1	HAVING BIOMATERIAL COMPONENT OR	30	Liquid crystal component
-	INTEGRATED WITH LIVING	31	Optical waveguide structure
	ORGANISM	32	Optical grating structure
2	HAVING SUPERCONDUCTIVE COMPONENT	33	.Substrate dicing
3	HAVING MAGNETIC OR FERROELECTRIC	34	.Making emissive array
5	COMPONENT	35	Multiple wavelength emissive
1	REPAIR OR RESTORATION	36	.Ordered or disordered
4		37	.Graded composition
5	INCLUDING CONTROL RESPONSIVE TO	38	.Passivating of surface
c	SENSED CONDITION	39	.Mesa formation
6	.Interconnecting plural devices		
_	on semiconductor substrate	40	Tapered etching
7	.Optical characteristic sensed	41	With epitaxial deposition of
8	Chemical etching		semiconductor adjacent mesa
9	Plasma etching	42	.Groove formation
10	.Electrical characteristic sensed	43	Tapered etching
11	Utilizing integral test element	44	With epitaxial deposition of
12	And removal of defect		semiconductor in groove
13	Altering electrical property by	45	.Dopant introduction into
	material removal		semiconductor region
14	WITH MEASURING OR TESTING	46	.Compound semiconductor
15	.Packaging (e.g., with mounting,	47	Heterojunction
	encapsulating, etc.) or	48	MAKING DEVICE OR CIRCUIT
	treatment of packaged		RESPONSIVE TO NONELECTRICAL
	semiconductor		SIGNAL
16	.Optical characteristic sensed	49	.Chemically responsive
17	.Electrical characteristic sensed	50	.Physical stress responsive
18	Utilizing integral test element	51	Packaging (e.g., with mounting,
19	HAVING INTEGRAL POWER SOURCE	51	encapsulating, etc.) or
ТЭ			treatment of packaged
20	(E.G., BATTERY, ETC.)		semiconductor
	ELECTRON EMITTER MANUFACTURE	52	Having cantilever element
21	MANUFACTURE OF ELECTRICAL DEVICE	53	Having diaphragm element
<u></u>	CONTROLLED PRINTHEAD	54	.Thermally responsive
22	MAKING DEVICE OR CIRCUIT EMISSIVE	55	Packaging (e.g., with mounting,
	OF NONELECTRICAL SIGNAL	55	
23	.Having diverse electrical device		encapsulating, etc.) or
24	Including device responsive to		treatment of packaged semiconductor
	nonelectrical signal	ГC	
25	Packaging (e.g., with	56	.Responsive to corpuscular
	mounting, encapsulating, etc.)		radiation (e.g., nuclear
	or treatment of packaged		particle detector, etc.)
	semiconductor	57	.Responsive to electromagnetic
26	.Packaging (e.g., with mounting,		radiation
	encapsulating, etc.) or	58	Gettering of substrate
	treatment of packaged	59	Having diverse electrical
	semiconductor		device
27	Having additional optical	60	Charge transfer device (e.g.,
	element (e.g., optical fiber,	C 1	CCD, etc.)
	etc.)	61	Continuous processing
28	Plural emissive devices	62	Using running length substrate
29	.Including integrally formed	63	Particulate semiconductor
	optical element (e.g.,		component
	reflective layer, luminescent		
	material, contoured surface,		
	etc.)		

438 - 2 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

64	Packaging (e.g., with mounting, encapsulating, etc.) or	88	Direct application of electric current
	treatment of packaged semiconductor	89	Fusion or solidification of semiconductor region
65	Having additional optical element (e.g., optical fiber,	90	Including storage of electrical charge in substrate
	etc.)	91	Avalanche diode
66	Plural responsive devices	92	Schottky barrier junction
	(e.g., array, etc.)	93	Compound semiconductor
67	Assembly of plural	94	Heterojunction
	semiconductor substrates	95	Chalcogen (i.e., oxygen (O),
68	Substrate dicing		<pre>sulfur (S), selenium (Se),</pre>
69	Including integrally formed		tellurium (Te)) containing
	optical element (e.g.,	96	Amorphous semiconductor
	reflective layer, luminescent	97	Polycrystalline semiconductor
	layer, etc.)	98	Contact formation (i.e.,
70	Color filter		metallization)
71	<pre>Specific surface topography (e.g., textured surface, etc.)</pre>	99	HAVING ORGANIC SEMICONDUCTIVE COMPONENT
72	Having reflective or	100	MAKING POINT CONTACT DEVICE
	antireflective component	101	.Direct application of electrical
73	Making electromagnetic		current
	responsive array	102	HAVING SELENIUM OR TELLURIUM
74	Vertically arranged (e.g.,		ELEMENTAL SEMICONDUCTOR
	tandem, stacked, etc.)		COMPONENT
75	Charge transfer device (e.g., CCD, etc.)	103	.Direct application of electrical current
76	Majority signal carrier	104	HAVING METAL OXIDE OR COPPER
	(e.g., buried or bulk channel, peristaltic, etc.)		SULFIDE COMPOUND SEMICONDUCTOR COMPONENT
77	Compound semiconductor	105	HAVING DIAMOND SEMICONDUCTOR
78	Having structure to improve		COMPONENT
	output signal (e.g., exposure control structure, etc.)	106	PACKAGING (E.G., WITH MOUNTING, ENCAPSULATING, ETC.) OR
79	<pre>Having blooming suppression structure (e.g., antiblooming</pre>		TREATMENT OF PACKAGED SEMICONDUCTOR
	drain, etc.)	107	.Assembly of plural
80	Lateral series connected array		semiconductive substrates each
81	Specified shape junction		possessing electrical device
	barrier (e.g., V-grooved	108	Flip-chip-type assembly
	junction, etc.)	109	Stacked array (e.g., rectifier,
82	Having organic semiconductor		etc.)
	component	110	.Making plural separate devices
83	Forming point contact	111	Using strip lead frame
84	Having selenium or tellurium	112	And encapsulating
	elemental semiconductor	113	Substrate dicing
	component	114	Utilizing a coating to perfect
85	Having metal oxide or copper		the dicing
	sulfide compound	115	.Including contaminant removal or
	semiconductive component		mitigation
86	And cadmium sulfide compound	116	.Having light transmissive window
	semiconductive component	117	.Incorporating resilient
87	Graded composition		component (e.g., spring, etc.)
		118	.Including adhesive bonding step

119	Electrically conductive	146	Majority signal carrier (e.g.,
	adhesive		buried or bulk channel,
120	.With vibration step		peristaltic, etc.)
121	.Metallic housing or support	147	Changing width or direction of
122	Possessing thermal dissipation		channel (e.g., meandering channel, etc.)
	structure (i.e., heat sink)	140	
123	Lead frame	148	Substantially incomplete signal
124	And encapsulating		charge transfer (e.g., bucket
125	.Insulative housing or support		brigade, etc.)
126	And encapsulating	149	.On insulating substrate or layer
127	.Encapsulating		(e.g., TFT, etc.)
128	MAKING DEVICE ARRAY AND	150	Specified crystallographic
	SELECTIVELY INTERCONNECTING		orientation
129	.With electrical circuit layout	151	Having insulated gate
130	.Rendering selected devices	152	Combined with electrical
	operable or inoperable		device not on insulating
131	.Using structure alterable to		substrate or layer
	conductive state (i.e.,	153	Complementary field effect
	antifuse)		transistors
132	.Using structure alterable to	154	Complementary field effect
	nonconductive state (i.e.,		transistors
	fuse)	155	And additional electrical
133	MAKING REGENERATIVE-TYPE		device on insulating substrate
	SWITCHING DEVICE (E.G., SCR,		or layer
	IGBT, THYRISTOR, ETC.)	156	Vertical channel
134	.Bidirectional rectifier with	157	Plural gate electrodes (e.g.,
	control electrode (e.g.,		dual gate, etc.)
	triac, diac, etc.)	158	Inverted transistor structure
135	.Having field effect structure	159	Source-to-gate or drain-to-
136	Junction gate		gate overlap
137	Vertical channel	160	Utilizing backside
138	Vertical channel		irradiation
139	.Altering electrical	161	Including source or drain
	characteristic		electrode formation prior to
140	.Having structure increasing		semiconductor layer formation
	breakdown voltage (e.g., guard		(i.e., staggered electrodes)
	ring, field plate, etc.)	162	Introduction of nondopant into
141	MAKING CONDUCTIVITY MODULATION		semiconductor layer
	DEVICE (E.G., UNIJUNCTION	163	Adjusting channel dimension
	TRANSISTOR, DOUBLE BASE DIODE,		(e.g., providing lightly doped
	CONDUCTIVITY-MODULATED		source or drain region, etc.)
	TRANSISTOR, ETC.)	164	Semiconductor islands formed
142	MAKING FIELD EFFECT DEVICE HAVING		upon insulating substrate or
	PAIR OF ACTIVE REGIONS		layer (e.g., mesa formation,
	SEPARATED BY GATE STRUCTURE BY	1.65	etc.)
	FORMATION OR ALTERATION OF	165	Including differential oxidation
1 4 2	SEMICONDUCTIVE ACTIVE REGIONS	100	
143	.Gettering of semiconductor substrate	166	Including recrystallization step
111		167	.Having Schottky gate (e.g.,
144	.Charge transfer device (e.g.,	TOI	MESFET, HEMT, etc.)
145	CCD, etc.)	168	Specified crystallographic
145	Having additional electrical device	100	orientation
		169	Complementary Schottky gate
			field effect transistors

