller, Inc. (SMI), 2001. Site Hydrogeologic and Geochemical Characterization and Alternatives Assessment for the Moab Mill Tailings Site, Moab, Utah, April.						
Theis, C.V., 1935. "The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage," <i>Am Geophys. Union Trans</i> ., (16) 519–524.						
U.S. Department of Energy (DOE), 2002a. <i>Characterization of Groundwater Brine Zones at the Moab, Utah, UMTRA Project Site, Phase I,</i> GJO–MOA 19.1.2-3, prepared for the U.S. Department of Energy Grand Junction Office, Grand Junction, Colorado, June.						
———, 2002b. Work Plan for Characterization of Groundwater Brine Zones for Interim Action at the Moab, Utah, UMTRA Project Site, Addendum A, GJO–MOA 19.1.2-2, prepared for the U.S. Department of Energy Grand Junction Office, Grand Junction, Colorado.						
, 2002c. Aquifer Test Data Analyses (Phase II, Part 1), October 2002, GJO–MOA 19.2.3, prepared for the U.S. Department of Energy Grand Junction Office, Grand Junction, Colorado, October.						
Preliminary Calc. Final Calc. Supersedes Calc. No						
Rev. No. Revision Calculation by Date Checked by /Date Approved by Date						
Rev. No. Revision Calculation by Date Checked by Date Approved by Date						

Introduction

The U.S. Department of Energy (DOE) is designing an interim action to reduce risk to endangered species of fish from ammonia discharging from the unconfined alluvial system to backwaters of the Colorado River adjacent to the Moab Project Site. Fresh water in the unconfined alluvial system at the Moab Project Site is underlain by a salt water brine zone. Pumping from the shallow fresh water system (during pump-and-treat remediation) may cause the salt water to rise to a higher elevation and intrude the fresh water. Salt water intrusion would result in degradation of the overlying fresh water, which could adversely affect the tamarisk plant communities that are providing beneficial phytoremediation at the site. Besides causing salt water intrusion into the shallow ground water, rising salt water may bring higher ammonia concentrations to the surface and cause added contamination flux to the river. For these reasons, additional characterization of the aquifer to support the well field design for the interim action is required.

Previous results from field tests conducted in March 2002 are presented in the *Characterization* of Groundwater Brine Zones at the Moab, Utah, UMTRA Project Site, Phase I, June 2002 (DOE 2002a). Phase I results suggest that the design of the pumping well used to conduct the tests, which was screened from the upper fresh water zone (less than 5,000 milligrams per liter total dissolved solids [TDS]) to the lower brine unit, prevented the development of a definitive conclusion regarding the relationship between drawdown in a remediation extraction well and upwelling in the underlying brine zone. For this reason, additional testing (Phase II) was conducted with a well screened only in the upper fresh water zone. Data collected from the August 2002 short-term aquifer tests are presented in Calculation No. Moab 10–2002–03–03–00, titled *Aquifer Test Data Analyses (Phase II, Part 1)* (DOE 2002c).

Purpose and Scope

This calculation set presents results for five different aquifer tests-two long-term and three short-term tests-conducted as Part 2 of the Phase II characterization. The first long-term test was performed in August 2002, and the second test was conducted in September 2002. The three short-term tests were conducted during November 2002. All work was performed in accordance with Addendum A of the *Work Plan for Characterization of Groundwater Brine Zones for Interim Action at the Moab, Utah, UMTRA Project Site* (DOE 2002b).

The methods used for and results from two long-term tests conducted in August and September 2002 are presented in this calculation set. The primary objectives of these tests were to determine the sustainable pumping rate for well 449 and to assess whether brine upconing will affect the shallow zone of the aquifer as a result of the long-term pumping. The November 2002 short-term aquifer tests, which were conducted to determine aquifer parameters for use as input to a flow model to support the design of the interim action well field, are also discussed in this report.

Procedures

Aquifer Test Procedures

Each aquifer test designed to characterize the shallow zone of the alluvial aquifer (i.e., August and September 2002 long-term tests and November 2002 short-term tests) was conducted using well 449 as the pumping well, equipped with a 4-inch submersible pump with the intake set at a depth of approximately 27 feet below top of casing (ft btoc). In addition to monitoring water level response in well 449 during the long-term tests, water level data were collected from wells 450, PW01, PZ1S, PZ1M, and PZ1D2 (Figure 1). Water levels in well 406 (located approximately 220 ft northwest of 449) were measured to monitor background ground water fluctuations.

All water level responses were measured using pressure transducers and manually with electric sounders. Water generated from each test was discharged 200 ft southwest of the pumping well and observation wells.

On November 5 and 6, 2002, three additional observation wells (0460, 0461, and 0462) and one piezometer (0463) were installed within the PW01 cluster. These wells, which were also equipped with pressure transducers, were installed within approximately 10 ft of well 449 to measure drawdown during the November 2002 short-term aquifer tests. Piezometer 463 was installed to determine if pumping from well 449 produced vertical groundwater flow during the short-term tests. Table 1 lists the screened intervals and distance from the pumping well 449 for each observation well associated with these tests.

Location	Screen Interval (ft bgs)	Distance from Pumping Well 449 (ft)
0449	13.6 – 27.6	na
0450	13.0 – 28.0	14.9
0460	15.4 – 20.3	3.3
0461	15.1 – 20.0	6.4
0462	15.4 – 20.3	10.4
0463	na	2.1
SMI–PW01	20.1-60.1	11.8
SMI-PZ1S	13.9 – 19.1	16.4
SMI–PZ1M	55.5 – 60.8	12.0
SMI–PZ1D	69.8 – 75.0	18.5

Table 1.	Well Screen	Interval and	Distance From	n the Pumping	Well 449
----------	-------------	--------------	---------------	---------------	----------

Notes:

na = not applicable; ft bgs = feet below ground surface

Drawdown and residual drawdown data collected during the three aquifer tests in November were analyzed using AquiferWin32 (Environmental Simulations, Inc., Version 2.17). Drawdown data collected from wells in which a significant response was measured were analyzed using a variety of methods. For tests in which significant drawdown data were measured in at least three observation wells, the Distance-Drawdown Method (e.g., Driscoll 1989), as described in Kruseman and DeRidder (1994), was used to analyze the data. Residual drawdown data were analyzed using the Theis Recovery Method (1935) for unconfined aquifers (Kruseman and DeRidder 1994).

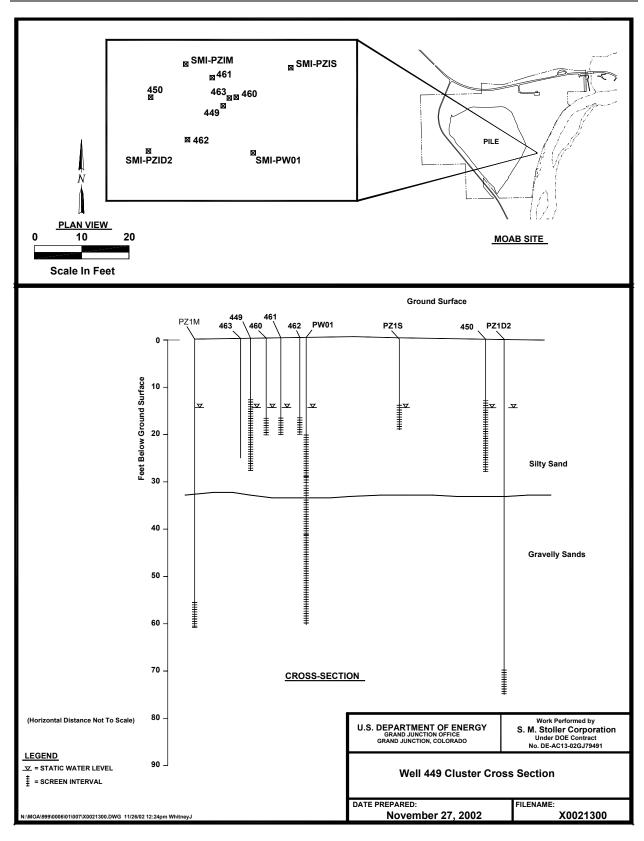


Figure 1. Well 449 Cluster Map and Cross Section

Ground Water Sampling

The following ground water sampling procedures applied to the long-term aquifer tests. Samples were not collected during the short-term tests. Before the start of the August/September 2002 long-term aquifer test, baseline ground water samples were collected from pumping well 449 and observation wells 450, PZ1S, PW01, and PZ1M. As with ground water samples collected before and during previous tests at this location (DOE 2002a), samples were collected using a peristaltic pump, with the pump intake attached to the end of a line that was lowered down the well to the desired depths. Prior to the collection of each sample, the intake line was purged to ensure that the sample collected was representative of the desired depth.

To confirm that the line was adequately purged, a YSI meter was set up at the surface to monitor temperature, pH, and conductivity of the discharge from the peristaltic pump. The sample was not collected until the field parameters stabilized.

The samples were filtered in the field using a 0.45 micrometer filter and collected in a 500-milliliter (mL) high-density polyethylene container and preserved. Each sample was analyzed at the Grand Junction Office Environmental Sciences Laboratory for density, conductivity (which was later converted to specific conductance), ammonia (as N), chloride, sulfate, and uranium. A 125-mL split of each sample was submitted to the Grand Junction Office Analytical Chemistry Laboratory for TDS analysis.

In Situ Specific Conductance Data Collection

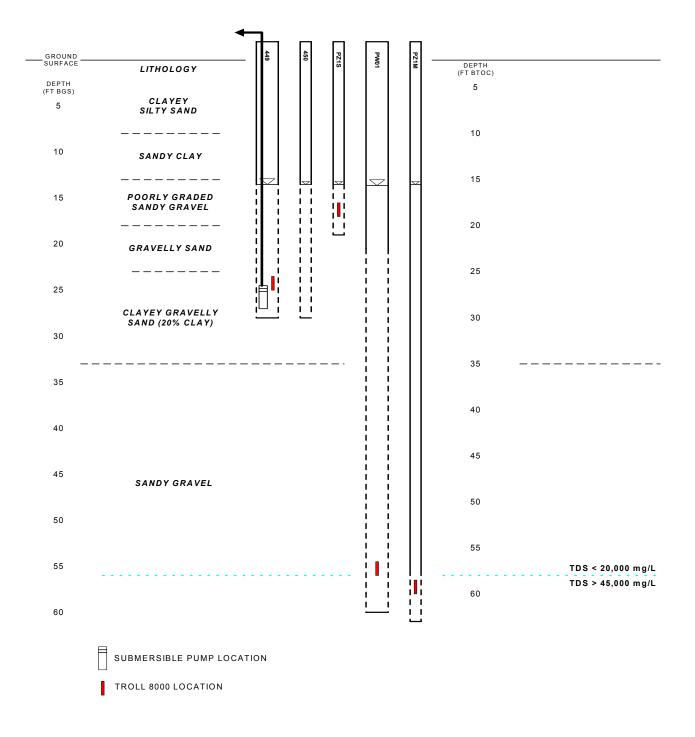

To further evaluate the impact of pumping from the shallow zone on brine upconing, Troll 8000 probes were installed in pumping well 449 and observation wells PZ1S, PW01, and PZ1M. These probes are designed to frequently log the ground water temperature, pH, and conductivity (which can then be converted to specific conductance) inside a well. Although the specific conductance data associated with the ground water samples are more accurate, the downhole probes can detect relative changes in conductivity that may indicate changes in the ground water flow system.

Figure 2 shows the location of each probe. A probe was installed inside well PW01 at a depth of 58 ft btoc because previous studies (DOE 2002a) have shown that conductivity increases sharply at this depth. As a result, any fluctuation in conductivity detected by a probe set just above this boundary may indicate upward migration of the brine in the alluvial aquifer deep zone.

Results—August 2002 Long-Term Aquifer Test

Before the start of this long-term aquifer test, ground water samples were collected from pumping well 449 and observation wells 450, PZ1S, PW01, and PZ1M to determine baseline water chemistry conditions within the wells. Figure 3 shows the sample depths and results of the baseline sampling at the pumping and observation wells before the aquifer test.

