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Multidisciplinary Design Optimization

« MDO - systematic approaches to the design
of complex, coupled systems

* “Multidisciplinary” — different aspects of the
design problem

 Actual definition depends on application,
stage of design, etc.

* Define the MDO problem as the subset of the
total design problem that can be expressed as
a nonlinear programming problem.



Some Defining Features of MDO Problems

« Complexity of constituent analyses
* Difficulty of component integration

« Computational expense of function and
constraint evaluations

* The need to attain multidisciplinary
equilibrium at solutions

» Multiobjective nature of the problem

* Unreliable (non-automatic) evaluation of
functions and constraints



Computational Components of MDO

Design-Oriented
Analysis

Variable-fidelity models

Design problem formulation
with analysis

Computational
Infrastructure

Analysis frameworks

Data-fitting approximations

Decomposition and
synthesis strategies

Design optimization
frameworks

Error estimates and bounds

SD/MD optimization
algorithms, including
multilevel optimization

Data standards

Uncertainty quantification

Managing variable-fidelity
models in optimization

Software engineering

MD analysis

Nontraditional methods

Data/process visualization

Sensitivity analysis

Multiobjective optimization
and decision making

User interaction/expert-in-
the-loop

Automation and robustness

Optimization under
uncertainty

Integration




A Component of MDO: Problem Synthesis




Background

« MDO formulation

— Statement of the problem as a nonlinear program

* Analysis answers guestions of equivalence to canonical
formulation, well-posedness, optimality conditions, solubility,
sensitivity of solutions to perturbations in parameters

* Optimization algorithm
— Scheme for solving the formulation

« Analysis answers questions of global convergence, local
convergence rates, etc.

« Analytical features of MDO problem formulation
strongly influence the practical ability of

optimization algorithms to solve the MDO
problem reliably and efficiently



Canonical MDO Problem Synthesis: Fully Integrated
Formulation (FIO)

Problem: design for objective f with

and constraints

Multidisciplinary Analysis

(fixed-point procedure)

sensitivities

« Laborious, expensive, one-time
Process

* Difficult to transform or expand

* Need to develop Multidisciplinary
Analysis (MDA) based derivatives

« Assumes that MDA is done via
fixed-point iteration

* Expensive to maintain MDA far
from solution

e Little disciplinary autonomy
 Drawbacks of FIO motivate other
formulations




Motivation for Analysis and Study

Most alternatives to FIO are based on ad hoc
approaches

Anecdotal evidence indicates that some
methods work better than others

Limited computational evidence of relative
performance properties (next page)

Mathematical analysis looks into reasons



Example: HPCCP/HSCT Formulation Study
Alexandrov and Kodiyalam, AIAA-98-4884

Evaluated 3 formulations with respect to a number of performance metrics:

state variables
objective
constraints

Basic formulation

System Optimization
minimize objective
s.t. design constraints

_: |_ Analysis,

Interdisci_plinanr
coupling Analysis *

design variables

Not equivalent to basic formulation

System Optimization

Equivalent to basic formulation minimize objective

System Optimization

s b interdisciplinary consistency consiraints

&

minimize objective
s.t. design constraints ¥
interdisciplinary consistency constraints S ubsystem Optimization
minimize inconsistency
+ + s.t. disc. constraints 5.t disc. consiraints
Analysis, Analysis , ‘\4

Analysis,

v

. | minimize inconsistency

Subsystem Optimization

A

Analysis




Evaluating a Formulation

Amenable to solution?

Robust formulation?

— Is the solution set the same as that of the canonical problem?
— Do answers satisfy necessary conditions?
— Is it sensitive to small changes in parameters?

Efficiency of solution?

Autonomy of implementation / ease of

transformation?

— Claim: this is the most labor-intensive part
— Important because no single formulation is good for all problems

Autonomy of execution?

— Wish to follow organizational structure for design
— Wish to optimize wrt local variables only in disciplines

These questions are important in practice
— Direct influence on software and solubility



Example, continued

« Contributing formulations
— Basic formulation (FIO)
— Equivalent (Distributed Analysis Optimization, DAO)
— Non-equivalent (Collaborative Optimization, CO)

* Dramatic differences in performance

Problem | 2 by 4 3 G T 8 9 10
M et hod

M DF G 10 220 610 &1 a2a4 | k24 ) 245 | 1574 | 1353
CoO 1020 | 19872 | 178) | 210%2 | BaT | 40125 | 691058

11DF Dol BOTH S 44 032

Example: representative # analyses (MDF = FI1O, IDFLJDAQ)



Basic formulation for a two-discipline problem (simplified)

minimize f Am, Ry (u1(s,1y)), Rz (uz(s, hu:u

8,lq1,l2

subjectto gy (s,l1,uq(s,11)) >0
g2 Amu hmuﬂumm“hu: > 0,

where, given (s,l1,13), (©1,uz) is the solution of the MDA
buhm,hf:im,a,H;:u?,hu:v = 0

A, Am“ ly,us(s,lz), Ty T;HAF ?:v = 0
s - shared variables, [; - local variables, R;, T’; - variable transformations.
e Amenable to standard NLP algorithms
e The smallest optimization problem
e Can be efficient and may be necessary

e MDA difficult to implement and expensive to use



An equivalent formulation

minimize .‘“Amu mw;ﬁ;muhuuﬁuu:,mwu ﬁﬁuamuhmuﬂhﬁ:u

8,lq,l5,uy2,u2q

subject to g1(8,l1,u1(8,l1,u12)) >0
gz ?Luuﬁuamuhuuﬁﬁd >0
w2 — T4 ﬁﬁmamuﬁfﬁuiv =0
Uz — Iz ?_H?Lfﬁﬁ: =0,
where, given (s,1l,,l3, w12, u31), u; and u, are solutions of independent

Aq(s,l1,ui(s,l1,u12),u12) = 0

0.