438 - 4 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

170 171	And bipolar device And passive electrical device (e.g., resistor, capacitor, etc.)	201	Including insulated gate field effect transistor having gate surrounded by dielectric (i.e., floating gate)
172	Having heterojunction (e.g., HEMT, MODFET, etc.)	202	<pre>Including bipolar transistor (i.e., BiCMOS)</pre>
173	Vertical channel	203	Complementary bipolar
174	Doping of semiconductive		transistors
	channel region beneath gate	204	Lateral bipolar transistor
	(e.g., threshold voltage adjustment, etc.)	205	Plural bipolar transistors of differing electrical
175	Buried channel		characteristics
176	Plural gate electrodes (e.g., dual gate, etc.)	206	Vertical channel insulated gate field effect transistor
177	Closed or loop gate	207	Including isolation
178	Elemental semiconductor		structure
179	Asymmetric	208	Isolation by PN junction
180	Self-aligned		only
181	Doping of semiconductive	209	Including additional vertical
	region		channel insulated gate field
182	T-gate		effect transistor
183	Dummy gate	210	Including passive device
184	Utilizing gate sidewall structure		(e.g., resistor, capacitor, etc.)
185		211	Having gate surrounded by
186	Multiple doping steps		dielectric (i.e., floating
100	.Having junction gate (e.g., JFET, SIT, etc.)	21.2	gate)
187	Specified crystallographic	212	Vertical channel
	orientation	213	Common active region
188	Complementary junction gate	214	Having underpass or crossunder
	field effect transistors	215	Having fuse or integral short
189	And bipolar transistor	216	Gate insulator structure
190	And passive device (e.g., resistor, capacitor, etc.)		constructed of diverse dielectrics (e.g., MNOS, etc.)
191	Having heterojunction		or of nonsilicon compound
192	Vertical channel	217	Doping of semiconductor
193	Multiple parallel current paths (e.g., grid gate, etc.)		channel region beneath gate insulator (e.g., threshold
194	Doping of semiconductive		voltage adjustment, etc.)
	channel region beneath gate	218	Including isolation structure
	(e.g., threshold voltage	219	Total dielectric isolation
	adjustment, etc.)	220	Isolation by PN junction only
195	Plural gate electrodes	221	Dielectric isolation formed
196	Including isolation structure		by grooving and refilling with
197	.Having insulated gate (e.g., IGFET, MISFET, MOSFET, etc.)	222	dielectric materialWith epitaxial semiconductor
198	Specified crystallographic		layer formation
	orientation	223	Having well structure of opposite conductivity type
199	Complementary insulated gate	224	Plural wells
	field effect transistors	225	Recessed oxide formed by
200	(i.e., CMOS) And additional electrical		localized oxidation (i.e., LOCOS)
	device	226	With epitaxial semiconductor layer formation

227	Having well structure of	257	Having additional gate
	opposite conductivity type		electrode surrounded by
228	Plural wells		dielectric (i.e., floating
229	Self-aligned		gate)
230	Utilizing gate sidewall	258	Including additional field
	structure		effect transistor (e.g., sense
231			or access transistor, etc.)
	Plural doping steps	259	Including forming gate
232	Plural doping steps	235	electrode in trench or recess
233	And contact formation		in substrate
234	Including bipolar transistor		
	(i.e., BiMOS)	260	Textured surface of gate
235	Heterojunction bipolar		insulator or gate electrode
	transistor	261	Multiple interelectrode
236	Lateral bipolar transistor		dielectrics or nonsilicon
237	Including diode		compound gate insulator
237	-	262	Including elongated source or
238	Including passive device (e.g.,		drain region disposed under
	resistor, capacitor, etc.)		thick oxide regions (e.g.,
239	Capacitor		buried or diffused bitline,
240	Having high dielectric		etc.)
	constant insulator (e.g.,	262	
	Ta205, etc.)	263	Tunneling insulator
241	And additional field effect	264	Tunneling insulator
	transistor (e.g., sense or	265	Oxidizing sidewall of gate
	access transistor, etc.)		electrode
242	Including transistor formed	266	Having additional, nonmemory
212	on trench sidewalls		control electrode or channel
243			portion (e.g., for accessing
	Trench capacitor		field effect transistor
244	Utilizing stacked capacitor		structure, etc.)
	structure (e.g., stacked	267	Including forming gate
	trench, buried stacked	207	electrode as conductive
	capacitor, etc.)		sidewall spacer to another
245	With epitaxial layer formed		electrode
	over the trench	260	
246	Including doping of trench	268	Vertical channel
	surfaces	269	Utilizing epitaxial
247	Multiple doping steps		semiconductor layer grown
248	Including isolation means		through an opening in an
210	formed in trench		insulating layer
240		270	Gate electrode in trench or
249	Doping by outdiffusion from		recess in semiconductor
	a dopant source layer (e.g.,		substrate
	doped oxide, etc.)	271	V-gate
250	Planar capacitor	272	Totally embedded in
251	Including doping of	2,2	semiconductive layers
	semiconductive region	272	
252	Multiple doping steps	273	Having integral short of
253	Stacked capacitor		source and base regions
254	Including selectively	274	Short formed in recess in
231	removing material to undercut		substrate
	_	275	Making plural insulated gate
055	and expose storage node layer		field effect transistors of
255	Including texturizing		differing electrical
	storage node layer		characteristics
256	Contacts formed by selective	276	Introducing a dopant into the
	growth or deposition	-	channel region of selected
			transistors
			51010100010

CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS 438 - 6

277	Including forming overlapping	302	Oblique implantation
278	gate electrodesAfter formation of source or	303	Utilizing gate sidewall structure
270	drain regions and gate	304	Conductive sidewall
	electrode (e.g., late	001	component
	programming, encoding, etc.)	305	Plural doping steps
279	Making plural insulated gate	306	Plural doping steps
	field effect transistors	307	Using same conductivity-type
	having common active region		dopant
280	Having underpass or crossunder	308	Radiation or energy treatment
281	Having fuse or integral short		modifying properties of
282	Buried channel		semiconductor regions of
283	Plural gate electrodes (e.g.,		substrate (e.g., thermal,
	dual gate, etc.)		corpuscular, electromagnetic,
284	Closed or loop gate		etc.)
285	Utilizing compound	309	FORMING BIPOLAR TRANSISTOR BY
	semiconductor		FORMATION OR ALTERATION OF
286	Asymmetric		SEMICONDUCTIVE ACTIVE REGIONS
287	Gate insulator structure	310	.Gettering of semiconductor
	constructed of diverse		substrate
	dielectrics (e.g., MNOS, etc.)	311	.On insulating substrate or layer
	or of nonsilicon compound		(i.e., SOI type)
288	Having step of storing	312	.Having heterojunction
	electrical charge in gate	313	Complementary bipolar
	dielectric		transistors
289	Doping of semiconductive	314	And additional electrical
	channel region beneath gate	215	device
	insulator (e.g., adjusting threshold voltage, etc.)	315	Forming inverted transistor
290	After formation of source or	210	structure
200	drain regions and gate	316	Forming lateral transistor structure
	electrode	317	Wide bandgap emitter
291	Using channel conductivity	318	Including isolation structure
	dopant of opposite type as	319	Air isolation (e.g., mesa,
	that of source and drain	319	etc.)
292	Direct application of	320	Self-aligned
	electrical current	321	Utilizing dummy emitter
293	Fusion or solidification of	322	.Complementary bipolar
	semiconductor region	522	transistors
294	Including isolation structure	323	Having common active region
295	Total dielectric isolation	525	(i.e., integrated injection
296	Dielectric isolation formed by		logic (I2L), etc.)
	grooving and refilling with	324	Including additional
	dielectric material		electrical device
297	Recessed oxide formed by	325	Having lateral bipolar
	localized oxidation (i.e.,		transistor
	LOCOS)	326	Including additional electrical
298	Doping region beneath		device
	recessed oxide (e.g., to form	327	Having lateral bipolar
	chanstop, etc.)		transistor
299	Self-aligned	328	.Including diode
300	Having elevated source or	329	.Including passive device (e.g.,
	drain (e.g., epitaxially		resistor, capacitor, etc.)
301	formed source or drain, etc.) Source or drain doping	330	Resistor
JUT	Source of graffi dopting		

331	Having same doping as emitter or collector	361	Including deposition of polysilicon or noninsulative
332	Lightly doped junction		material into groove
552	isolated resistor	362	Recessed oxide by localized
333	.Having fuse or integral short	502	oxidation (i.e., LOCOS)
334	.Forming inverted transistor	363	With epitaxial semiconductor
334	structure	202	layer formation
335	.Forming lateral transistor	364	.Self-aligned
	structure	365	Forming active region from
336	Combined with vertical bipolar transistor		adjacent doped polycrystalline or amorphous semiconductor
337	Active region formed along	366	Having sidewall
	groove or exposed edge in semiconductor	367	Including conductive component
338	Having multiple emitter or	368	Simultaneously outdiffusing
550	collector structure	500	plural dopants from
339	Self-aligned		polysilicon or amorphous
	5		semiconductor
340	.Making plural bipolar	369	
	transistors of differing	203	Dopant implantation or diffusion
~	electrical characteristics	270	
341	.Using epitaxial lateral	370	Forming buried region (e.g.,
	overgrowth		implanting through insulating
342	.Having multiple emitter or	0.51	layer, etc.)
	collector structure	371	Simultaneous introduction of
343	.Mesa or stacked emitter		plural dopants
344	.Washed emitter	372	Plural doping steps
345	.Walled emitter	373	Multiple ion implantation
346	.Emitter dip prevention or		steps
	utilization	374	Using same conductivity-
347	.Permeable or metal base		type dopant
348	.Sidewall base contact	375	Forming partially
349	.Pedestal base		overlapping regions
350	.Forming base region of specified	376	Single dopant forming
	dopant concentration profile		regions of different depth or
	(e.g., inactive base region		concentrations
	more heavily doped than active	377	Through same mask opening
	base region, etc.)	378	.Radiation or energy treatment
351	.Direct application of electrical		modifying properties of
	current		semiconductor regions of
352	.Fusion or solidification of		substrate (e.g., thermal,
	semiconductor region		corpuscular, electromagnetic,
353	.Including isolation structure		etc.)
354	Having semi-insulative region	379	VOLTAGE VARIABLE CAPACITANCE
355	Total dielectrical isolation		DEVICE MANUFACTURE (E.G.,
356	Isolation by PN junction only		VARACTOR, ETC.)
357	Including epitaxial	380	AVALANCHE DIODE MANUFACTURE
557	semiconductor layer formation		(E.G., IMPATT, TRAPPAT, ETC.)
358	Up diffusion of dopant from	381	MAKING PASSIVE DEVICE (E.G.,
550	substrate into epitaxial layer		RESISTOR, CAPACITOR, ETC.)
250		382	.Resistor
359	Dielectric isolation formed by grooving and refilling with	383	Lightly doped junction isolated
	dielectrical material		resistor
260		384	Deposited thin film resistor
360	With epitaxial semiconductor	385	Altering resistivity of
	formation in groove		conductor