An aquifer test was started at 15:00 on August 22, 2002, pumping 3 gallons per minute (gal/min) from well 449. The submersible pump intake was set at a depth of approximately 27 ft btoc. After approximately 16 hours of pumping, ground water samples were collected from the well, the 449 discharge line, and from each of the four observation wells.

DOE/Grand Junction Office January 2003

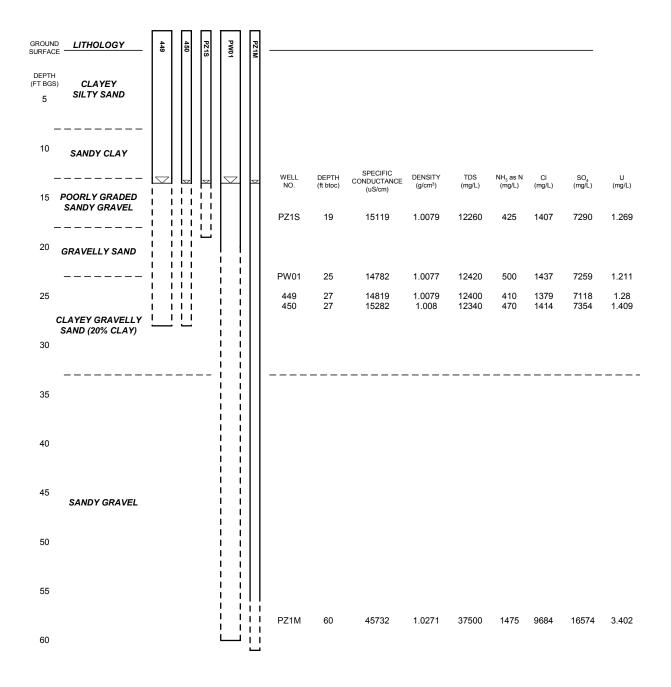


Figure 3. Baseline Sampling Results for the August 2002 Long-Term Aquifer Test

August 2002 Long-Term Aquifer Test—Water Level Data

This test was designed to run for a minimum of 4 weeks. However, after only approximately 20 hours of pumping, a fitting on the discharge line broke, and the pump instantly started pumping at its maximum pumping rate. Once the broken fitting was discovered, the test was shut down.

Figure 4 presents the water level response in pumping well 449, observation wells 450 and PW01, and background well 406 during the entire time that well 449 was pumped. As the figure shows, there was no response to pumping in observation well 450, which is located 14.9 ft from the pumping well and screened over the same interval. This lack of response is significant because it occurred during the time period when there was maximum drawdown in the pumping well after the discharge line fitting broke. The behavior of water levels in observation well 450 was identical to that in background well 406 (located 220 ft northeast of the pumping well), suggesting the cone of depression extended less than 15 ft from the pumping well during the test. Figure 4 shows observation well PW01 also did not respond to the pumping of well 449.

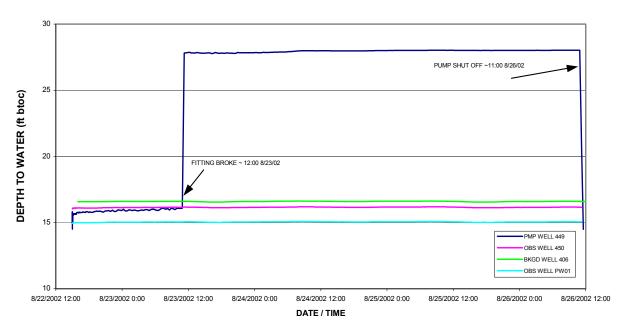


Figure 4. August 2002 Long-Term Aquifer Test Depth to Water Data

Because of the lack of control of the pumping rate during the test, analysis of any recovery data would not have provided representative aquifer parameter estimates (Kruseman and DeRidder 1994). As a result, recovery data were not analyzed.

August 2002 Long-Term Aquifer Test—Ground Water Sampling Data

Table 2 presents the analytical results from the samples collected during this test. Appendix A contains a copy of the ESL data report. The specific conductance, density, and TDS data provide indicators of whether pumping from well 449 drew the brine upwards. With the exception of observation well PW01, the data in Table 2 indicate no significant changes in these parameters in the pumping well or observation wells during the test.

Sample Location/Depth	Date/Time Collected	Time Since Test Started (hours)	Density (g/cm³)	Specific Conductance (µS/cm)	Ammonia NH₃-N (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	SO₄/CI Ratio	Uranium (mg/L)	TDS (mg/L)
PMP WELL 449 / 27	8/22/02 13:05	-1.9	1.0079	14,819	410	1,379	7,118	5.16	1.28	12,400
PMP WELL 449 / 27	8/23/02 7:15	16.25	1.0075	15,288	420	1,407	7,274	5.17	1.236	12,320
OBS WELL 450 / 27	8/22/02 13:30	-1.5	1.008	15,282	470	1,414	7,354	5.20	1.409	12,340
OBS WELL 450 / 27	8/23/02 7:20	16.3	1.0078	15,818	460	1,452	7,563	5.21	1.393	12,640
OBS WELL PW01 / 25	8/22/02 13:50	-1.2	1.0077	14,782	500	1,437	7,259	5.05	1.211	12,420
OBS WELL PW01 / 25	8/23/02 7:40	16.6	1.0089	16,205	575	1,342	8,066	6.01	1.503	13,230
OBS PZ1S / 19	8/22/02 14:00	-1	1.0079	15,119	425	1,407	7,290	5.18	1.269	12,260
OBS PZ1S / 19	8/23/02 7:30	16.5	1.0078	15,317	450	1,412	7,310	5.18	1.173	12,300
OBS PZ1M / 60	8/22/02 14:05	-0.9	1.0271	45,732	1,475	9,684	16,574	1.71	3.402	37,500
OBS PZ1M / 60	8/23/02 7:50	16.8	1.028	46,993	525	10,570	16,580	1.57	2.84	39,050

Notes:

Depth refers to feet below top of casing. A minus sign indicates that the sample was collected prior to the start of the test. PMP WELL = pumping well OBS WELL = observation well

mg/L = milligrams per liter g/cm³ = grams per cubic centimeter μ S/cm = microsiemens per centimeter

Differences in the sulfate/chloride ratio over the pumping period may be indicative of a well being affected by different water types (DOE 2002a). The ratio change shown in the data from observation well PW01 (see Table 2) located 11.8 ft from the pumping well is likely a function of the well's screened interval. This observation well is screened from approximately 20 to 60 ft below ground surface and provides a direct conduit from the shallow aquifer zone to the deeper alluvial aquifer zone.

August 2002 Long-Term Aquifer Test—In Situ Specific Conductance Data

Figures 5, 6, 7, and 8 present the data collected from wells 449, PZ1S, PW01, and PZ1M, respectively. The data from each location were compared to the water level changes in pumping well 449 during the August 2002 long-term aquifer test.

The Troll 8000 data collected from the pumping well showed a significant specific conductance decrease once the fitting on the discharge line broke and the water level reached the pump intake (Figure 5). However, these data are misleading because the probe was set at approximately the same depth as the pump intake; consequently, the probe was not fully submersed during this time and provided unreliable data. Figure 6 indicates that pumping from well 449 did not affect observation well PZ1S.

As shown in Figure 7, observation well PW01 showed a significant increase in specific conductance once the test was started. This response could be attributed to the direct conduit well PW01 provides to the brine zone as a result of its screened interval. The response observed in observation well PZ1M does not appear to be associated with the changes in drawdown measured in well 449 (Figure 8).

Results—September 2002 Long-Term Aquifer Test

After the discharge line was repaired, another attempt was made to complete a long-term test. The well was further developed (for approximately 3 hours), and another long-term test began at 15:30 on September 4, 2002, again using a flow rate of 3 gal/min and the pump intake set approximately 27 ft btoc. To determine baseline conditions ground water samples were collected from pumping well 449 and observation wells 450, PZ1S, PW01, and PZ1M prior to starting this long-term aquifer test. Figure 9 shows the sample depths and results of the baseline sampling at the pumping and observation wells before the start of the aquifer test.

After approximately 16, 190, and 356 hours of pumping (September 5, 12, and 19, respectively), ground water samples were collected from pumping well 449, its discharge line, and each of the four observation wells.

September 2002 Long-Term Aquifer Test—Water Level Data

Although the second test was also designed to run for a minimum of 4 weeks, the pump unexpectedly stopped working after only 17 days of pumping. Consequently, no recovery data were collected. Figure 10 presents the water level response in pumping well 449, observation wells 450 and PW01, and background well 406 during the pumping period.

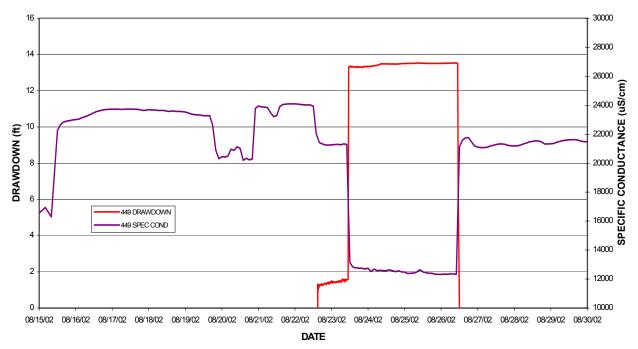


Figure 5. Troll 8000 Specific Conductance Data From Well 449 (Pumping Well), August 2002 Test

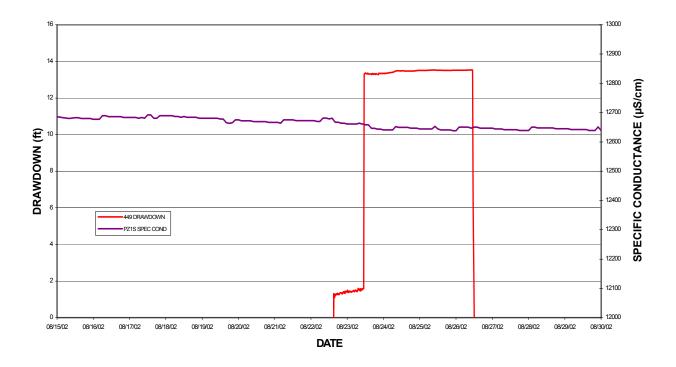


Figure 6. Troll 8000 Specific Conductance Data From Well PZ1S, August 2002 Test

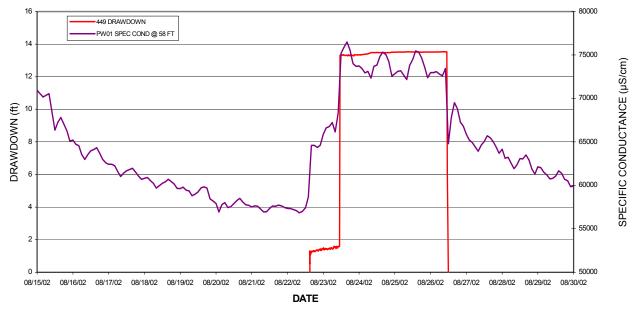


Figure 7. Troll 8000 Specific Conductance Data From Well PW01, August 2002 Test

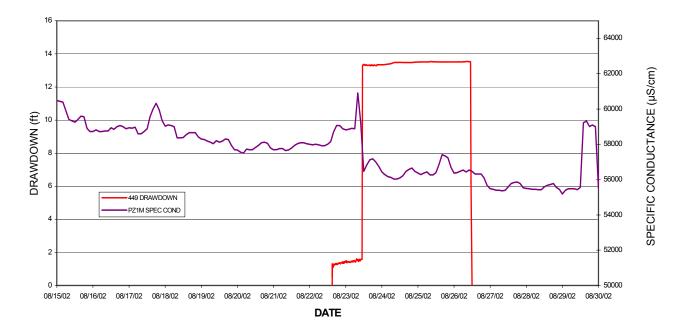


Figure 8. Troll 8000 Specific Conductance Data From Well PZ1M, August 2002 Test

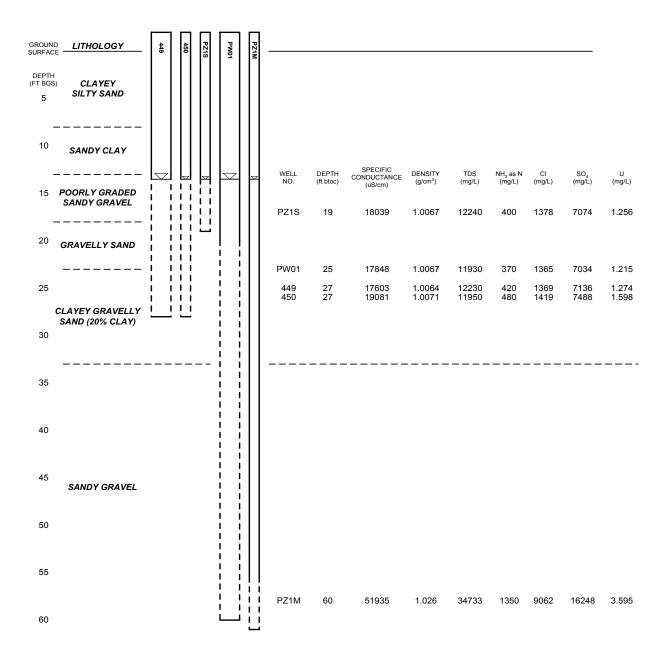


Figure 9. Baseline Sampling Results for the September 2002 Long-Term Aquifer Test

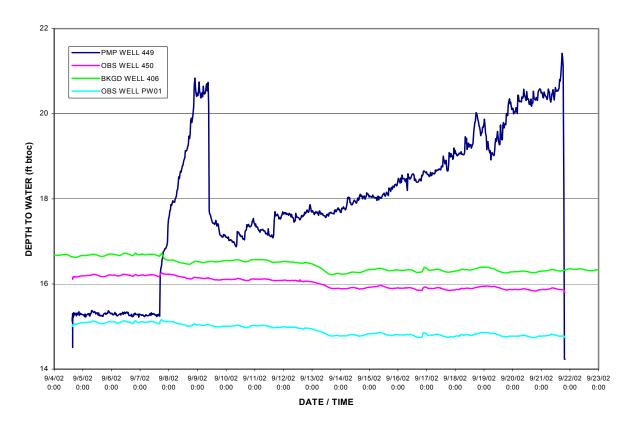


Figure 10. Depth to Water Data During the September 2002 Long-Term Aquifer Test

As Figure 10 shows, drawdown in pumping well 449 increased dramatically on September 7 for 2 days, abruptly partially recovered on September 9, and then slowly increased until the pump stopped working on September 22. The pumping rate was measured intermittently during the test. These measurements combined with continually monitored drawdown suggested that a pumping rate of 2.9 to 3.1 gal/min was maintained. The observed water level changes inside the pumping well, particularly the anomalous drawdown observed between September 4 and 10, may have occurred in response to well efficiency problems associated with this well (DOE 2002c).

Similar to the first long-term aquifer test, water level data collected during the second test indicated no response in the observation wells. The water level behavior in observation well 450 was identical to that in background well 406, again suggesting the cone of depression extended less than 15 ft from the pumping well during this longer test.

September 2002 Long-Term Aquifer Test—Ground Water Sampling Data

Table 3 presents analytical results from the samples collected during the second long-term test. Appendix A contains a copy of the ESL data report for these samples. As with the first long-term test, the pumping well and most of the observation wells indicated no significant changes in water quality parameters during the test. The one exception to this rule occurred in well PW01, which showed noticeable increases in specific conductance and concentrations of ammonia, sulfate, uranium, and TDS during the test.

Sample Location/Depth	Date/Time Collected	Time Since Test Started (hours)	Density (g/cm³)	Specific Conductance (µS/cm)	Ammonia NH₃-N(mg/L)	Chloride (mg/L)	Sulfate (mg/L)	S0₄/Cl Ratio	Uranium (mg/L)	TDS (mg/L)
PMP WELL 449 / 27	9/4/02 9:45	-5.75	1.0063	17,321	360	1,358	6,980	5.14	1.305	12,320
PMP WELL 449 / 27	9/4/02 14:20	-1.2	1.0064	17,603	420	1,369	7,136	5.21	1.274	12,230
PMP WELL 449 / 27	9/5/02 7:57	16.5	1.0068	17,414	400	1,387	7,078	5.10	1.22	12,070
PMP WELL 449 / 27	9/12/02 13:35	190.1	1.0064	17,528	420	1,366	7,083	5.19	1.217	12,280
PMP WELL 449 / 27	9/19/02 11:18	355.6	1.0062	17,212	410	1,358	7,083	5.22	1.21	12,050
OBS WELL 450 / 27	9/4/02 14:10	-1.3	1.0071	19,081	480	1,419	7,488	5.28	1.598	11,950
OBS WELL 450 / 27	9/5/02 7:37	16.1	1.0071	19,261	550	1,408	7,424	5.27	1.675	12,820
OBS WELL 450 / 27	9/12/02 13:50	190.3	1.0073	19,220	560	1,452	7,753	5.34	1.686	12,840
OBS WELL 450 / 27	9/19/02 11:27	356	1.0066	18,203	520	1,448	7,694	5.31	1.627	11,830
OBS WELL PW01 / 25	9/4/02 14:00	-1.5	1.0067	17,848	370	1,365	7,034	5.15	1.215	11,930
OBS WELL PW01 / 25 OBS WELL PW01 / 25	9/5/02 7:50 9/12/02 13:58	16.3 190.5	1.0072	19,157	510 660	1,325	8,003 8,722	6.04 6.52	1.401 1.754	12,920
OBS WELL PW01/25 OBS WELL PW01/25	9/19/02 11:42	356.2	1.0087	20,529 20,009	670	1,338 1,329	8,722 8,911	6.71	1.754	14,020 14,090
OBS PZ1S / 19	9/4/02 14:05	-1.4	1.0067	18,039	400	1,378	7,074	5.13	1.256	12,240
OBS PZ1S / 19	9/5/02 7:44	16.25	1.0067	17,603	440	1,396	7,151	5.12	1.1	12,240
OBS PZ1S / 19	9/12/02 14:05	190.6	1.0068	18,179	430	1,362	7,038	5.17	1.195	12,180
OBS PZ1S / 19	9/19/02 11:34	356.1	1.0062	17,223	430	1,388	7,197	5.19	1.295	11,990
OBS PZ1M / 60	9/4/02 14:15	-1.25	1.026	51,935	1,350	9,062	16,248	1.79	3.595	34,733
OBS PZ1M / 60	9/5/02 7:30	16	1.026	50,998	1,450	9,174	16,463	1.79	3.523	35,067
OBS PZ1M / 60	9/12/02 13:47	190.25	1.0267	53,127	1,400	9,568	16,247	1.70	3.689	35,767
OBS PZ1M / 60	9/19/02 11:49	356.3	1.0284	54,123	1,500	11,269	16,329	1.45	3.435	38,700

Table 3. Sample Results From the September 2002 Long-Term Aquifer Test

Notes:

Depth refers to feet below top of casing.

A minus sign indicates that the sample was collected prior to the start of the test.

PMP = pumping well

OBS = observation well

mg/L = milligrams per liter g/cm³ = grams per cubic centimeter

 μ S/cm = microsiemens per centimeter

The data in Table 3 suggest that the increase in specific conductance may be the result of increasing levels of dissolved sulfate. If the increase in specific conductance were associated with brine upconing, then the chloride concentrations would also be expected to increase. Table 3 indicates the chloride concentrations remained constant throughout the pumping phase.

Figure 11 provides a plot of specific conductance results for all wells during the test interval, and Figure 12 provides a plot of associated sulfate/chloride ratios. With the exception of well PW01, the data presented in Figure 12 suggest that pumping from well 449 did not impact the wells within the cluster.

September 2002 Long-Term Aquifer Test—In Situ Specific Conductance Data

As in the case of the first attempt at a long-term test, data from Troll 8000 probes were used during the second long-term test to evaluate the impact of pumping from the shallow zone on brine upconing. Figure 2 shows the location of the probe used in each well.

Figures 13, 14, 15, and 16 present the Troll 8000 specific conductance data collected from wells 449, PZ1S, PW01, and PZ1M, respectively, during the second long-term test. This data from each location are compared to water level changes in pumping well 449.

Figure 13 shows that specific conductance in well 449 increased noticeably during the initial 4 days of the test and then tended to decrease slightly as the drawdown in the well increased. Once the pump was shut off, there was a slight increase in specific conductance. Other data indicate that pumping from well 449 did not impact observation well PZ1S (Figure 14). The specific conductance data collected from the probe within well PZ1M also showed no correlation with well 449 drawdown (Figure 16).

As shown in Figure 15, specific conductance in observation well PW01 showed a significant increase once the test was started on September 4, another distinct increase with the spike in drawdown during September 8 and 9, and relatively constant values during the remainder of pumping. Such behavior was similar to that observed in this well during the first long-term test, and was assumed to result from the deep screened interval for well PW01.

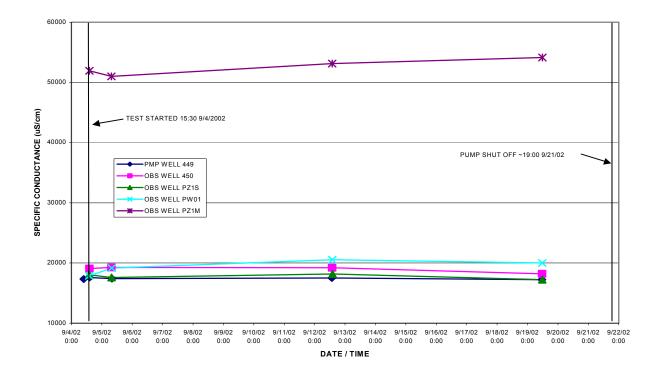


Figure 11. Specific Conductance versus Time, September 2002 Long-Term Aquifer Test

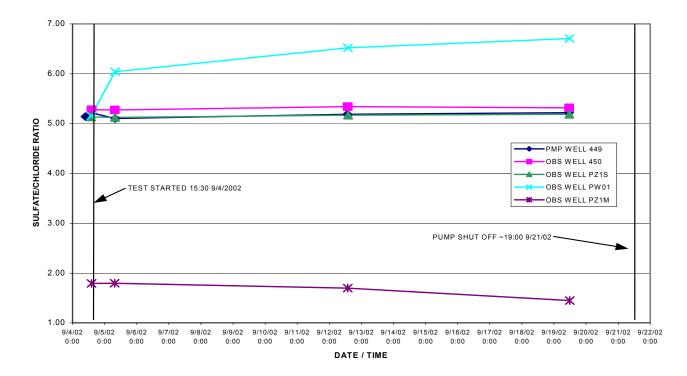


Figure 12. Sulfate/Chloride Ratio versus Time, September 2002 Long-Term Aquifer Test

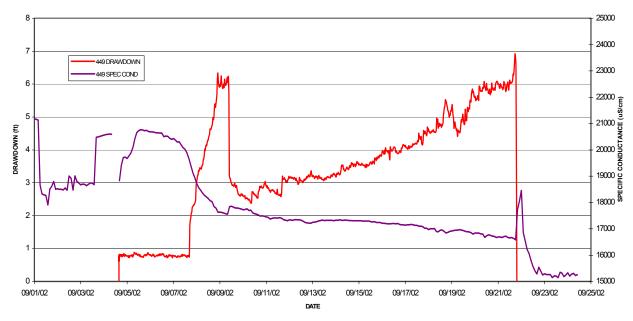


Figure 13. Troll 8000 Specific Conductance Data From Well 449, During the September 2002 Long-Term Test

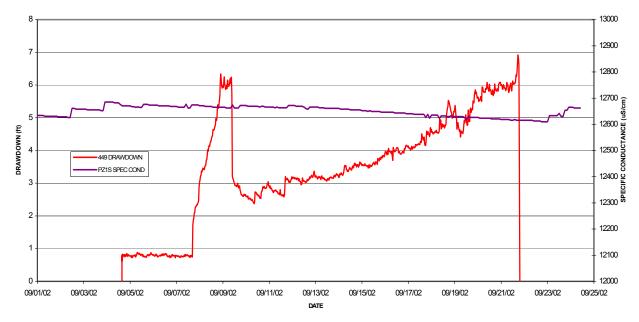


Figure 14. Troll 8000 Specific Conductance Data From Well PZ1S, During the September 2002 Long-Term Test