438 - 8 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

386	.Trench capacitor	415	Thermomigration
387	Having stacked capacitor	416	With epitaxial semiconductor
	structure (e.g., stacked		formation
	trench, buried stacked	417	And simultaneous
	capacitor, etc.)		polycrystalline growth
388	With epitaxial layer formed	418	Dopant addition
	over the trench	419	Plural doping steps
389	Including doping of trench	420	Plural doping steps
	surfaces	421	.Having air-gap dielectric (e.g.,
390	Multiple doping steps		groove, etc.)
391	Including isolation means	422	Enclosed cavity
	formed in trench	423	.Implanting to form insulator
392	Doping by outdiffusion from a	424	.Grooved and refilled with
	dopant source layer (e.g.,	121	deposited dielectric material
	doped oxide)	425	Combined with formation of
393	.Planar capacitor	125	recessed oxide by localized
394	Including doping of		oxidation
	semiconductive region	426	Recessed oxide laterally
395	Multiple doping steps	420	extending from groove
396	.Stacked capacitor	427	Refilling multiple grooves of
397	Including selectively removing	427	different widths or depths
571	material to undercut and	428	Reflow of insulator
	expose storage node layer	420 429	
398	Including texturizing storage	429	And epitaxial semiconductor
550	node layer	420	formation in groove
399	Having contacts formed by	430	And deposition of polysilicon
	selective growth or deposition		or noninsulative material into
400	FORMATION OF ELECTRICALLY	431	groove
100	ISOLATED LATERAL	431	Oxidation of deposited material
	SEMICONDUCTIVE STRUCTURE	432	
401	.Having substrate registration	432	Nonoxidized portions
101	feature (e.g., alignment mark)		remaining in groove after oxidation
402	.And gettering of substrate	433	Dopant addition
403	.Having semi-insulating component	433	-
404	.Total dielectric isolation		From doped insulator in groove
405	And separate partially isolated	435	Multiple insulative layers in
TUD	semiconductor regions	120	groove
406	Bonding of plural	436	Reflow of insulator
406	semiconductive substrates	437	Conformal insulator formation
407		438	Reflow of insulator
407	Nondopant implantation	439	.Recessed oxide by localized
408	With electrolytic treatment		oxidation (i.e., LOCOS)
	step	440	Including nondopant
409	Porous semiconductor formation		implantation
410	Encroachment of separate	441	With electrolytic treatment
	locally oxidized regions		step
411	Air isolation (e.g., beam lead	442	With epitaxial semiconductor
	supported semiconductor		layer formation
	islands, etc.)	443	Etchback of recessed oxide
412	Semiconductor islands formed	444	Preliminary etching of groove
	upon insulating substrate or	445	Masking of groove sidewall
	layer (e.g., mesa isolation,	446	Polysilicon containing
	etc.)		sidewall
413	With epitaxial semiconductor	447	Dopant addition
	formation	448	Utilizing oxidation mask having
414	.Isolation by PN junction only		polysilicon component

449	Dopant addition	480	Including implantation of ion
450	Implanting through recessed		which reacts with
	oxide		semiconductor substrate to
451	Plural doping steps		form insulating layer
452	Plural oxidation steps to form	481	Utilizing epitaxial lateral
	recessed oxide		overgrowth
453	And electrical conductor	482	.Amorphous semiconductor
100	formation (i.e.,	483	Compound semiconductor
	metallization)	484	Running length (e.g., sheet,
454	.Field plate electrode		strip, etc.)
455	BONDING OF PLURAL SEMICONDUCTOR	485	Deposition utilizing plasma
100	SUBSTRATES	105	(e.g., glow discharge, etc.)
456	.Having enclosed cavity	486	And subsequent crystallization
457	.Warping of semiconductor	487	Utilizing wave energy (e.g.,
457	substrate	407	laser, electron beam, etc.)
4 5 0		400	
458	.Subsequent separation into	488	.Polycrystalline semiconductor
	plural bodies (e.g.,	489	Simultaneous single crystal
450	delaminating, dicing, etc.)	100	formation
459	.Thinning of semiconductor	490	Running length (e.g., sheet,
	substrate		strip, etc.)
460	SEMICONDUCTOR SUBSTRATE DICING	491	And subsequent doping of
461	.Beam lead formation		polycrystalline semiconductor
462	.Having specified scribe region	492	.Fluid growth step with preceding
	structure (e.g., alignment		and subsequent diverse
	mark, plural grooves, etc.)		operation
463	.By electromagnetic irradiation	493	.Plural fluid growth steps with
	(e.g., electron, laser, etc.)		intervening diverse operation
464	.With attachment to temporary	494	Differential etching
	support or carrier	495	Doping of semiconductor
465	.Having a perfecting coating	496	Coating of semiconductive
466	DIRECT APPLICATION OF ELECTRICAL		substrate with
	CURRENT		nonsemiconductive material
467	.To alter conductivity of fuse or	497	.Fluid growth from liquid
	antifuse element		combined with preceding
468	.Electromigration		diverse operation
469	.Utilizing pulsed current	498	Differential etching
470	.Fusion of semiconductor region	499	Doping of semiconductor
471	GETTERING OF SUBSTRATE	500	.Fluid growth from liquid
472	.By vibrating or impacting		combined with subsequent
473	.By implanting or irradiating		diverse operation
474	Ionized radiation (e.g.,	501	Doping of semiconductor
1,1	corpuscular or plasma	502	Heat treatment
	treatment, etc.)	503	.Fluid growth from gaseous state
475	Hydrogen plasma (i.e.,		combined with preceding
175	hydrogenization)		diverse operation
476	.By layers which are coated,	504	Differential etching
-1/0	contacted, or diffused	505	Doping of semiconductor
177		506	Ion implantation
477	.By vapor phase surface reaction	507	.Fluid growth from gaseous state
478	FORMATION OF SEMICONDUCTIVE	507	combined with subsequent
	ACTIVE REGION ON ANY SUBSTRATE		diverse operation
	(E.G., FLUID GROWTH,	508	Doping of semiconductor
470	DEPOSITION)		
479	.On insulating substrate or layer	509	Heat treatment

438 - 10 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

510	INTRODUCTION OF CONDUCTIVITY	540	Including plural controlled
	MODIFYING DOPANT INTO SEMICONDUCTIVE MATERIAL		heating or cooling steps or
511		541	nonuniform heatingIncluding diffusion after
511	.Ordering or disordering .Involving nuclear transmutation	541	fusing step
512	doping	542	.Diffusing a dopant
513	.Plasma (e.g., glow discharge,	543	To control carrier lifetime
212	etc.)	545	(i.e., deep level dopant)
514	.Ion implantation of dopant into	544	To solid-state solubility
	semiconductor region		concentration
515	Ionized molecules	545	Forming partially overlapping
516	Including charge neutralization		regions
517	Of semiconductor layer on	546	Plural dopants in same region
	insulating substrate or layer		(e.g., through same mask
518	Of compound semiconductor		opening, etc.)
519	Including multiple	547	Simultaneously
	implantation steps	548	Plural dopants simultaneously
520	Providing nondopant ion		in plural regions
	(e.g., proton, etc.)	549	Single dopant forming plural
521	Using same conductivity-type dopant		diverse regions (e.g., forming regions of different
522	Including heat treatment		concentrations or of different
523	And contact formation (i.e.,		depths, etc.)
	metallization)	550	Nonuniform heating
524	Into grooved semiconductor	551	Using multiple layered mask
	substrate region	552	Having plural predetermined
525	Using oblique beam		openings in master mask
526	Forming buried region	553	Using metal mask
527	Including multiple implantation	554	Outwardly
	steps	555	Laterally under mask opening
528	Providing nondopant ion (e.g., proton, etc.)	556	Edge diffusion by using edge portion of structure other
529	Using same conductivity-type		than masking layer to mask
	dopant	557	From melt
530	Including heat treatment	558	From solid dopant source in
531	Using shadow mask		contact with semiconductor
532	Into polycrystalline region		region
533	And contact formation (i.e.,	559	Using capping layer over
	metallization)		dopant source to prevent out-
534	Rectifying contact (i.e.,	560	diffusion of dopant
	Schottky contact)	560	Plural diffusion stages
535	.By application of corpuscular or electromagnetic radiation	561	Dopant source within trench or groove
	(e.g., electron, laser, etc.)	562	Organic source
536	Recoil implantation	563	Glassy source or doped oxide
537	.Fusing dopant with substrate (i.e., alloy junction)	564	Polycrystalline semiconductor source
E 2 0	Using additional material to	565	From vapor phase
538	improve wettability or flow	566	Plural diffusion stages
	characteristics (e.g., flux,	567	Solid source in operative
	etc.)		relation with semiconductor
539	Application of pressure to		region
	material during fusion	568	In capsule-type enclosure
		569	Into compound semiconductor region