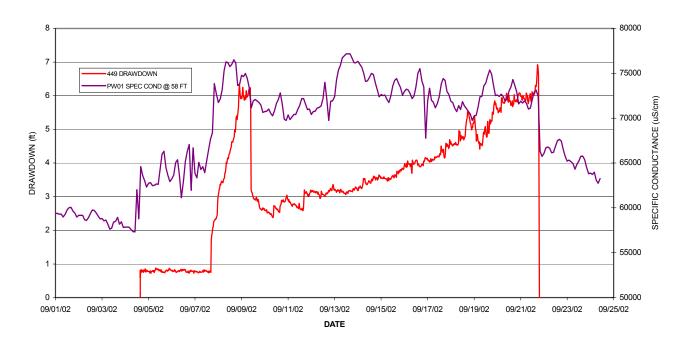


Figure 15. Troll 8000 Specific Conductance Data From Well PW01, During the September 2002 Long-Term Test

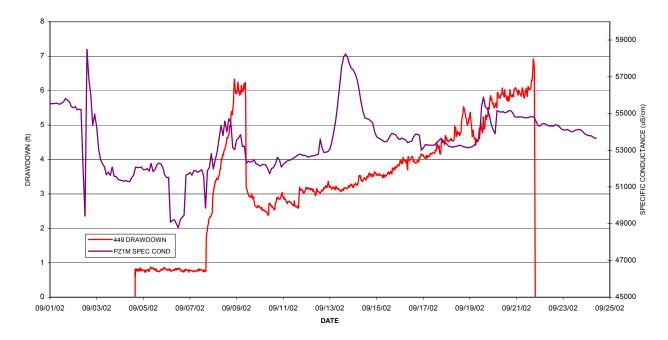


Figure 16. Troll 8000 Specific Conductance Data From Well PZ1M, During the September 2002 Long-Term Test

Results—November 2002 Short-Term Aquifer Tests

Review of the drawdown data collected from the long-term tests suggested that the apparent inefficiency of the pumping well (well 449) could be remedied with additional well development and a shorter pumping period. The data also indicated that a series of short-term tests (lasting less than 24 hrs) could be designed to provide better estimates of aquifer parameters and more fully characterize the shallow zone of the alluvial aquifer.

Prior to starting these short-term tests, pumping well 449 was further developed and additional observation wells were installed. Between November 12 and November 14, 2002, three short-term aquifer tests were conducted using well 449 as the pumping well. Two major observations were made during each of the three short-term tests:

- (1) Steady-state conditions were observed in the pumping well (well 449) and in all observation wells affected by the test pumping, and
- (2) The farthest distance away from the pumping well at which drawdown was observed was 10.4 ft, at well 462.

Though it is possible that any of a number of factors could have provided an explanation for these observations, it was likely that such phenomena were the result of upward vertical movement of groundwater from relatively high permeability sandy gravels and gravelly sands located a few to several feet below the shallow, pumped zone. This meant that, in effect, the more permeable sediments at depth were acting as a zone of infinite water supply (i.e., a constant head boundary). Under this scenario, the pumping and observation wells behave as if they are located in a leaky aquifer, with recharge to the aquifer occurring from an aquifer horizon located below an aquitard at the bottom of the pumped zone. Unfortunately, little to no data exist to support the presence of a thick and pervasive aquitard layer at the base of the tested zone. Nonetheless, some of the estimates of shallow aquifer hydraulic parameters were derived using leaky aquifer concepts (e.g., Hantush and Jacob, 1955; Kruseman and de Ridder, 1994).

In the following sections, water level data collected during each test are discussed individually. On the other hand, in-situ specific conductance data collected by the Troll 8000 instruments from all three tests are combined and analyzed together.

4.3 gal/min Short-Term Aquifer Test—Water Level Data

The first short-term test was started at 14:00 on November 12, 2002, using a submersible pump to withdraw 4.3 gal/min from well 449. After 18 hours of pumping, the pump was shut off and residual drawdown data were collected. Table 4 presents the pumping drawdown data collected at each well after 18 hours of pumping. Figure 17 presents the water level responses in pumping well 449, observation wells 450, 460, 461, and 462, and background well 406 during the pumping period.

Location	Distance from Pumping Well 449 (ft)	Drawdown Measured After Pumping 4.3 gal/min from Well 449 (ft)
449	na	1.69
450	14.9	0.07
460	3.3	0.48
461	6.4	0.18
462	10.4	0.12
463	2.1	0.0
SMI–PW01	11.8	0.10
SMI–PZ1S	16.4	0.10
SMI–PZ1M	12.0	0.0
SMI–PZ1D	18.5	0.0

Notes:

na = not applicable; ft = feet

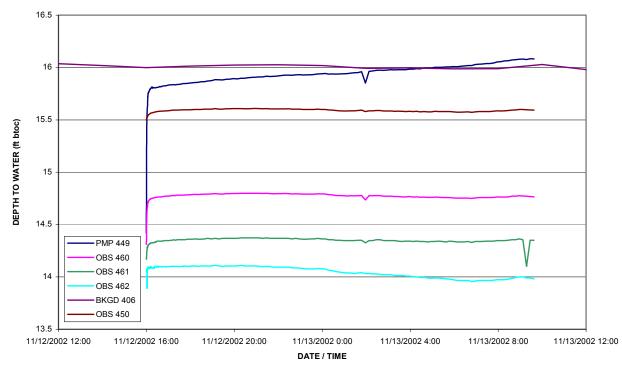


Figure 17. Depth to Water Data During the 4.3 gal/min Short-Term Aquifer Test

Prior to the test, the water level in piezometer 463 was rebounding after installation. This trend continued throughout the 4.3 gal/min pumping period and the well showed no response to pumping. During the pumping period, 0.06 ft of water level fluctuation was observed in background well 406.

Taking into account the small amount of drawdown measured during the test, observation well screened intervals, and background water level fluctuation, only the drawdown data from wells 460 and 461 were analyzed using the Hantush and Jacob Method (1955) for leaky aquifers. As previously mentioned, the conceptual model of the ground water flow system does not conform

to a classic leaky aquifer scenario. The conceptual model consists of a three-dimensional (3-D) ground water flow system that reaches steady state during the pumping period as a result of vertical ground water flow from very permeable sediments located below the pumped aquifer layer. The Hantush and Jacob Method (1955) was found to adequately simulate the 3-D flow system during the 4.3 gal/min short-term test. In addition to applying this leaky aquifer technique, residual drawdown data from the observation wells were analyzed using the Theis Recovery Method (1935), as adopted for unconfined aquifers.

Results of the analyses are presented in Table 5. Hydraulic conductivity estimates are based upon a 15-ft saturated thickness, which is the length of the pumping well screen interval. The AquiferWin32 plots used for the analyses are contained in Appendix B.

		Analysis Method						
Well	H	Hantush and Jacob Theis Recovery						
	T (ft ² /d)	K (ft/d)	r/B	S	T (ft²/d)	K (ft/d)		
460	410.2	27.3	0.28	0.011	402.0	26.8		
461	810.5	54.0	0.34	0.020	1098.2	73.2		
lotos:						-		

Table 5. Well 449 4.3 gal/min Short-Term Aquifer Test Results for Transmissivity (T),Hydraulic Conductivity (K) and Storage Coefficient (S)

Notes:

T = Transmissivity (ft²/day); K = Hydraulic Conductivity (ft/day);

r/B = Hantush and Jacob Type Curve Used For Analysis (dimensionless);

S = Storage Coefficient (dimensionless)

As shown in Table 5, analysis of drawdown data collected from observation well 460 produced an aquifer transmissivity of 410.2 ft²/day with a storage coefficient of 0.011, while analysis of the residual drawdown in this well during the recovery test resulted in a transmissivity of 402.0 ft²/day. Analysis of drawdown data from observation well 461 resulted in a significantly larger transmissivity of 810.5 ft²/day and a storage coefficient of 0.02. Residual drawdown analysis at well 461 produced an estimated transmissivity of 1098.2 ft²/day. The larger estimates of T and K were derived from well 461, which is located further from the pumping well (6.4 ft) than well 460 (3.3 ft).

The estimates of aquifer hydraulic conductivity resulting from the initial short-term test in November were considerably different from previous estimates of this parameter based on measured drawdowns in the pumping well only (DOE 2002c). Specifically, the earlier estimates of K ranged from 0.5 to 7.1 feet per day, whereas the K values produced from the 4.3 gal/min test in November range from 27.3 to 73.2 ft/day (Table 5). These observations are significant for two reasons. First, the aquifer hydraulic conductivity is larger than was previously thought on the basis of aquifer test analysis. Second, the well efficiency problems suspected in well 449 during the earlier short-term tests do appear to radically affect test analysis findings.

The two estimates of storage coefficient produced by the 4.3 gal/min test in November (0.011 and 0.020) are also significant. Both values are much smaller than the specific yield values that would be expected in an unconfined aquifer, but are also much larger than S values that would be expected from a well screened over only 15 vertical feet of a confined aquifer. On the basis of these estimated storage coefficients, it appears that, over relatively short pumping periods, water delivered to the pumping well (well 449) in the shallow system is derived from both elastic

storage (characteristic of a confined aquifer) and gravity drainage (characteristic of an unconfined aquifer).

The general findings derived from the 4.3 gal/min test regarding transmissivity, hydraulic conductivity, and storage coefficients were also observed in subsequent short-term tests in November 2002, as discussed in the following sections.

7.5 gal/min Short-Term Aquifer Test—Water Level Data

The second short-term test was started at 14:00 on November 13, 2002, using a submersible pump to withdraw 7.5 gal/min from well 449. After approximately 10.5 hours of pumping, the pump shut off unexpectedly, and residual drawdown data were not collected. Table 6 presents the measured drawdown data in all wells after 10.5 hours of pumping at a rate of 7.5 gal/min. Figure 18 presents the water level response in pumping well 449, observation wells 450, 460, 461, and 462, and background well 406 during the pumping period.

Location	Distance from Pumping Well 449 (ft)	Drawdown Measured After Pumping 7.5 gal/min from Well 449 (ft)
449	na	4.10
450	14.9	0.20
460	3.3	0.72
461	6.4	0.32
462	10.4	0.20
463	2.1	0.0
SMI–PW01	11.8	0.23
SMI-PZ1S	16.4	0.22
SMI–PZ1M	12.0	0.14
SMI–PZ1D	18.5	0.0

Table 6. Drawdown Measured During the 7.5 gal/min Short-Term Aquifer Test

Notes:

na = not applicable; ft = feet

As in the case of the 4.3 gal/min test, the water level in piezometer 463 showed no response to pumping at a higher rate of 7.5 gal/min. During the pumping period, 0.05 ft of water level fluctuation was observed in background well 406.

Again taking into account the small amount of drawdown measured during the test, the screened intervals of observation wells, and monitored background fluctuations, only wells 460 and 461 were analyzed using the Hantush and Jacob Method (1955). The drawdown data collected from well 462, which is located 10.4 ft from the pumping well, did not provide a reasonable fit to any of the Hantush and Jacob type curves; however, measured drawdown in this well was used to estimate the transmissivity and storage coefficient via the Distance-Drawdown Method.

Table 7 presents the results of both the Hantush and Jacob and distance-drawdown analyses. Hydraulic conductivity estimates are based on an assumed 15-ft saturated thickness, which is the length of the pumping well screen interval. The AquiferWin32 plots used for the analyses are contained in Appendix B.

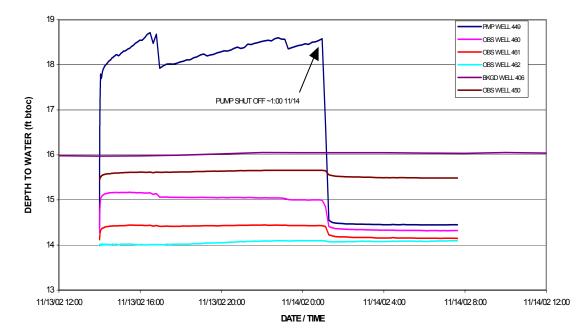


Figure 18. Depth to Water Data During the 7.5 gal/min Short-Term Aquifer Test

Table 7. Well 449 7.5 gal/min Short-Term Aquifer Test Results for Transmissivity (T), HydraulicConductivity (K) and Storage Coefficient (S)

		Analysis Method						
Well(s)	Н	antush an	d Jacob		Distar	nce-Drawdo	own	
	T (ft²/d)	K (ft/d)	r/B	S	T (ft ² /d)	K (ft/d)	S	
460	406.0	27.1	0.30	0.010	na	na	na	
461	1023.2	68.2	0.29	0.020	na	na	na	
460/461/462	na	na	na	na	399.5	26.6	0.006	

Notes:

r/B = Hantush and Jacob Type Curve Used For Analysis (dimensionless);

S = Storage Coefficient (dimensionless); na = not applicable

Similar to the trend shown in the 4.3 gal/min test, analysis of observation well 460 data produced lower estimates of the transmissivity and storage coefficient compared to the results obtained from observation well 461. Analysis of drawdown data from observation well 460 and 461 estimated transmissivities of 406.0 and 1023.2 ft²/day, respectively. The storage coefficient estimated from analysis of observation 460 was 0.010, while a storage coefficient of 0.020 was estimated using well 461 data. Analysis of the distance drawdown data collected from observation wells 460, 461, and 462 produced an estimated transmissivity of 399.5 ft²/day, a hydraulic conductivity of 26.6 ft/day, and a storage coefficient of 0.006.

7.1 gal/min Short-Term Aquifer Test—Water Level Data

The third short-term test was conducted so that a residual drawdown analysis could be performed, which was not achieved during the earlier 7.5 gal/min test, after equipment failure. A

T = Transmissivity (ft²/day); K = Hydraulic Conductivity (ft/day);

test was started at 09:15 on November 14, 2002, pumping 7.1 gal/min from well 449. After 4 hours of pumping, the pump was shut off, and residual drawdown data were collected. Table 8 presents the drawdown data at all wells after 4 hours of pumping 7.1 gal/min. Figure 19 presents the water level response in pumping well 449, observation wells 450, 460, 461, and 462, and background well 406 during the pumping period.

Location	Distance from Pumping Well 449 (ft)	Drawdown Measured After Pumping 7.1 gal/min from Well 449 (ft)
449	na	3.85
450	14.9	0.13
460	3.3	0.64
461	6.4	0.25
462	10.4	0.17
463	2.1	0.0
SMI–PW01	11.8	0.14
SMI-PZ1S	16.4	0.14
SMI–PZ1M	12.0	0.0
SMI–PZ1D	18.5	0.0

Table 8. Drawdown Measured During the 7.1 gal/min Short-Term Aquifer Test

Notes:

na = not applicable; ft = feet

Similar to the previous two short-term tests, the water level in piezometer 463 showed no response to pumping. During the pumping period, 0.03 ft of water level fluctuation was measured in background well 406.

As with the previous tests, only the drawdown data from wells 460 and 461 were analyzed using the Hantush and Jacob Method (1955) for leaky aquifers. Similar to the 7.5 gal/min test, the measured drawdowns in wells 460, 461, and 462 were analyzed using the Distance-Drawdown Method. Residual drawdown data from observation wells 460 and 461 were also analyzed using the Theis Recovery Method (1935), as applied to unconfined aquifers.

Results of all analyses are presented in Table 9. Hydraulic conductivity estimates are based on a 15 ft saturated thickness, which is the length of the pumping well screen interval. The AquiferWin32 plots used for the analyses are contained in Appendix B.

Similar to the 4.3 and 7.5 gal/min short-term tests, analysis of drawdown data from observation well 461 produced a significantly higher transmissivity than estimated from well 460 data. Analysis of drawdown data collected from observation well 460 estimated a transmissivity of 525.7 ft²/day, while drawdown data from observation well 461 suggested a transmissivity of 1064.4 ft²/day. Residual drawdown data analysis showed the same trend as transmissivity results from analysis of wells 460 and 461; 454.4 and 1,219.5 ft²/day, respectively. The distance-drawdown method resulted in an estimated transmissivity of 520.8 ft²/day. Storage coefficients estimated from analyses of the 7.1 gal/min data ranged from 0.015 to 0.031, again indicating release of ground water under both elastic storage and gravity drainage conditions.

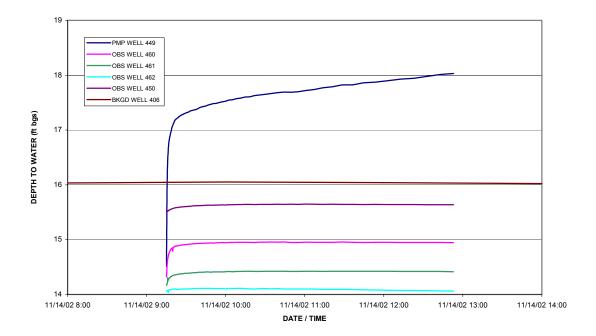


Figure 19. Depth to Water Data During the 7.1 gal/min Short-Term Aquifer Test

Table 9. Well 449 7.1 gal/min Short-Term Aquifer Test Transmissivity, Hydraulic Conductivity and Storage
Coefficient Results

	Analysis Method												
Well(s)	H	lantush ai	nd Jaco	b	Theis Ree	covery	Distance-Drawdown						
	T (ft ² /d) K (ft/d) r/B S		S	T (ft ² /d)	K (ft/d)	T (ft²/d)	K (ft/d)	S					
460	525.7	35.0	0.25	0.017	454.4	30.3	na	na	na				
461	1064.4	71.0	0.37	0.031	1219.5	81.3	na	na	na				
461/462/463	na	na	na	na	na	na	520.8	34.7	0.015				

Notes:

T = Transmissivity (ft^2 /day); K = Hydraulic Conductivity (ft/day);

r/B = Hantush and Jacob Type Curve Used For Analysis (dimensionless);

S = Storage Coefficient (dimensionless); na = not applicable

November 2002 Short-Term Aquifer Tests—In Situ Specific Conductance Data

Figures 20, 21, 22, and 23 present the Troll 8000 data collected from wells 449, PZ1S, PW01, and PZ1M, respectively during the three tests in November. These data are compared to water level changes in pumping well 449.

Figure 20 shows that the specific conductance measured in well 449 showed a steady increase during the 4.3 and 7.5 gal/min tests, but no distinct correlation with well 449 water levels. During the 7.1 gal/min test there was a slight decrease in the specific conductance in well 449. The data indicate that pumping from well 449 did not impact observation well PZ1S (Figure 21).

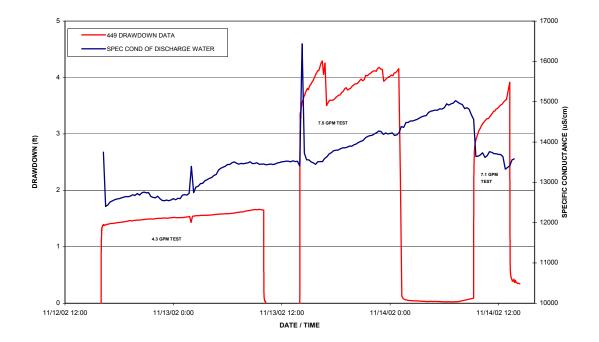


Figure 20. Troll 8000 Specific Conductance Data From Well 449, During the November 2002 Short-Term Tests

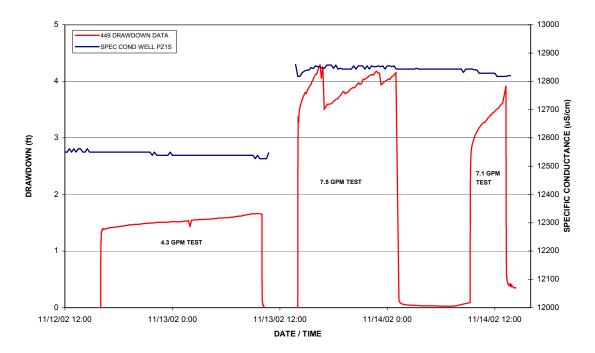


Figure 21. Troll 8000 Specific Conductance Data From Well PZ1S, During the November 2002 Short-Term Tests

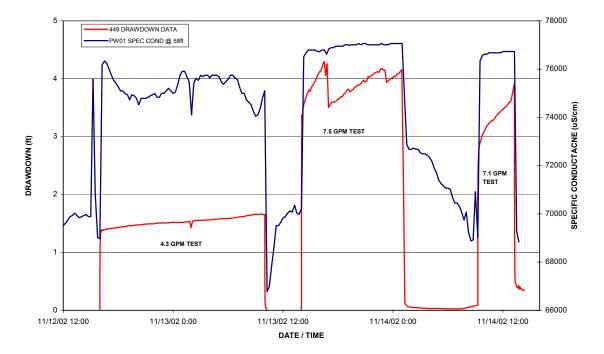
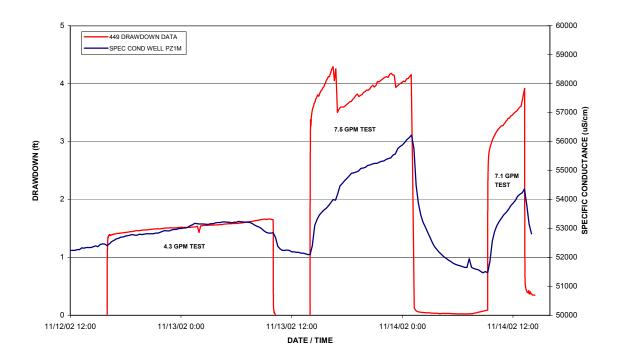



Figure 22. Troll 8000 Specific Conductance Data From Well PW01, During the November 2002 Short-Term Tests

As shown in Figure 22, specific conductance in observation well PW01 showed a significant increase during the short-term test pumping periods once the test was started. Specific conductance in well PZ1M also showed a response to pumping (Figure 23). The specific conductance increase in PZ1M was greater during the 7.5 and 7.1 gal/min tests in comparison to the specific conductance measured in this well during the 4.3 gal/min test.

Summary—Long-Term Aquifer Tests

The following is a summary of findings from the August and September 2002 long-term aquifer tests completed under Task 2 of the 2002 Work Plan (DOE 2002b):

- Long-term pumping at a rate of 3 gal/min from a well screened over the shallow, finergrained portion of the aquifer does not increase the specific conductance of the discharge water.
- Pumping from well 449 was not sufficient to affect an observation well located about 15 ft away.
- Long-term pumping from well 449 does affect well PW01 to some degree. However, this response may be a direct result of the length of screen in well PW01, which provides a conduit from the shallow aquifer zone to the deeper zone. Similar responses were observed from the Troll 8000 specific conductance data and the sulfate/chloride ratio data.
- The efficiency of well 449 likely decreased with increasing pumping time. An improvement in pumping well efficiency is expected when formal well design techniques (screen slot size and gravel pack size) are applied for the interim action pumping wells to be installed in the shallow zone.
- Both attempts at completing long-term tests were hampered by equipment problems. After 17 days of pumping during the second long-term test, no significant drawdown was measured in observation well 450, located just 14.9 ft from the pumping well. In addition, recovery data from the pumping well were either not analyzed due to loss of control of the pumping rate or not collected because the pumping stopped unexpectedly. As a result of inadequate information, aquifer parameters were not estimated from water level data collected from either long-term test.
- Data collected from these initial long-term tests suggest pumping from the shallow, finergrained portion of the aquifer does not result in brine migration through the subsurface on the scale observed from pumping a well screened over the deeper, more conductive zone (DOE 2002a). Ultimately, the observational method will be used to provide a long-term solution regarding brine migration.