570	FORMING SCHOTTKY JUNCTION (I.E., SEMICONDUCTOR-CONDUCTOR RECTIFYING JUNCTION CONTACT)	595 596	Having sidewall structure Portion of sidewall structure is conductive
571	.Combined with formation of ohmic	597	.To form ohmic contact to
571	contact to semiconductor	571	semiconductive material
	region	598	Selectively interconnecting
572	.Compound semiconductor	570	(e.g., customization, wafer
573	Multilayer electrode		scale integration, etc.)
574	T-shaped electrode	599	With electrical circuit layout
575	Using platinum group metal	600	Using structure alterable to
575	(i.e., platinum (Pt), palladium (Pd), rodium (Rh),		conductive state (i.e., antifuse)
576	ruthenium (Ru), iridium (Ir), osmium (Os), or alloy thereof)	601	Using structure alterable to nonconductive state (i.e.,
576	Into grooved or recessed	600	fuse)
	semiconductor region	602	To compound semiconductor
577	Utilizing lift-off	603	II-VI compound semiconductor
578	Forming electrode of specified	604	III-V compound semiconductor
	shape (e.g., slanted, etc.)	605	Multilayer electrode
579	T-shaped electrode	606	Ga and As containing
580	.Using platinum group metal		semiconductor
	(i.e., platinum (Pt),	607	With epitaxial conductor
	palladium (Pd), rhodium (Rh),		formation
	ruthenium (Ru), iridium (Ir), osmium (Os), or alloy thereof)	608	Oxidic conductor (e.g., indium tin oxide, etc.)
581	Silicide	609	Transparent conductor
582	.Using refractory group metal	610	Conductive macromolecular
	(i.e., titanium (Ti), zirconium (Zr), hafnium (Hf),		conductor (including metal powder filled composition)
	vanadium (V), niobium (Nb),	611	Beam lead formation
	tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W),	612	Forming solder contact or bonding pad
	or alloy thereof)	613	Bump electrode
583	Silicide	614	Plural conductive layers
584	COATING WITH ELECTRICALLY OR	615	Including fusion of conductor
	THERMALLY CONDUCTIVE MATERIAL		-
585 586	.Insulated gate formation Combined with formation of	616	By transcription from auxiliary substrate
586	ohmic contact to semiconductor	617	By wire bonding
		618	Contacting multiple
F 0 7	region		semiconductive regions (i.e.,
587	Forming array of gate		interconnects)
500	electrodes	619	Air bridge structure
588	Plural gate levels	620	Forming contacts of differing
589	Recessed into semiconductor substrate		depths into semiconductor substrate
590	Compound semiconductor	621	Contacting diversely doped
591	Gate insulator structure constructed of plural layers or nonsilicon containing		<pre>semiconductive regions (e.g., p-type and n-type regions, etc.)</pre>
500	compound	622	Multiple metal levels,
592	Possessing plural conductive layers (e.g., polycide)		separated by insulating layer (i.e., multiple level
593	Separated by insulator (i.e.,		metallization)
	floating gate)	623	Including organic insulating
594	Tunnelling dielectric layer		material between metal levels

438 - 12 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

624	Separating insulating layer is laminate or composite of plural insulating materials	650	Having noble group metal (i.e., silver (Ag), gold (Au), platinum (Pt), palladium (Pd),
625	At least one metallization level formed of diverse conductive layers		rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os), or alloy thereof)
626	Planarization	651	Silicide
627	At least one layer forms a diffusion barrier	652	Plural layered electrode or conductor
628	Having adhesion promoting layer	653	At least one layer forms a diffusion barrier
629	iayer Diverse conductive layers limited to viahole/plug	654	Having adhesion promoting layer
630	Silicide formation	655	Silicide
631		656	Having refractory group metal
	Having planarization step	020	(i.e., titanium (Ti),
632	Utilizing reflow		zirconium (Zr), hafnium (Hf),
633	Simultaneously by chemical and mechanical means		vanadium (V), niobium (Nb),
634	Utilizing etch-stop layer		tantalum (Ta), chromium (Cr),
635	Insulator formed by reaction		molybdenum (Mo), tungsten (W),
	with conductor (e.g.,		or alloy thereof)
	oxidation, etc.)	657	Having electrically conductive
636	Including use of	650	polysilicon component
	antireflective layer	658	Altering composition of
637	With formation of opening	650	conductor
	(i.e., viahole) in insulative	659	Implantation of ion into
	layer		conductor
638	Having viaholes of diverse width	660	Including heat treatment of conductive layer
639	Having viahole with sidewall component	661	Subsequent fusing conductive layer
640	Having viahole of tapered	662	Utilizing laser
010	shape	663	Rapid thermal anneal
641	Selective deposition	664	Forming silicide
642	Diverse conductors	665	Utilizing textured surface
643	At least one layer forms a	666	Specified configuration of
040	diffusion barrier		electrode or contact
644	Having adhesion promoting	667	Conductive feedthrough or
044	layer		through-hole in substrate
645	Having planarization step	668	Specified aspect ratio of conductor or viahole
646	Utilizing reflow	<i>cc</i> 0	
647	Having electrically	669	And patterning of conductive
	conductive polysilicon	C70	layer Utilizing lift off
	component	670	Utilizing lift-off
648	Having refractory group metal	671	Utilizing multilayered mask
	(i.e., titanium (Ti), zirconium (Zr), hafnium (Hf),	672	Plug formation (i.e., in viahole)
	vanadium (V), niobium (Nb),	673	Tapered etching
	tantalum (Ta), chromium (Cr),	674	Selective deposition of
	molybdenum (Mo), tungsten (W),		conductive layer
649	or alloy thereof) Silicide	675	Plug formation (i.e., in viahole)
		676	Utilizing electromagnetic or

wave energy

677	Pretreatment of surface to enhance or retard deposition	699 700	Plural coating steps Formation of groove or trench
678	Electroless deposition of	701	Tapered configuration
	conductive layer	702	Plural coating steps
679	Evaporative coating of	703	Plural coating steps
	conductive layer	704	.Having liquid and vapor etching
680	Utilizing chemical vapor		steps
	deposition (i.e., CVD)	705	.Altering etchability of
681	Of organo-metallic precursor (i.e., MOCVD)		substrate region by compositional or crystalline
682	Silicide		modification
683	<pre>Of refractory group metal (i.e., titanium (Ti),</pre>	706	.Vapor phase etching (i.e., dry etching)
	zirconium (Zr), hafnium (Hf),	707	Utilizing electromagnetic or
	vanadium (V), niobium (Nb),	/0/	
	tantalum (Ta), chromium (Cr),	708	wave energy
	molybdenum (Mo), tungsten (W),		Photo-induced etching
	or alloy thereof)	709	Photo-induced plasma etching
684	Electrically conductive	710	By creating electric field
004	polysilicon		(e.g., plasma, glow discharge,
685	Refractory group metal (i.e.,		etc.)
660	titanium (Ti), zirconium (Zr),	711	Utilizing multiple gas
	hafnium (Hf), vanadium (V),		energizing means
	niobium (Nb), tantalum (Ta),	712	Reactive ion beam etching
	chromium (Cr), molybdenum		(i.e., RIBE)
	(Mo), tungsten (W), or alloy	713	Forming tapered profile
	thereof)		(e.g., tapered etching, etc.)
686	Noble group metal (i.e., silver	714	Including change in etch
000	(Ag), gold (Au), platinum		influencing parameter (e.g.,
	(Pt), palladium (Pd), rhodium		energizing power, etchant
	(Rh), ruthenium (Ru), iridium		composition, temperature,
	(Ir), osmium (Os), or alloy	815	etc.)
	thereof)	715	With substrate heating or
687	Copper of copper alloy	81.6	cooling
	conductor	716	With substrate handling
688	Aluminum or aluminum alloy	B 1 B	(e.g., conveying, etc.)
	conductor	717	Utilizing multilayered mask
689	CHEMICAL ETCHING	718	Compound semiconductor
690	.Combined with the removal of	719	Silicon
	material by nonchemical means	720	Electrically conductive
	(e.g., ablating, abrading,		material (e.g., metal,
	etc.)		conductive oxide, etc.)
691	Combined mechanical and	721	Silicide
	chemical material removal	722	Metal oxide
692	Simultaneous (e.g., chemical-	723	Silicon oxide or glass
	mechanical polishing, etc.)	724	Silicon nitride
693	Utilizing particulate	725	Organic material (e.g.,
	abradant		resist, etc.)
694	.Combined with coating step	726	Having microwave gas
695	Simultaneous etching and		energizing
	coating	727	Producing energized gas
696	Coating of sidewall		remotely located from
697	Planarization by etching and		substrate
521	coating	728	Using magnet (e.g.,
698	Utilizing reflow		electron cyclotron resonance,
5,00	UCTITZING ICTIOW		etc.)

438 - 14 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

729	<pre>Using specified electrode/ susceptor configuration (e.g.,</pre>	754	Electrically conductive material (e.g., metal,
	of multiple substrates using		conductive oxide, etc.)
	barrel-type susceptor, planar	755	Silicide
	reactor configuration, etc.)	756	Silicon oxide
	to generate plasma	757	Silicon nitride
730	Producing energized gas	758	COATING OF SUBSTRATE CONTAINING
	remotely located from		SEMICONDUCTOR REGION OR OF
	substrate		SEMICONDUCTOR SUBSTRATE
731	Using intervening shield structure	759	.Combined with the removal of material by nonchemical means
732	Using magnet (e.g., electron cyclotron resonance, etc.)	760	.Utilizing reflow (e.g., planarization, etc.)
733	Using or orientation dependent	761	.Multiple layers
	etchant (i.e., anisotropic	762	At least one layer formed by
	etchant)	762	reaction with substrate
734	Sequential etching steps on a single layer	763	Layers formed of diverse
735	Differential etching of		composition or by diverse coating processes
	semiconductor substrate	764	.Formation of semi-insulative
736	Utilizing multilayered mask	764	
737	Substrate possessing multiple	765	polycrystalline silicon
151	layers	765 766	.By reaction with substrate
738	Selectively etching substrate	/66	Implantation of ion (e.g., to
/50	possessing multiple layers of		form ion amorphousized region
	differing etch characteristics		prior to selective oxidation,
739	Lateral etching of		reacting with substrate to
139	intermediate layer (i.e.,		form insulative region, etc.)
	undercutting)	767	Compound semiconductor
740	Utilizing etch stop layer		substrate
740 741	PN junction functions as	768	Reaction with conductive region
/41	etch stop	769	Reaction with silicon
742	Electrically conductive		semiconductive region (e.g.,
742			oxynitride formation, etc.)
	material (e.g., metal,	770	Oxidation
743	conductive oxide, etc.) Silicon oxide or glass	771	Using electromagnetic or wave
	-		energy
744	Silicon nitride	772	Microwave gas energizing
745	.Liquid phase etching	773	In atmosphere containing
746	Utilizing electromagnetic or wave energy		water vapor (i.e., wet oxidation)
747	With relative movement between	774	In atmosphere containing
	substrate and confined pool of		halogen
	etchant	775	Nitridation
748	Projection of etchant against a	776	Using electromagnetic or wave
	moving substrate or		energy
	controlling the angle or	777	Microwave gas energizing
740	pattern of projected etchant	778	.Insulative material deposited
749	Sequential application of etchant		upon semiconductive substrate
750		779	Compound semiconductor
750	To same side of substrate		substrate
751	Each etch step exposes surface of an adjacent layer	780	Depositing organic material (e.g., polymer, etc.)
752	Germanium	781	Subsequent heating modifying
753	Silicon	101	organic coating composition
			Siguine coulting composition

782	With substrate handling during	904	CHARGE CARRIER LIFETIME CONTROL
	coating (e.g., immersion,	905	CLEANING OF REACTION CHAMBER
	spinning, etc.)	906	CLEANING OF WAFER AS INTERIM STEP
783	Insulative material having	907	CONTINUOUS PROCESSING
	impurity (e.g., for altering	908	.Utilizing cluster apparatus
	physical characteristics,	909	CONTROLLED ATMOSPHERE
	etc.)	910	CONTROLLING CHARGING STATE AT
784	Introduction simultaneous with deposition		SEMICONDUCTOR-INSULATOR INTERFACE
785	Insulative material is compound	911	DIFFERENTIAL OXIDATION AND
100	of refractory group metal	911	ETCHING
	(i.e., titanium (Ti),	912	DISPLACING PN JUNCTION
	zirconium (Zr), hafnium (Hf),	913	DIVERSE TREATMENTS PERFORMED IN
	vanadium (V), niobium (Nb),	715	UNITARY CHAMBER
	tantalum (Ta), chromium (Cr),	914	DOPING
	molybdenum (Mo), tungsten (W),	915	.Amphoteric doping
	or alloy thereof)	916	.Autodoping control or
786	Tertiary silicon containing	910	utilization
	compound formation (e.g., oxynitride formation, etc.)	917	.Deep level dopants (e.g., gold
787			(Au), chromium (Cr), iron
788	Using electromagnetic or wave		(Fe), nickel (Ni), etc.)
/00	energy (e.g., photo-induced	918	.Special or nonstandard dopant
	deposition, plasma, etc.)	919	.Compensation doping
789	Organic reactant	920	.Controlling diffusion profile by
790	Organic reactant		oxidation
791	Silicon nitride formation	921	.Nonselective diffusion
792	Utilizing electromagnetic or	922	.Diffusion along grain boundaries
	wave energy (e.g., photo-	923	.Diffusion through a layer
	induced deposition, plasma,	924	.To facilitate selective etching
	etc.)	925	.Fluid growth doping control
793	Organic reactant		(e.g., delta doping, etc.)
794	Organic reactant	926	DUMMY METALLIZATION
795	RADIATION OR ENERGY TREATMENT	927	ELECTROMIGRATION RESISTANT METALLIZATION
	MODIFYING PROPERTIES OF	928	FRONT AND REAR SURFACE PROCESSING
	SEMICONDUCTOR REGION OF	929	EUTECTIC SEMICONDUCTOR
	SUBSTRATE (E.G., THERMAL,	930	TERNARY OR QUATERNARY
	CORPUSCULAR, ELECTROMAGNETIC, ETC.)	220	SEMICONDUCTOR COMPRISED OF
796	.Compound semiconductor		ELEMENTS FROM THREE DIFFERENT
797	Ordering or disordering		GROUPS (E.G., I-III-V, ETC.)
798	.Ionized irradiation (e.g.,	931	SILICON CARBIDE SEMICONDUCTOR
150	corpuscular or plasma	932	BORON NITRIDE SEMICONDUCTOR
	treatment, etc.)	933	GERMANIUM OR SILICON OR GE-SI ON
799	.By differential heating		III-V
800	MISCELLANEOUS	934	SHEET RESISTANCE (I.E., DOPANT PARAMETERS)
		935	GAS FLOW CONTROL
		936	GRADED ENERGY GAP
ar •		937	HILLOCK PREVENTION
CROSS	-REFERENCE ART COLLECTIONS	938	LATTICE STRAIN CONTROL OR
		200	UTILIZATION
900	BULK EFFECT DEVICE MAKING	939	LANGMUIR-BLODGETT FILM
901	CAPACITIVE JUNCTION		UTILIZATION

- 901CAPACITIVE JUN902CAPPING LAYER903CATALYST AIDED CAPACITIVE JUNCTION
- CATALYST AIDED DEPOSITION
- 940 LASER ABLATIVE MATERIAL REMOVAL941 LOADING EFFECT MITIGATION
 - April 2006

942 943	MASKING .Movable	982 VARYING ORIENTATION OF DEVICES IN ARRAY
944	.Shadow	983 ZENER DIODES
945	.Special (e.g., metal, etc.)	
946	.Step and repeat	
947	.Supphotolithographic processing	
948	.Radiation resist	FOREIGN ART COLLECTIONS
949	Energy beam treating radiation	FOREIGN ART COLLECTIONS
	resist on semiconductor	FOR 000 CLASS-RELATED FOREIGN DOCUMENTS
950	Multilayer mask including nonradiation sensitive layer	Any foreign patents or non-patent litera-
951	Lift-off	ture from subclasses that have been
952	Utilizing antireflective layer	reclassified have been transferred
953	MAKING RADIATION RESISTANT DEVICE	directly to FOR Collections listed below.
954	MAKING OXIDE-NITRIDE-OXIDE DEVICE	These Collections contain ONLY foreign patents or non-patent literature. The par-
955	MELT-BACK	enthetical references in the Collection
956	MAKING MULTIPLE WAVELENGTH	titles refer to the abolished subclasses
957	EMISSIVE DEVICE MAKING METAL-INSULATOR-METAL	from which these Collections were derived.
237	DEVICE	
958	PASSIVATION LAYER	
959	MECHANICAL POLISHING OF WAFER	
960	POROUS SEMICONDUCTOR	METHODS (156/1)
961	ION BEAM SOURCE AND GENERATION	FOR 100 .Etching of semiconductor
962	QUANTUM DOTS AND LINES	precursor, substrates, and
963	REMOVING PROCESS RESIDUES FROM	devices used in an electrical
	VERTICAL SUBSTRATE SURFACES	function (156/625.1)
964	ROUGHENED SURFACE	FOR 101 Measuring, testing, or
965	SHAPED JUNCTION FORMATION	inspecting (156/626.1)
966	SELECTIVE OXIDATION OF ION-	FOR 102 By electrical means or of
	AMORPHOUSIZED LAYER	electrical property (156/ 627.1)
967	SEMICONDUCTOR ON SPECIFIED	
	INSULATOR	FOR 103Altering the etchability of a substrate by alloying,
968	SEMICONDUCTOR-METAL-SEMICONDUCTOR	diffusing, or chemical
969	SIMULTANEOUS FORMATION OF	reacting (156/628.1)
	MONOCRYSTALLINE AND	FOR 104With uniting of preforms (e.g.,
	POLYCRYSTALLINE REGIONS	laminating, etc.) (156/629.1)
970	SPECIFIED ETCH STOP MATERIAL	FOR 105 Prior to etching (156/630.1)
971	STOICHIOMETRIC CONTROL OF HOST	FOR 106Delamination subsequent to
	SUBSTRATE COMPOSITION	etching (156/631.1)
972	STORED CHARGE ERASURE	FOR 107With coating (156/632.1)
973	SUBSTRATE ORIENTATION	FOR 108Differential etching (156/
974	SUBSTRATE SURFACE PREPARATION	633.1)
975	SUBSTRATE OR MASK ALIGNING	FOR 109Metal layer etched (156/
	FEATURE	634.1)
976	TEMPORARY PROTECTIVE LAYER	FOR 110With in situ activation or
977	THINNING OR REMOVAL OF SUBSTRATE	combining of etching
978	FORMING TAPERED EDGES ON SUBSTRATE OR ADJACENT LAYERS	components on surface (156/
070		635.1)
979	TUNNEL DIODES	FOR 111With thin film of etchant
980	UTILIZING PROCESS EQUIVALENTS OR	between relatively moving
0.01	OPTIONS	substrate and conforming
981	UTILIZING VARYING DIELECTRIC	surface (e.g., chemical
	THICKNESS	lapping, etc.) (156/636.1)