Summary—Short-Term Aquifer Tests

The following is a summary of findings from the November 2002 short term aquifer tests completed under Task 2 of the 2002 Work Plan (DOE 2002b):

• Pumping well 449 can sustain approximately 7 gal/min for short periods of time (approximately 24 hours). This is in contrast to the initial step test conducted on this well, which indicated the well could not sustain over 3 gal/min. Specific capacities for the 4.3, 7.5,

and 7.1 gal/min short-term tests were 2.54, 1.83, and 1.84 gal/min/ft, respectively. The initial step test results showed a specific capacity of less than 0.41 gal/min/ft when the pumping rate was 4 gal/min.

• Table 10 presents a summary of the transmissivity, hydraulic conductivity, and specific storage results from the November 2002 short-term aquifer tests.

		Analysis Method										
Test	Well(s)	н	antush a	nd Jaco	b	Theis R	ecovery	Distance-Drawdown				
1000		T (ft²/d)	K (ft/d)	r/B	S	T (ft²/d)	K (ft/d)	T (ft²/d)	K (ft/d)	S		
4.3 gal/min	460	410.2	27.3	0.28	0.011	402.0	26.8	na	na	na		
	461	810.5	54.0	0.34	0.020	1098.2	73.2	na	na	na		
7.5 gal/min	460	406.0	27.1	0.30	0.010	na	na	na	na	na		
	461	1023.2	68.2	0.29	0.020	na	na	na	na	na		
	461/462/463	na	na	na	na	na	na	399.5	26.6	0.006		
7.1 gal/min	460	525.7	35.0	0.25	0.017	454.4	30.3	na	na	na		
	461	1064.4	71.0	0.37	0.031	1219.5	81.3	na	na	na		
	461/462/463	na	na	na	na	na	na	520.8	34.7	0.015		

Table 10. November 2002 Short-Term Aquifer Test Summary

Notes:

T = Transmissivity; K = Hydraulic Conductivity; S = Storage Coefficient

All K values calculated from T, using a saturated thickness of 15 ft;

r/B = Hantush and Jacob Type Curve Used For Analysis (dimensionless); na = not applicable

- Analyses of drawdown data indicate the transmissivity of the shallow zone of the alluvial aquifer ranges from 399.5 to 1064.4 ft²/day, with observation well 461 consistently producing higher estimates compared to observation well 460. Using a saturated thickness of 15 ft (which is equal to the screen length of the pumping well), corresponding hydraulic conductivities range from 26.6 to 71.0 ft/day.
- Analyses of the drawdown data also indicate the storage coefficient ranges from 0.006 to 0.031.
- Analyses of the residual drawdown data indicate the transmissivity ranges from 402.0 to 1219.5 ft²/day. Assuming a saturated thickness of 15 ft, corresponding hydraulic conductivities range from 26.8 to 81.3 ft/day.
- Drawdown data were analyzed using the Hantush and Jacob Method for leaky aquifers. The hydrogeologic conceptual model of the site suggests a three-dimensional ground water flow system, and not a classic leaky aquifer scenario. However, the Hantush and Jacob method was found to best simulate the 3-D flow system. Aquifer parameter estimates derived from this method can be used for well field design purposes.
- Taking into account the r/B values derived and the radial distance of the observation well, the leakage factor (B) can be determined (Table 11). In addition, the vertical conductance of aquifer material underlying the pumping well, which is defined as the ratio of hydraulic conductivity to the underlying material's thickness (McWhorter and Sunada 1977), can be

calculated. The drawdown data from the November 2002 short-term aquifer tests indicate the underlying material conductance ranges from 2.10 to 3.56 day⁻¹.

Test	Well	r (ft)	r/B	В	T (ft²/d)	K' / b' (day ⁻¹)
4.3 gal/min	460	3.3	0.28	11.79	410.2	2.95
	461	6.4	0.34	18.82	810.5	2.29
7.5 gal/min	460	3.3	0.30	11.00	406.0	3.36
	461	6.4	0.29	22.07	1023.2	2.10
7.1 gal/min	460	3.3	0.25	13.20	525.7	3.02
	461	6.4	0.37	17.30	1064.4	3.56

Table 11. Conductance Estimates Based on Hantush and Jacob Method Analysis

Notes:

r = observation well radial distance from pumping well; r/B = Hantush and Jacob Type Curve Used for Analysis;

B = Leakage Factor; T = Transmissivity (ft²/day);

K' / b' = Aquitard Conductance (ft^{-1})

• It is important to stress that the conductance term, and the material thickness and hydraulic conductivity that comprise it, do not necessarily represent actual physical properties of the porous medium. Rather the conductance term is a parameter that can be used for well design purposes, specifically to account for influx of water from underlying aquifer materials during pumping.

Conclusions

This document presents the results of five aquifer tests (two long-term and three short-term) that were conducted as Part 2, Phase II characterization of the Moab Project Site. These tests were designed to provide additional hydrological parameter estimations for the shallow zone of the alluvial aquifer that were presented in the Phase II, Part 1 (Calc. No. Moab-10-2002-03-03-00).

Previous results indicated the hydraulic conductivity of the shallow zone of the alluvial aquifer ranged from 0.5 to 7.1 ft/day, and wells completed within this zone could not sustain over 3 gal/min. Subsequent testing resulted in a hydraulic conductivity ranging from approximately 25 to 80 ft/day, with a storage coefficient ranging from 0.006 to 0.031. In addition, sustainable flow rates of wells completed within this same zone ranged from approximately 4 to 7 gal/min.

This information will be used to update the flow model, which will assist in the design of the interim action remediation well field. While the data presented provides expected flow rates, actual long-term sustainable flow rates will be determined through the observational approach once the system is in operation.

Appendix A

Pump Test Ground Water Samples

Environmental Sciences Laboratory Data Package

Moab Project Site

Pump Test Ground Water Samples

November 2002

Prepared for U.S. Department of Energy Grand Junction Office Grand Junction, Colorado

Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-104

WORK SUBMITTAL TO ENVIRONMENTAL SCIENCES LABORATORY

Submittal Date $\frac{8/12}{02}$	Date Required AN Melded
Submitted By Kfill	Signature Mil,
Formal ESL Report ? Yes No	\checkmark
Data Report Only? Yes No	- 100000000
Project:	Charge No 402-211
Analysis Type (check one): Kd = 50 WATU punpu	Leaching Other
= 50 Water parupe	les from lune wells
PWOI Corations	<i>V</i>

Sample Numbers

Analytes U, SO4, NH4, Cond Temp Density U oplit to Acc for TDS

Solution Composition

Comments (attach procedure if needed) Kul aware that results might be delayed due trave to IN. smead ~ • . ..

. .

EFFICIENCY LINE* 22-210

Moak +	Jump-	Tests		. ·			Mo	A01-05-	-01				
8/15/02-1	1ρ	2	3	· 200+	5	8	<u>'</u> <u>Sa</u> '	" L'Aubru	9 14 1		11	12	13
. 21		e as a	Ingles	Succ	ea una	corcea	. Oplis	puone	CUA TO A	ge ay y	price_		
8/16/02 3	ACL#	Cond	7	Den	Cl	NO3	S04	NH3 Hach	U	-4			
MOA 450-153	INALI	13540	17.6	1.0072	1348	2500	6906	450	V215	1244			
-198	953	14210	17.2	1.0052	1348	-500	7074	430	and a state of the	and a can be been and and an and a state of the second state of th	·		
-23	954	14290	16.9	1.0068	1365		7060	450	124 gm 132 m	1190			
-2.88	955	15530	19.2	1.0080	1445		7697	600	1578	1743			
MOA449-150	959	14550	15.5	1.0073	1338		6897	450	1215				
1910	758	14440	18.5	1.0064	1373		7074	450	1260			·····	
2311	957	14630	18.0	1.0068	1341		7168	480	1390				
2812	956	14840	19.4	1.0072	1300	· · · · · · · · · · · · · · · · · · ·	7469	550	1578		· · · · · · · · · · · · · · · · · · ·	* * * - * * * * * * * * * * * * * * * * * * *	
PW01-0813-00	960	14150	18.4	1.0066	1336		6830	425	1427				
215-0813-0	961	14440	17.9	1.0067	1354	V	6998	475	1751				
ZIM-0813-0	962	41800	17.9	1.0249	9018	514	15808	1425	3545				
MOA 450-0813-0		15060	17.5	1.0060	1394	2500	7287	450	1443		-		
MOA449-0813-0	964.	14760	17.5	1.0058	1335		7086	400	1369		-		
-0813+1	965	14610	17.4	1.0057	1363		7061	400	1306		-		
-0813-72		14560	17.8	1.0057	1356		7071	420	1268				
-0813+3	· · · · · · · · · · · · · · · · · · ·	14570	17.8	1.0059	1381	V	7245	420	13.35				
PZIM-0813-122	968	44300	17.4	1.0261	10081	552	16257	550	3307				
215-0813-122	969	14730	17.4	1.0059	1409	2500	7220	520	1229				
PW01-0813-123	970	15830	17.8	1.0071	1388		8088	400	1348				
MOA450-0813-		15860	19.7	1.0083	1475		7889	525	1701				
MOA 449-081421			20.0	1.0072	1350		7211	450	1289				
MOA450-0814==1	973		19.0	1.0071	1466		7790	560	16.89				
PZIM-0814-127	974		20.6	1.0272	9878	541	16399	1375	3307			·····	
PZIS-0814-128	975		19.6	1.0067	· · · · · · · · · · · · · · · · · · ·	1500	7167	425	1229				
PW01-0814-p20	NDF 401	14610	20.4	1.0070	1404	↓ ↓	7215	990	11/40				·····
30	·			·									
31											-		
		1											

EFFICIENCY LINE* 22-210

Moale	- Pum	p Jes	ts				. 1	MOA01-0	15-02-				
8/26/02 1	Recei	2 ve 10	3 Ouuple	is Ju	stered a	eud C	, doled	* Spli	e fubr	10 withed	to Acc.	in Rhee	13
2	Acc #	Cond	1	Dens	Ce	Nos		NH3 Kach					
MOA 449-082	2 NDP 402	13800	21.4	1.0079	1379	2500	7118	410	1280				
450-0822 fw01-0822,	404	the second concerns the second se	21.6	1.0080 1.0077 1.0079	1414 1437 1407		7354	470	1409		· · · · · · · · · · · · · · · · · · ·		
PZIS-08220 PZIM-0822 MOA449-0823	405 406 407	42500		1.0271	9684	547 1500	7290 16574 7274	525 1475 420	1269 3402 1236	-			
450-0823 PZ15-0823	408	14670	212	1.0078	1452 1412		7563	460	1393		• • • • • • • • • • • • • • • • • • •		
AUDI-0823, PZIM-0823	410	15400	22.4	1.0089	1342	561	8066 16580	575	1503 2840		-		
15	MQ=		<i>əə</i> ,S°	0.9967									
17 18			•••							-		-	· · · · · · · · · · · · · · · · · · ·
19 20 21				••• ••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·		-					
22 23			*** **********************************		-					• • • • • • • • • • • • • • • • • • •	•••	· · · · · · · · · · · · · · · · · · ·	
24													
26	-		. , ,					-			· · · · · · · · · · · · · · · · · · ·		
28 29 30						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
31					-								