- FOR 112 ..With relative movement between the substrate and a confined pool of etchant (156/637.1)
- FOR 113 ...With removal of adhered reaction product from substrate (156/638.1)
- FOR 114 ...With substrate rotation, repeated dipping, or advanced movement (156/639.1)
- FOR 115 .. Projection of etchant against a moving substrate or controlling the angle or pattern of projected etchant (156/640.1)
- FOR 116 ..Recycling or regenerating etchant (156/642.1)
- FOR 117 ..With treatment by high energy radiation or plasma (e.g., ion beam, etc.) (156/643.1)
- FOR 118 ..Forming or increasing the size of an aperture (156/644.1)
- FOR 119 ..With mechanical deformation, severing, or abrading of a substrate (156/ 645.1)
- FOR 120 .. Etchant is a gas (156/646.1) FOR 121 .. Etching according to
- crystalline planes (156/647.1)
- FOR 122 .. Etching isolates or modifies a junction in a barrier layer (156/648.1)
- FOR 123 ...Discrete junction isolated
 (e.g., mesa formation, etc.)
 (156/649.1)
- FOR 124 .. Sequential application of etchant material (156/650.1)
- FOR 125 ...Sequentially etching the same surface of a substrate (156/ 651.1)
- FOR 126Each etching exposes surface of an adjacent layer (156/ 652.1)
- FOR 127Etched layer contains silicon (e.g., oxide, nitride, etc.) (156/653.1)
- FOR 128 ..Differential etching of a substrate (156/654.1)
- FOR 129 ...Composite substrate (156/ 655.1)
- FOR 130Substrate contains metallic element or compound (156/ 656.1)
- FOR 131Substrate contains silicon or silicon compound (156/657.1)
- FOR 132 ...Resist coating (156/659.11)

- FOR 133Plural resist coating (156/ 661.11)
- FOR 135 MAKING DEVICE HAVING ORGANIC SEMICONDUCTOR COMPONENT (437/ 1)
- FOR 136 MAKING DEVICE RESPONSIVE TO RADIATION (437/2)
- FOR 137 .Radiation detectors, e.g., infrared, etc. (437/3)
- FOR 138 .Composed of polycrystalline material (437/4)
- FOR 139 .Having semiconductor compound (437/5)
- FOR 140 MAKING THYRISTOR, E.G., DIAC, TRIAC, ETC. (437/6)
- FOR 141 INCLUDING CONTROL RESPONSIVE TO SENSED CONDITION (437/7)
- FOR 142 INCLUDING TESTING OR MEASURING (437/8)
- FOR 143 INCLUDING APPLICATION OF VIBRATORY FORCE (437/9)
- FOR 144 INCLUDING GETTERING (437/10)
- FOR 145 .By ion implanting or irradiating (437/11)
- FOR 146 .By layers which are coated, contacted, or diffused (437/ 12)
- FOR 147 .By vapor phase surface reaction (437/13)
- FOR 148 THERMOMIGRATION (437/14)
- FOR 149 INCLUDING FORMING A SEMICONDUCTOR JUNCTION (437/15)
- FOR 150 .Using energy beam to introduce dopant or modify dopant distribution (437/ 16)
- FOR 151 ..Neutron, gamma ray or electron beam (437/17)
- FOR 152 .. Ionized molecules (437/18)
- FOR 153 .. Coherent light beam (437/19)
- FOR 154 .. Ion beam implantation (437/20)
- FOR 155 ... Of semiconductor on insulating substrate (437/21)
- FOR 156 ... Of semiconductor compound (437/22)
- FOR 157Light emitting diode (LED) (437/23)
- FOR 158 ... Providing nondopant ion including proton (437/24)
- FOR 159 ... Providing auxiliary heating (437/25)
- FOR 160 ... Forming buried region (437/26)

438 - 18 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

		Including multiple implantations of same region (437/27)
FOR	162	<pre>Through insulating layer (437/28)</pre>
FOR	163	Forming field effect
		transistor (FET) type device (437/29)
FOR	164	Using same conductivity type dopant (437/30)
FOR	165	Forming bipolar transistor (NPN/PNP) (437/31)
FOR	166	Lateral bipolar transistor (437/32)
FOR	167	<pre>Having dielectric isolation (437/33)</pre>
		<pre>Forming complementary MOS (metal oxide semiconductor) (437/34)</pre>
FOR	169	Using oblique beam (437/35)
		Using shadow mask (437/36)
FOR	171	Having projected range less than thickness of dielectrics on substrate (437/37)
FOR	172	<pre>Into shaped or grooved semiconductor substrate (437/ 38)</pre>
FOR	173	Involving Schottky contact formation (437/39)
FOR	202	Gate structure constructed of diverse dielectrics (437/42)
FOR	203	Gate surrounded by dielectric layer, e.g., floating gate, etc. (437/43)
		Adjusting channel dimension (437/44)
		Active step for controlling threshold voltage (437/45)
FOR	185	Self-aligned (437/41 R)
FOR	186	With bipolar (437/41 RBP)
FOR	187	CMOS (437/41 RCM)
FOR	188	Lightly doped drain (437/41 RLD)
FOR	189	Memory devices (437/41 RMM)
FOR	190	Asymmetrical FET (437/41 AS)
FOR	191	Channel specifics (437/41 CS)
FOR	192	DMOS/vertical FET (437/41 DM)
FOR	193	Gate specifics (437/41 GS)
FOR	194	Junction FET/static induction transistor (437/41 JF)
FOR	195	Layered channel (437/41 LC)

FOR	196	Specifics of metallization/ contact (437/41 SM)
FOR	197	Recessed gate (Schottky
FOR	198	falls below in SH) (437/41 RG)Schottky gate/MESFET (437/41
FOD	100	SH) Sidewall (437/41 SW)
	200	inverted (437/41 TFI)
FOR	201	Thin film transistor (437/41 TFT)
FOR	174	<pre>Forming pair of device regions separated by gate structure, i.e., FET (437/40 R)</pre>
FOR	175	Asymmetrical FET (any asymmetry in S/D profile, gate
		spacing, etc.) (437/40 AS)
		DMOS/vertical FET (437/40 DM)
		Gate specific (specifics of gate insulator/structure/ material/ contact) (437/40 GS)
FOR	178	Junction FET/static induction transistor (437/40 JF)
FOR	179	Layered channel (e.g., HEMT, MODFET, 2DEG, heterostructure FETS) (437/40 LC)
FOR	180	Recessed gate (437/40 RG)
		Schottky gate/MESFET (controls over RG) (437/40 SH)
FOR	182	(Concross over kg) (437/40 SH) Sidewall (not LDD`s) (437/40 SW)
FOR	183	Thin film transistor inverted/staggered (437/40 TFI)
FOR	184	Thin film transistor (437/40 TFT)
FOR	206	Into polycrystalline or polyamorphous regions (437/46)
FOR	207	Integrating active with
		passive devices (437/47)
FOR	208	Forming plural active devices in grid/array, e.g., RAMS/ ROMS, etc. (437/48)
FOR	209	Having multiple-level electrodes (437/49)
FOR	210	Forming electrodes in laterally spaced relationships (437/50)
		.Making assemblies of plural individual devices having community feature, e.g., integrated circuit, electrical connection, etc. (437/51)
FOR	212	Memory devices (437/52)

FOR	213	Charge coupled devices (CCD) (437/53)
FOR	214	Diverse types (437/54)
		Integrated injection logic
1 010	210	(I2L) circuits (437/55)
FOR	216	Plural field effect
1 010	210	transistors (CMOS) (437/56)
FOR	217	Complementary metal oxide
1 010	217	having diverse conductivity
		source and drain regions (437/
		57)
FOR	218	Having like conductivity
		source and drain regions (437/
		58)
FOR	219	Including field effect
		transistor (437/59)
FOR	220	Including passive device (437/
		60)
FOR	221	.Including isolation step (437/
		61)
FOR	222	By forming total dielectric
		isolation (437/62)
FOR	223	By forming vertical isolation
		combining dielectric and PN
		junction (437/63)
FOR	224	Using vertical dielectric (air-
		gap/insulator) and horizontal
		PN junction (437/64)
		Grooved air-gap only (437/65)
		V-groove (437/66)
FOR	227	Grooved and refilled with
		insulator (437/67)
		V-groove (437/68)
FOR	229	Recessed oxide by localized
	000	oxidation (437/69)
FOR	230	Preliminary formation of guard ring (437/70)
₽∩₽	221	Preliminary anodizing (437/
POR	ZJI	71)
FOR	232	Preliminary etching of groove
		(437/72)
FOR	233	Using overhanging oxidation
		mask and pretreatment of
		recessed walls (437/ 73)
FOR	234	Isolation by PN junction only
		(437/74)
FOR	235	By diffusion from upper
		surface only (437/75)
FOR	236	By up-diffusion from substrate
		region and down diffusion into
		upper surface layer (437/76)
FOR	237	Substrate and epitaxial
		regions of same conductivity
		type, i.e., P or N (437/77)

FOR	238	By etching and refilling with semiconductor material having
FOR	239	diverse conductivity (437/78) Using polycrystalline region
		(437/79)
FOR	240	.Shadow masking (437/80)
FOR	241	.Doping during fluid growth of
		semiconductor material on substrate (437/81)
FOR	242	Including heat to anneal (437/ 82)
FOR	243	Growing single crystal on amorphous substrate (437/83)
FOR	244	Growing single crystal on
POR	211	single crystal insulator (SOS) (437/84)
FOR	245	Including purifying stage
		during growth (437/85)
FOR	246	Using transitory substrate (437/86)
FOR	247	Using inert atmosphere (437/87)
		Using catalyst to alter growth
		process (437/88)
FOR	249	Growth through opening (437/89)
FOR	250	Forming recess in substrate
	0 - 1	and refilling (437/90)
		By liquid phase epitaxy (437/ 91)
FOR	252	By liquid phase epitaxy (437/ 92)
FOR	253	Specified crystal orientation
		other than (100) or (111)
		planes (437/93)
FOR	254	Introducing minority carrier
POR	234	life time reducing dopant
		during growth, i.e., deep
		level dopant Au (Gold), Cr
		(Cromium), Fe (Iron), Ni
	0 F F	(Nickel), etc. (437/94)
		Autodoping control (437/95)
FOR	256	Compound formed from Group III and Group V elements (437/96)
ΨOD	257	
FOR	257	Forming buried regions with outdiffusion control (437/97)
FOR	258	Plural dopants simultaneously
		outdiffusioned (437/98)
FOR	259	Growing mono and
		polycrystalline regions
		simultaneously (437/99)
FOR	260	Growing silicon carbide (SiC) (437/100)
FOR	261	Growing amorphous semiconductor
		material (437/101)
FOR	262	Source and substrate in close-

space relationship (437/102)

438 - 20 CLASS 438 SEMICONDUCTOR DEVICE MANUFACTURING: PROCESS

- FOR 263 ... Group IV elements (437/103)
- FOR 264 ...Compound formed from Group III and Group V elements (437/104)
- FOR 265 ..Vacuum growing using molecular beam, i.e., vacuum deposition (437/105)
- FOR 266 ... Group IV elements (437/106)
- FOR 267 ...Compound formed from Group III and Group V elements (437/107)
- FOR 268 ..Growing single layer in multisteps (437/108)
- FOR 269 ... Polycrystalline layers (437/ 109)
- FOR 270 ...Using modulated dopants or materials, e.g., superlattice, etc. (437/110)
- FOR 271 ... Using preliminary or intermediate metal layer (437/ 111)
- FOR 272 ...Growing by varying rates (437/ 112)
- FOR 273 ..Using electric current, e.g., Peltier effect, glow discharge, etc. (437/ 113)
- FOR 274 ..Using seed in liquid phase (437/114)
- FOR 275 ... Pulling from melt (437/115)
- FOR 276 And diffusing (437/116)
- FOR 277 ..Liquid and vapor phase epitaxy in sequence (437/117)
- FOR 278 .. Involving capillary action (437/118)
- FOR 279 ...Sliding liquid phase epitaxy (437/119)
- FOR 280 ... Modifying melt composition (437/120)
- FOR 281 ...Controlling volume or thickness of growth (437/121)
- FOR 282 ... Preliminary dissolving substrate surface (437/122)
- FOR 283 ...With nonlinear slide movement (437/123)
- FOR 284 ... One melt simultaneously contacting plural substrates (437/124)
- FOR 285 .. Tipping liquid phase epitaxy (437/125)
- FOR 286 .. Heteroepitaxy (437/126)
- FOR 287 ...Multi-color light emitting diode (LED) (437/127)
- FOR 288 ... Graded composition (437/128)
- FOR 289 ...Forming laser (437/129)
- FOR 290 ... By liquid phase epitaxy (437/ 130)

- FOR 291 ...Si (Silicon on Ge (Germanium) or Ge (Germanium) on Si (Silicon) (437/131)
- FOR 292 ...Either Si (Silicon) or Ge
 (Germanium) layered with or on
 compound formed from Group III
 and Group V elements (437/132)
- FOR 293 ...Compound formed from Group III and Group V elements on diverse Group III and Group V including substituted Group III and Group V compounds (437/133)
- FOR 294 .By fusing dopant with substrate, e.g., alloying, etc. (437/134)
- FOR 295 .. Using flux (437/135)
- FOR 296 .. Passing electric current through material (437/136)
- FOR 297 ..With application of pressure to material during fusing (437/137)
- FOR 298 .. Including plural controlled heating or cooling steps (437/ 138)
- FOR 299 .. Including diffusion after fusion step (437/139)
- FOR 300 .. Including additional material to improve wettability or flow characteristics (437/140)
- FOR 301 .Diffusing a dopant (437/141)
- FOR 303 .. Al (Aluminum) dopant (437/143)
- FOR 304 ..Li (Lithium) dopant (437/144) FOR 305 ..Including nonuniform heating
- (437/145)
- FOR 306 .. To solid state solubility concentration (437/146)
- FOR 307 ..Using multiple layered mask (437/147)
- FOR 308 ... Having plural predetermined openings in master mask (437/ 148)
- FOR 309 .. Forming partially overlapping regions (437/149)
- FOR 310 .. Plural dopants in same region, e.g., through same mask opening, etc. (437/150)
- FOR 311 ... Simultaneously (437/151)
- FOR 312 .. Plural dopants simultaneously in plural region (437/152)

FOR 313 ... Single dopant forming plural diverse regions (437/153) FOR 314 ... Forming regions of different concentrations or different depths (437/154) FOR 315 .. Using metal mask (437/155) FOR 316 .. Outwardly (437/156) FOR 317 ..Laterally under mask (437/157) FOR 318 .. Edge diffusion by using edge portion of structure other than masking layer to mask (437/158)FOR 319 .. From melt (437/159) FOR 320 .. From solid dopant source in contact with substrate (437/ 160) FOR 321 ... Using capping layer over dopant source to prevent outdiffusion of dopant (437/ 161)FOR 322 ... Polycrystalline semiconductor source (437/162) FOR 323 ... Organic source (437/163) FOR 324 ... Glassy source or doped oxide (437/164)FOR 325 .. From vapor phase (437/165) FOR 326 ... In plural stages (437/166) FOR 327 ... Zn (Zinc) dopant (437/167) FOR 328 ... Solid source is operative relation with semiconductor material (437/168) FOR 329 In capsule type enclosure (437/169)FOR 330 DIRECTLY APPLYING ELECTRICAL CURRENT (437/170) FOR 331 .And regulating temperature (437/ 171) FOR 332 .Alternating or pulsed current (437/172)FOR 333 APPLYING CORPUSCULAR OR ELECTROMAGNETIC ENERGY (437/ 173)FOR 334 .To anneal (437/174) FOR 335 FORMING SCHOTTKY CONTACT (437/ 175) FOR 336 .On semiconductor compound (437/ 176)FOR 337 .. Multi-layer electrode (437/177) FOR 338 .Using platinum group silicide, i.e., silicide of Pt (Platinum), Pd (Palladium), Rh (Rhodium), Ru (Ruthenium), Ir (Iridium), Os (Osmium) (437/ 178)

FOR 339 .Using metal, i.e., Pt (Platinum), Pd (Palladium), Rh (Rhodium), Ru (Ruthenium), Ir (Iridium), Os (Osmium), Au (Gold), Aq (Silver) (437/179) FOR 340 MAKING OR ATTACHING ELECTRODE ON OR TO SEMICONDUCTOR, OR SECURING COMPLETED SEMICONDUCTOR TO MOUNTING OR HOUSING (437/180) FOR 341 .Forming transparent electrode (437/181)FOR 342 .Forming beam electrode (437/182) FOR 343 .Forming bump electrode (437/183) FOR 344 .Electrode formed on substrate composed of elements of Group III and Group V semiconductor compound (437/184) FOR 345 .Electrode formed on substrate composed of elements of Group II and Group VI semiconductor compound (437/185) FOR 346 .Single polycrystalline electrode layer on substrate (437/186) FOR 347 .Single metal layer electrode on substrate (437/187) FOR 348 .. Subsequently fusing, e.g., alloying, sintering, etc. (437/188)FOR 349 .Forming plural layered electrode (437/189)FOR 350 .. Including central layer acting as barrier between outer layers (437/190) FOR 351 .. Of polysilicon only (437/191) FOR 352 .. Including refractory metal layer of Ti (Titanium), Zr (Zirconium), Hf (Hafnium), V (Vanadium), Nb (Niobium), Ta (Tantalum), Cr (Chromium), Mo (Molybdenum), W (Tungsten) (437/192)FOR 353 .. Including polycrystalline silicon layer (437/193) FOR 354 .. Including Al (Aluminum) layer (437/194)FOR 355 .. Including layer separated by insulator (437/195) FOR 356 .Forming electrode of alloy or electrode of a compound of Si (Silicon) (437/196) FOR 357 .. Al (Aluminum) alloy (437/197) FOR 358 ...Including Cu (Copper) (437/ $\!\!$ 198)