٠

an s

EFFICIENCY LINE 22.210

Moau	Pum	p Jesi	Ł					M0A01-1					
- a/s/or 1	Recei	2 re 11 6	ample	· s fron	KRU	, Plac	, e. in Al	8 Jugua	, to	10	<u>u</u>	12	13
- 9/5/02 1 9/9/02 800	Power	failier	over	vecken	d (Sun	Morn).	Saup	les stil	l cool.	Place 1	wice i	i iceche	<i>t</i>
9/10/02 :		A	Cond		Den	CL	NO3	504	NH3 Hach	··· · ··· ··· ··· ··· ··· · ··· · ··· ·	. Fandara a a a a a a a a a a a a a a a a a a	- Family - manufacture party grader data and angles	
MOA 449-10		NDT351	14840	T°C 17.5	10063	1358	363	6980	360	1305		· · · · ·	
MOA 449-2-09		-35Z -354	14880	16.9	1.0064	1369	343 349	7136	420 480	1274			
450-0904 PWOI-09040		352	14780	16.0	1.0067	1365	349	7034	370	1215			
PZ15-0904 PZIM-0904		353 355	15110 43900	16.9	1.0067	1378 9062	367 530	· 7074 16248	400 1350	1256 3595			
449-0905 450-090		363 358	14820 16060	17.2 16.3	1.0068	1387 1408	345 366	7078	400	1220			
PW01-0905 PZ15-0905		362 359	16010 14880	16.4 16.9	1.0072	1325	340 377	8003 7151	510	1401	······		
PZIM-0905		357	43400	17.2	1.0260	9174	543	16463	1450	3523			
18 MQ 19				23.7	0.9967			-				- 1.00000 101 10 00000000000000000000000	
20					/			6		· · · · · · · · · · · · · · · · · · ·			
22	Mole:	NO3 MUS	nturs co	the only	out of	ted as Cal A	4500 M	urica	umber this de	is <50 ulion	p		
24				· · · · · · · · · · · · · · · · · · ·			0					· · · · · · · · · · · · · · · · · · ·	
26			-					·		-			· ····
28			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				
29 30													
31			·										

EFFICIENCY LINE 22-210

Moan K) inipJe	st		M0401-05-084										
9/12/02 1	¹ Recei	red 5 f	ample	safter (s OB	6	7	8	9 9	10	11	12	13	
9/13/02 3	Acc	Cond		Den	Cl	NO3	504	U	NH2(Hair			*1 		
MOA 449-0912 450-0912 fw01-0912	2 NDP415 412 416	14950 16100 17000	17.3 16.5 16.0	1.0064 1.0073 1.0087	1366 1452 1338	2500 2500 2500	7083 7753 8722	12-17 1686 1754	420 560 660			· · · · · · · · · · · · · · · · · · ·		
PZIS-09120 PZIM-09120	414	14450	15.7	1.0068		2500 2500 545	7038 16247	1195	430					
10 11 12		· · · · · · · · · · · · · · · · · · ·				-	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
13 14 15			· · · · · · · · · · · · · · · · · · ·											
16 17 18								-		· · · · · · · · · · · · · · · · · · ·				
19 20 21								-						
22 23 24													· · · · · · · · · · · · · · · · · · ·	
25 26 27		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				•			· · · · · · · · · · · · · · · · · · ·		
28 29 30						••• •• ••• ••• ••• ••• ••• ••• ••• •••	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
31		· · · · · · · · · · · · · · · · · · ·				-								
·									1					

.

ì

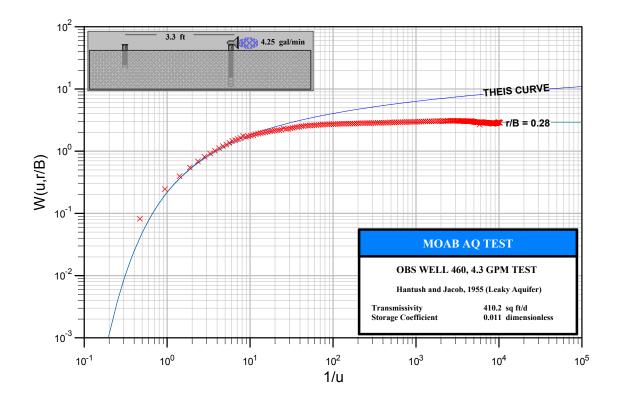
EFFICIENCY LINE* 22-210

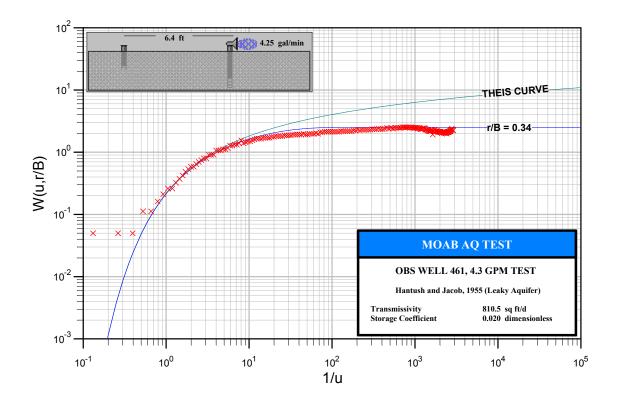
ĺ

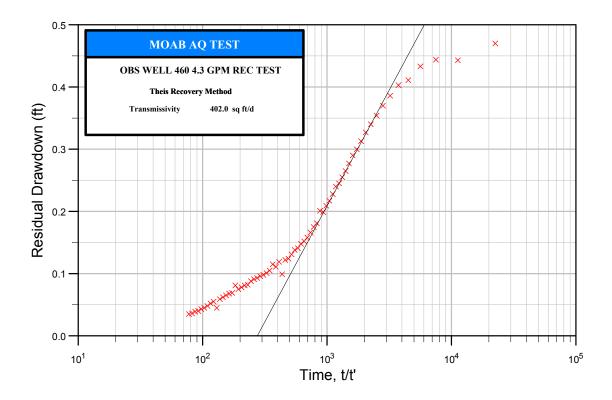
Moau	c PumpTest MOADI-05-05													
	1 /)(2	3	4	5 <u>C</u>	6	7	в Л	9	10	11	12	13	
9/19/021	Kerew	e Span	ples @	COB.	Ounge	es are	filtered	F. Kepi	regerate				n an	
9/26/02 3		Acc	Cond	T	Den	Ce	N03	SOY	NH3 breh	U				
MOA 449-0919		NDP417	14220	15.9	1.0062		338	7083	410	1210			· • · • • • • • • • • • • • • • • • • •	
450-0919 PWOI-0919,		418	15630	17.6	1.0066		367	7694	520	1627				
PW01-0919,		420	16990	17.1	1.0076	1	333	8911	670	1757	a a sa ara	NAMES AND ADDRESS OF A STATE OF A STATE		
PZ15-0919 = PZIM-0919=	·	419 421	14690 147300	17.3 18.4	1.006	11269	374 557	7197 16329	430	1295				
10		1.01	41500	10.7	1. 20 F	11261	037	1012	1300					
11	Ma =	0.9971	e 22.4							· · · · · · · · · · · · · · · · · · ·				
12														
13								·······						
15							for remarkable to the maximum of the state of the				1			
16		· · ·					a antisector constraints and a second of constraints					W.S.F.F.M		
17												n fi fini ann an		
18	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·						-			•			
- 19		a and a second		· · · · · · · · · · · · · · · · · · ·						···· · · · ·		1		
20								-		e e e e e				
22					····									
23						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · ·				
24			· · · · · · · · · · · · · · · · · · ·			·				19. August August and a second as a second as a				
25			a and a second and			-						an a		
- 26 27														
28						-					-			
. 29		· · · · · · · · · · ·						1	1 ··· ··		· · · ·			
30														
31														
	1													

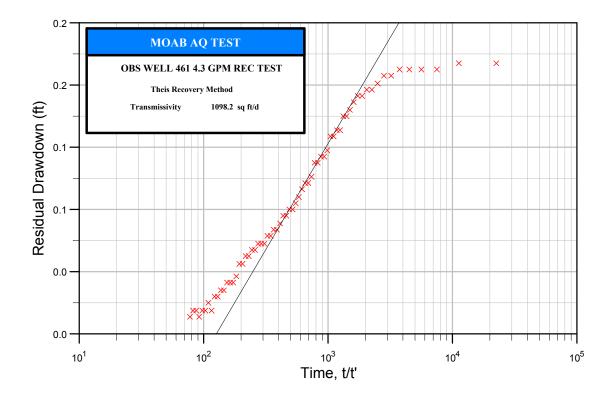
	A	В	С	D	E	F	G	Н	I	J	К
1	Moab Brine Sampl	ing/ Pump	Test 8/2002								
2											
3											
4	LOCATION	DENSITY	TEMP	CONDUCTIVITY	AMMONIA	CHLORIDE	SULFATE	URANIUM	TDS	ACL #	NH3 analysis
5		(g/cm3)	(*C)	(uS/cm)	NH3-N(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)		date
6					(Hach Kit)						
7											
8											
9	MOA 450-15	1.0072	17.6	13540	450	1348	6906	1244		NDS 951	08/29/2002
10	MOA 450-19	1.0052	17.2	14210	430	1374	7074	1299		NDS 953	08/29/2002
11	MOA 450-23	1.0068	16.9	14290	450	1365	7060	1190		NDS 954	08/29/2002
12	MOA 450-28	1.008	19.2	15530	600	1445	7697	1743		NDS 955	08/29/2002
13	MOA 449-15	1.0073	15.5	14550	450	1338	6897	1215		NDS 959	08/29/2002
14	MOA 449-19	1.0064	18.5	14440	450	1373	7074	1260		NDS 958	08/29/2002
15	MOA 449-23	1.0068	18	14630	480	1341	7168	1390		NDS 957	08/29/2002
16	MOA 449-28	1.0072	19.4	14840	550	1300	7469	1578		NDS 956	08/29/2002
17	PW01-0813-0	1.0066	18.4	14150	425	1336	6830	1427		NDS 960	08/29/2002
18	PZ1S-0813-0	1.0057	17.9	14440	475	1354	6998	1351		NDS 961	08/29/2002
19	PZ1M-0813-0	1.0244	17.9	41800	1425	9018	15808	3545		NDS 962	08/29/2002
20	MOA 450-0813-0	1.006	17.5	15060	450	1394	7287	1443		NDS 963	08/29/2002
21	MOA 449-0813-0	1.0058	17.5	14760	400	1335	7086	1369		NDS 964	08/29/2002
22	MOA 449-0813-1	1.0057	17.4	14610	400	1363	7061	1306		NDS 965	08/29/2002
23	MOA 449-0813-2	1.0059	17.8	14560	420	1356	7071	1268		NDS 966	08/29/2002
24	MOA 449-0813-3	1.0059	17.8	14570	420	1381	7245	1335		NDS 967	08/29/2002
25	PZ1M-0813-1	1.0261	17.4	44300	550	10081	16257	3307		NDS 968	08/29/2002
26	PZ1S-0813-1	1.0059	17.4	14730	520	1409	7220	1229		NDS 969	08/29/2002
27	PW01-0813-1	1.0071	17.8	15830	400	1388	8088	1348		NDS 970	08/29/2002
28	MOA 450-0813-1	1.0083	19.7	15860	525	1475	7889	1701		NDS 971	08/29/2002
29	MOA 449-0814-1	1.0072	20	14790	450	1350	7211	1289		NDS 972	08/29/2002
30	MOA 450-0814-1	1.0071	19	15640	560	1466	7790	1689		NDS 973	08/29/2002
31	PZ1M-0814-1	1.0272	20.6	43900	1375	9878	16399	3307		NDS 974	08/29/2002
32	PZ1S-0814-1	1.0067	19.6	14580	425	1380	7167	1229		NDS 975	08/29/2002
33	PW01-0814-1	1.007	20.4	14610	220	1404	7215	1348		NDP 401	08/29/2002
34	MOA 449-0822	1.0079	21.4	13800	410	1379	7118	1280		NDP 402	08/29/2002
35	MOA 450-0822	1.008	21.6	14290	470	1414	7354	1409		NDP 403	08/29/2002
36	PW01-0822	1.0077	21.7	13850	500	1437	7259	1211		NDP 404	08/29/2002