- FOR 359 ... Including Si (Silicon) (437/ 199)
- FOR 360 ..Silicide of Ti (Titanium), Zr
 (Zirconium), Hf (Hafnium), V
 (Vanadium), Nb (Niobium), Ta
 (Tantalum), Cr (Chromium), Mo
 (Molybdenum), W (Tungsten),
 (437/200)
- FOR 361 .. Of plantinum metal group Ru
 (Ruthenium), Rh (Rhodium), Pd
 (Palladium), Os (Osmium), Ir
 (Iridium), Pt (Platinum) (437/
 201)
- FOR 362 ...By fusing metal with semiconductor (alloying) (437/202)
- FOR 363 .Depositing electrode in preformed recess in substrate (437/203)
- FOR 364 .Including positioning of point contact (437/204)
- FOR 365 .Making plural devices (437/205) FOR 366 ..Using strip lead frame (437/ 206)
- FOR 367 ... And encapsulating (437/207)
- FOR 368 ..Stacked array, e.g., rectifier, etc. (437/208)
- FOR 369 .Securing completed semiconductor to mounting, housing or external lead (437/209)
- FOR 370 .. Including contaminant removal (437/210)
- FOR 371 ..Utilizing potting or encapsulating material only to surround leads and device to maintain position, i.e. without housing (437/211)
- FOR 372 ...Including application of pressure (437/212)
- FOR 373 ...Glass material (437/213)
- FOR 374 ..Utilizing header (molding surface means) (437/214)
- FOR 375 .. Insulating housing (437/215) FOR 376 ...Including application of
- pressure (437/216)
- FOR 377 ... And lead frame (437/217)
- FOR 378 ...Ceramic housing (437/218) FOR 379 ...Including encapsulating (437/ 219)
- FOR 380 .. Lead frame (437/220)
- FOR 381 .. Metallic housing (437/221)
- FOR 382 ...Including application of
- pressure (437/222)
- FOR 383 ...Including glass support base (437/223)
- FOR 384 ... Including encapsulating (437/ 224) FOR 385 INCLUDING COATING OR MATERIAL REMOVAL, E.G., ETCHING, GRINDING, ETC. (437/ 225) FOR 386 .Substrate dicing (437/226) FOR 387 .. With a perfecting coating (437/ 227) FOR 388 .Coating and etching (437/228) FOR 389 .Of radiation resist layer (437/ 229) FOR 390 .By immersion metal plating from solution, i.e., electroless plating (437/230)FOR 391 .By spinning (437/231) FOR 392 .Elemental Se (Selenium) substrate or coating (437/232) FOR 393 .Of polycrystalline semiconductor material on substrate (437/ 233) FOR 394 ... Semiconductor compound or mixed semiconductor material (437/ 234)FOR 395 .Of a dielectric or insulative material (437/235) FOR 396 .. Containing Group III atom (437/ 236) FOR 397 ... By reacting with substrate (437/237)FOR 398 .. Monoxide or dioxide or Ge (Germanium) or Si (Silicon) (437/238)FOR 399 ... By reacting with substrate (437/239)FOR 400 ... Doped with impurities (437/ 240) FOR 401 ...Si (Silicon) and N (Nitrogen) (437/241)FOR 402 ... By chemical reaction with substrate (437/242) FOR 403 .. Directly on semiconductor substrate (437/243) FOR 404 ... By chemical conversion of substrate (437/244) FOR 405 .Comprising metal layer (437/245) FOR 406 .. On metal (437/246) FOR 407 TEMPERATURE TREATMENT MODIFYING PROPERTIES OF SEMICONDUCTOR, E.G., ANNEALING, SINTERING, ETC. (437/247) FOR 408 .Heating and cooling (437/248) FOR 409 INCLUDING SHAPING (437/249) FOR 410 MISCELLANEOUS (437/250)
- FOR 411 UTILIZING PROCESS EQUIVALENTS OR OPTIONS (437/900)

FOR 412 MAKING PRESSURE SENSITIVE DEVICE FOR 440 RADIATION ENHANCED DIFFUSION (437/901)FOR 413 MAKING DEVICE HAVING HEAT SINK (437/902)FOR 414 MAKING THERMOPILE (437/903) FOR 415 MAKING DIODE (437/904) FOR 416 .Light emmitting diode (437/905) FOR 417 .. Mounting and contact (437/906) FOR 418 LASER PROCESSING OF FIELD EFFECT TRANSISTOR (FET) (437/907) FOR 419 LASER PROCESSING OF TRANSISTOR (437/908)FOR 420 MAKING TRANSISTOR ONLY (437/909) FOR 421 MAKING JOSEPHSON JUNCTION DEVICE (437/910) FOR 422 MAKING JUNCTION-FIELD EFFECT TRANSISTOR (J-FET) OR STATIC INDUCTION THYRSISTOR (SIT) DEVICE (437/911) FOR 423 MAKING METAL SEMICONDUCTOR FIELD EFFECT TRANSISTOR (MESFET) DEVICE ONLY (437/912) FOR 424 MAKING METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR (MOSFET) DEVICE (437/913) FOR 425 MAKING NON-EPITAXIAL DEVICE (437/ 914) FOR 426 MAKING VERTICALLY STACKED DEVICES (3-DIMENSIONAL STRUCTURE) (437/915) FOR 427 MAKING PHOTOCATHODE OR VIDICON (437/916) FOR 428 MAKING LATERAL TRANSISTOR (437/ 917) FOR 429 MAKING RESISTOR (437/918) FOR 430 MAKING CAPACITOR (437/919) FOR 431 MAKING SILICON-OXIDE-NITRIDE-OXIDE ON SILICON (SONOS) DEVICE (437/920) FOR 432 MAKING STRAIN GAGE (437/921) FOR 433 MAKING FUSE OR FUSABLE DEVICE (437/922)FOR 434 WITH REPAIR OR RECOVERY OF DEVICE (437/923) FOR 435 HAVING SUBSTRATE OR MASK ALIGNING FEATURE (437/924) FOR 436 SUBSTRATE SUPPORT OR CAPSULE CONSTRUCTION (437/925) FOR 437 CONTINUOUS PROCESSING (437/926) FOR 438 FORMING HOLLOW BODIES AND ENCLOSED CAVITIES (437/927) FOR 439 ENERGY BEAM TREATING RADIATION RESIST ON SEMICONDUCTOR (437/ 928)

		(R.E.D.) (437/929)
FOR	441	ION BEAM SOURCE AND GENERATION
		(437/930)
FOR	442	IMPLANTATION THROUGH MASK (437/
		931)
		RECOIL IMPLANTATION (437/932)
FOR	444	DUAL SPECIES IMPLANTATION OF
		SEMICONDUCTOR (437/933)
FOR	445	DOPANT ACTIVATION PROCESS (437/
ΠOD	110	934)
FOR	440	BEAM WRITING OF PATTERNS (437/ 935)
FOR	447	BEAM PROCESSING OF COMPOUND
1 010	± ± /	SEMICONDUCTOR DEVICE (437/936)
FOR	448	HYDROGEN PLASMA TREATMENT OF
		SEMICONDUCTOR DEVICE (437/937)
FOR	449	MAKING RADIATION RESISTANT DEVICE
		(437/938)
FOR	450	DEFECT CONTROL OF SEMICONDUCTOR
		WAFER (PRETREATMENT) (437/939)
FOR	451	SELECTIVE OXIDATION OF ION
		AMORPHOUSIZED LAYERS (437/940)
FOR	452	CONTROLLING CHARGING STATE AT
		SEMICONDUCTOR - INSULATOR
	4 5 3	INTERFACE (437/941)
FOR	453	INCOHERENT LIGHT PROCESSING (437/
₽∩₽	151	942) THERMALLY ASSISTED BEAM
FOR	454	PROCESSING (437/943)
FOR	455	UTILIZING LIFT OFF (437/944)
		STOICHIOMETRIC CONTROL OF HOST
		SUBSTRATE COMPOSITION (437/
		945)
FOR	457	SUBSTRATE SURFACE PREPARATION
		(437/946)
FOR	458	FORMING TAPERED EDGES ON
		SUBSTRATE OR ADJACENT LAYERS
		(437/947)
		MOVABLE MASK (437/948)
		CONTROLLED ATMOSPHERE (437/949)
		SHALLOW DIFFUSION (437/950)
		AMPHOTERIC DOPING (437/951) CONTROLLING DIFFUSION PROFILE BY
FOR	403	OXIDATION (437/952)
FOR	464	DIFFUSION OF OVERLAPPING REGIONS
ron	101	(COMPENSATION) (437/953)
FOR	465	VERTICAL DIFFUSION THROUGH A
		LAYER (437/954)
FOR	466	NONSELECTIVE DIFFUSION (437/955)
		DISPLACING P-N JUNCTION (437/956)
		ELECTROMIGRATION (437/957)
		SHAPED JUNCTION FORMATION (437/
		958)

(R.E.D.) (437/929)

FOR 470 USING NONSTANDARD DOPANT (437/ FOR 498 DIFFUSING DOPANTS IN COMPOUND 959) FOR 471 WASHED EMITTER PROCESS (437/960) FOR 472 EMITTER DIP PREVENTION (OR UTILIZATION) (437/961) FOR 473 UTILIZING SPECIAL MASKS (CARBON, ETC.) (437/962) FOR 474 LOCALIZED HEATING CONTROL DURING FLUID GROWTH (437/963) FOR 475 FLUID GROWTH INVOLVING VAPOR-LIQUID-SOLID STAGES (437/964) FOR 476 FLUID GROWTH OF COMPOUNDS COMPOSED OF GROUPS II, IV, OR VI ELEMENTS (437/965) FOR 477 FORMING THIN SHEETS (437/966) FOR 478 **producing polycrystalline** SEMICONDUCTOR MATERIAL (437/ 967) FOR 479 SELECTIVE OXIDATION OF POLYCRYSTALLINE LAYER (437/ 968) FOR 480 FORMING GRADED ENERGY GAP LAYERS (437/969) FOR 481 DIFFERENTIAL CRYSTAL GROWTH (437/ 970) FOR 482 FLUID GROWTH DOPING CONTROL (437/ 971) FOR 483 UTILIZING MELT-BACK (437/972) FOR 484 SOLID PHASE EPITAXIAL GROWTH (437/973) FOR 485 THINNING OR REMOVAL OF SUBSTRATE (437/974)FOR 486 DIFFUSION ALONG GRAIN BOUNDARIES (437/975) FOR 487 CONTROLLING LATTICE STRAIN (437/ 976) FOR 488 UTILIZING ROUGHENED SURFACE (437/ 977) FOR 489 UTILIZING MULTIPLE DIELECTRIC LAYERS (437/978) FOR 490 UTILIZING THICK-THIN OXIDE FORMATION (437/979) FOR 491 FORMING POLYCRYSTALLINE SEMICONDUCTOR PASSIVATION (437/980)FOR 492 PRODUCING TAPERED ETCHING (437/ 981) FOR 493 REFLOW OF INSULATOR (437/982) FOR 494 OXIDATION OF GATE OR GATE CONTACT LAYER (437/983) FOR 495 SELF-ALIGNING FEATURE (437/984) FOR 496 DIFFERENTIAL OXIDATION AND ETCHING (437/985) FOR 497 **DIFFUSING LATERALLY AND ETCHING** (437/986)

```
SEMICONDUCTOR (437/987)
```