	C		E	F	G	I H	l I	l l	K
1.0079	22.2	14310	425	1407	7290	1269		NDP 405	08/29/2002
1.0271	21.3	42500	1475	9684	16574	3402		NDP 406	08/29/2002
1.0075	21	14120	420	1407	7274	1236		NDP 407	08/29/2002
1.0078	21.2	14670	460	1452	7563	1393		NDP 408	08/29/2002
1.0078	21.9	14410	450	1412	7310	1173		NDP 409	08/29/2002
1.0089	22.4	15400	575	1342	8066	1503		NDP 410	08/29/2002
1.028	22	44300	525	10570	16580	2840		NDP 411	08/29/2002
-	1.0271 1.0075 1.0078 1.0078 1.0089	1.0271 21.3 1.0075 21 1.0078 21.2 1.0078 21.9 1.0089 22.4 1.028 22	1.0271 21.3 42500 1.0075 21 14120 1.0078 21.2 14670 1.0078 21.9 14410 1.0089 22.4 15400 1.028 22 44300	1.0271 21.3 42500 1475 1.0075 21 14120 420 1.0078 21.2 14670 460 1.0078 21.9 14410 450 1.0089 22.4 15400 575 1.028 22 44300 525	1.0271 21.3 42500 1475 9684 1.0075 21 14120 420 1407 1.0078 21.2 14670 460 1452 1.0078 21.9 14410 450 1412 1.0078 22.4 15400 575 1342 1.028 22 44300 525 10570	1.0271 21.3 42500 1475 9684 16574 1.0275 21 14120 420 1407 7274 1.0078 21.2 14670 460 1452 7563 1.0078 21.9 14410 450 1412 7310 1.0089 22.4 15400 575 1342 8066 1.028 22 44300 525 10570 16580	1.0271 21.3 42500 1475 9684 16574 3402 1.0075 21 14120 420 1407 7274 1236 1.0078 21.2 14670 460 1452 7563 1393 1.0078 21.9 14410 450 1412 7310 1173 1.0089 22.4 15400 575 1342 8066 1503 1.028 22 44300 525 10570 16580 2840	1.0271 21.3 42500 1475 9684 16574 3402 1.0275 21 14120 420 1407 7274 1236 1.0078 21.2 14670 460 1452 7563 1393 1.0078 21.9 14410 450 1412 7310 1173 1.0089 22.4 15400 575 1342 8066 1503 1.028 22 44300 525 10570 16580 2840	1.0271 21.3 42500 1475 9684 16574 3402 NDP 406 1.0075 21 14120 420 1407 7274 1236 NDP 407 1.0078 21.2 14670 460 1452 7563 1393 NDP 408 1.0078 21.9 14410 450 1412 7310 1173 NDP 409 1.0089 22.4 15400 575 1342 8066 1503 NDP 410 1.028 22 44300 525 10570 16580 2840 NDP 411

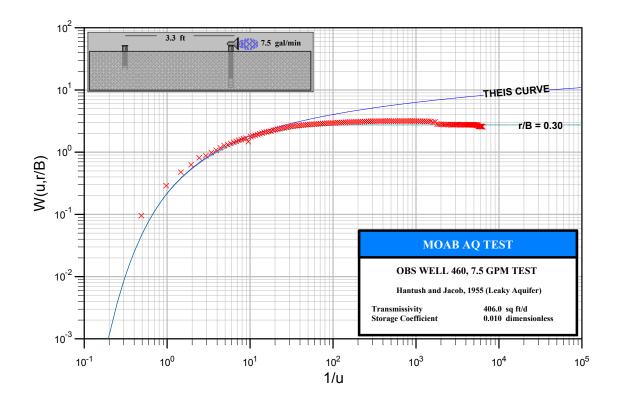

ГТ	A	В	С	D	Е	F	G	Н	I	J	К
1	Moab Brine Sampli	ing/ Pump	Fest 8/2002								
2											
3											
4	LOCATION	DENSITY	TEMP	CONDUCTIVITY				URANIUM		ACL #	NH3 analysis
5		(g/cm3)	(*C)	(uS/cm)	NH3-N(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)		date
6					(Hach Kit)						
7											
8											
9	MOA 449-1-0904	1.0063	17.5	14840	360	1358	6980	1305		NDT 351	09/11/2002
10	MOA 449-2-0904	1.0064	16.9	14880	420	1369	7136	1274		NDT 356	09/11/2002
11	MOA 450-0904	1.0071	16.3	15910	480	1419	7488	1598		NDT 354	09/11/2002
12	PW01-0904	1.0067	16	14780	370	1365	7034	1215		NDT 352	09/11/2002
13	PZ1S-0904	1.0067	16.5	15110	400	1378	7074	1256		NDT 353	09/11/2002
14	PZ1M-0904	1.026	16.9	43900	1350	9062	16248	3595		NDT 355	09/11/2002
	MOA 449-1-0905	1.0068	17.2	14820	400	1387	7078	1220		NDT 363	09/11/2002
16	MOA 450-0905	1.0071	16.3	16060	550	1408	7424	1675		NDT 358	09/11/2002
	PW01-0905	1.0072	16.4	16010	510	1325	8003	1401		NDT 362	09/11/2002
	PZ1S-0905	1.0067	16.9	14880	440	1396	7151	1100		NDT 359	09/11/2002
19	PZ1M-0905	1.026	17.2	43400	1450	9174	16463	3523		NDT 357	09/11/2002
20											· · · · · · · · · · · · · · · · · · ·
	MilliQ = 0.9967g/c	m @ 23.7*(<u> </u>								
22											
	MOA 449-0912	1.0064	17.3	14950	420	1366	7083	1217		NDP 415	09/13/2002
24	MOA 450-0912	1.0073	16.5	16100	560	1452	7753	1686		NDP 412	09/13/2002
25	PW01-0912	1.0087	16	17000	660	1338	8722	1754		NDP 416	09/13/2002
26	PZ1S-0912	1.0068	15.7	14950	430	1362	7038	1195		NDP 414	09/13/2002
27	PZ1M-0912	1.0267	16.4	44400	1400	9568	16247	3689		NDP 413	09/13/2002
28									ļ		
29		1							1		
	MOA 449-0919	1.0062	15.9	14220	410	1358	7083	1210		NDP 417	09/26/2002
31	MOA 450-0919	1.0066	17.6	15630	520	1448	7694	1627		NDP 418	09/26/2002
32		1.0076	17.1	16990	670	1329	8911	1757		NDP 420	09/26/2002
33		1.0062	17.3	14690	430	1388	7197	1295		NDP 419	09/26/2002
34	PZ1M-0919	1.0284	18.4	47300	1500	11269	16329	3435		NDP 421	09/26/2002
35											
36	MilliQ = 0.9971@2	22.4*C					<u> </u>				· · · · · · · · · · · · · · · · · · ·

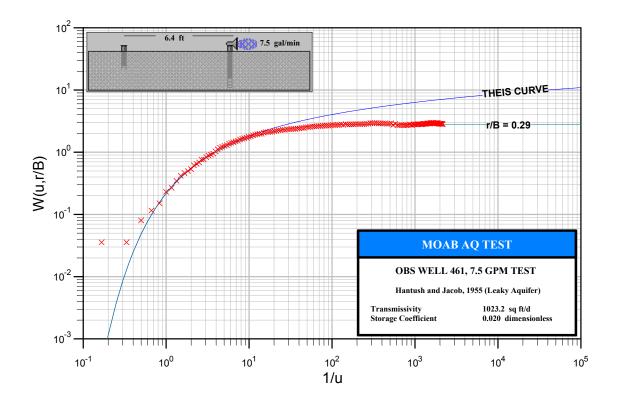

Appendix B

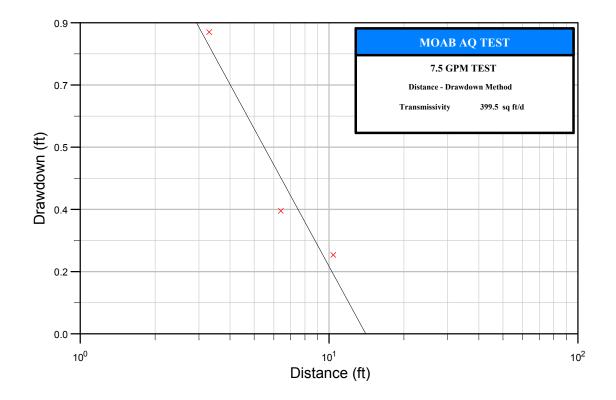

AquiferWin 32 Plots for November 2002 Short-Term Aquifer Tests


4.3 GPM TEST

AquiferWin 32 Plots

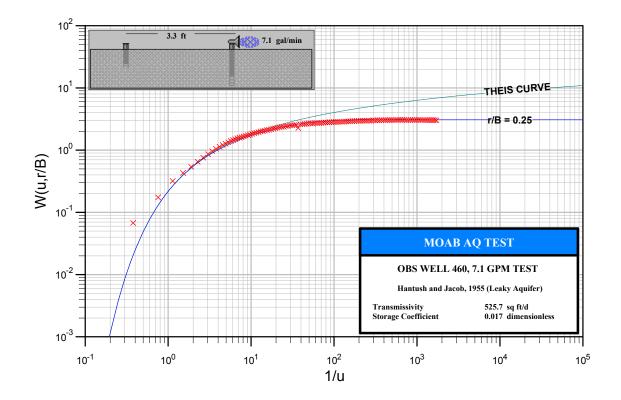


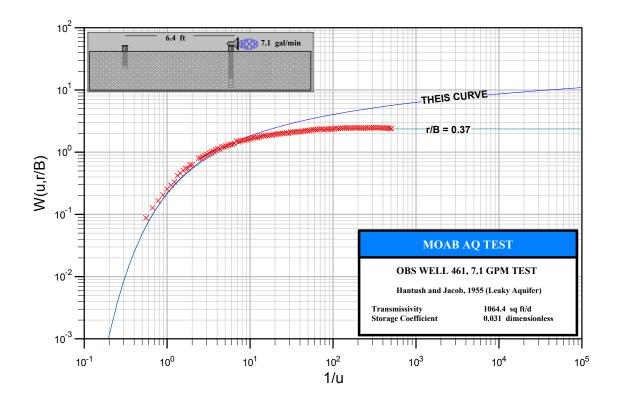


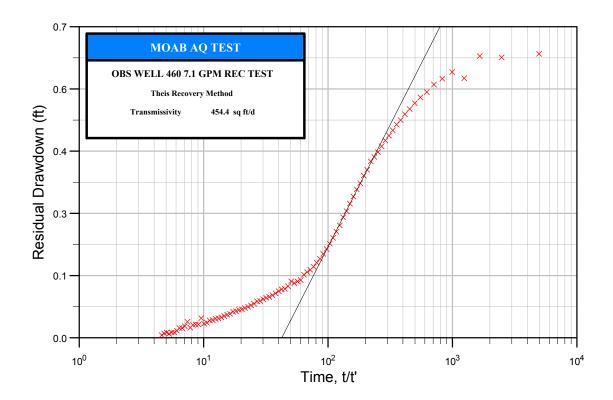


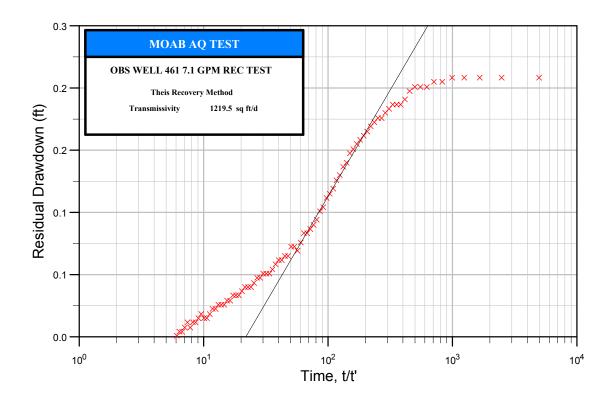
7.5 GPM TEST

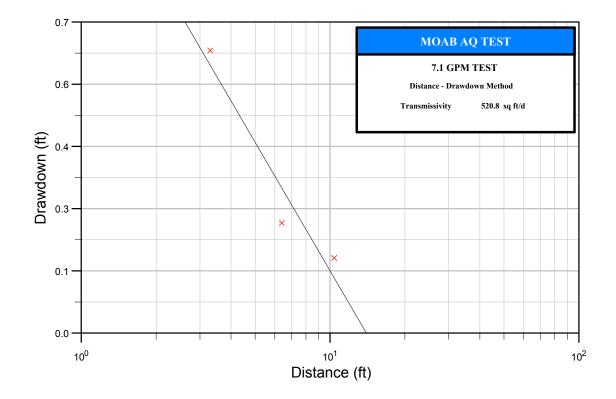
AquiferWin 32 Plots








7.1 GPM TEST


AquiferWin 32 Plots