Aq Amuhmuﬁ.ummummuﬂm”;uﬁ_uuv

e Retains analytic properties of the basic formulation
e MDA attained at solution, not at every iteration

e A larger optimization problem



A non-equivalent formulation (a CO5 version)

minimize H.Am,muﬁ:im,ﬁﬁ:,Nu?imuﬁuu:u

S, U124,U2]

subjectto cy1(s,u12) = || o1 — s ||* + || Tu(uz) — uiz ||

c2(s,u21) = || 02 — s ||* + || T2(u1) — u21 ||

c; - interdisciplinary consistency constraints

o;(s,u;;) l;(s,u;;) are computed by

e . 2 2
minimize || o; — s ||” + || Ti(w;(0:, 1)) — uwsj ||

oi,li

subjectto g; mn_.u.u l;, QH.AD.T hm: N 0
In the disciplinary subproblems u; are computed via

Ai(oiy liyui (o, L, uig), ui;) =0



Salient characteristics of the non-equivalent formulation

Solution set is equivalent to that of the basic formulation
MDA is not attained until solution

Nonlinear, nonconvex, bilevel programming problem

Features that will cause difficulties for optimization algorithms (and exist
even if the functions of the basic formulation are perfectly well behaved):
— System-level constraints make it difficult to find feasible points
— System-level constraints may be, in a practical sense, discontinuous
— Lagrange multipliers do not exist for the system-level problem
— Optimization problems will be more nonlinear than the original problem
— Derivatives of system-level constraints (CO, ) will be discontinuous

— The difficulties occur at and near solutions of the system-level problem



Illustration: World’s simplest problem

(e.g., a bar of fixed length and variable cross-section area under a longitudinal force)

minimize{s | 0 < s <1}
On reformulating as CO., system and subsystem problems become
minimize f(s)

I's—o1(s) I* =0

I's—aa(s) I°=0

subjectto cq(s)

|
b [ = b3 =

c2(8)

1 1
min{_ || o1 — s 1> | o1 > 0} and min{_ || oz — s 1 | o2 < 1}

One readily checks that the subproblem solutions are
0 ifs<O0 s ifs<1

o1(s) = o2(s) =
s ifs>0 1 ifs>1



Example continued

Breakdown of the standard stationarity conditions in CO5

Vei(8) =s—o;(s)and at s, = a,Vei(s,) =0

Stationarity conditions: there exist A; and A, such that

VI(s«) +A1Vei(ss) + A2Vez(ss) =0

But ﬂ.ﬁ?w*v + \/Hdhuﬁ.m*v + \/udnmﬁ.w*v = Q%AM*V =1
Algorithms rely on the stationarity conditions for

— computing steps
— gauging progress

— making decisions about termination

Could start at a solution and not recognize it



Example continued:

Results of NPSOL with
Sy, = 0.001 and

S, =0

Iteration s Penalty
0 | 1L.000e-03 | 0.0e+00
L | -9.990e-01 | 4.2e+00
2 | -9.847e-01 | 5.7e+00
3 | -8.282e-01 | 7.4e+00
4 | -4.142e-01 | 2.7e+01
5 | -3.430e-01 | 59e+01
6 | -1.718e-01 | 4.0e+02
7 | -1.436e-01 | 8.2e+02
8 | -7.251e-02 | 5.4e+03
9 | -6.076e-02 | 1.1e+04

10 | -3.203e-02 | 6.5e+04
11 | -2.717e-02 | 1.2e+05
12 | -1.727e-02 | 5.1e+05
13 | -1.442e-02 | 1.9e+06
14 | -1.414e-02 | 4.7e+06




Intermediate summary

Formulations are distinguished from algorithms
Formulations are equivalent if

— Solutions sets are equivalent

— Algorithmic implications are similar
Reformulating a problem can make it much harder to solve

Some objectives can be accomplished by an algorithm — no need to
complicate the problem formulation

Coupling must be resolved somewhere

If avoiding MDA is the goal, can use an equivalent alternative to the
basic formulation



The Two-Discipline Model Problem

8,1y Disciplinary analysis 1

Y

(e.g., Aerodynamics)

8,12 Disciplinary analysis 2

Y

(e.g., Structures)

e Coupled MDA ~- the physical requirement that a solution satisfy both analyses
e Given x = (s,1;,12), we have

ai

kﬁu A.m,.hu_un‘mV

a- = LMA.W“.MM“E‘HV



Relationship among Optimization Problem Formulations

Write MDA as a1 = Aq(s,l1,t2)
az = Az(s,la,t1)
ti = ai
t2 = a2

Start with Simultaneous Analysis and Design (SAND) formulation:

minimize uamhzbﬁ.mq QHQDMV
s,a1,az,ly 2.ty ,12

subject to gi(s,li,a1) >0
g2(8,lz,a2) >0
a1 = Ai(s,l1,t2)
az = Az(s,l2,t1)
t1 = ai

to

a2



Relationship among Optimization Problem Formulations (cont.)

¢ Eliminate subsets of variables from SAND by closing various subsets of
constraints — get other formulations:

— Distributed Analysis Optimization (DAO): Eliminate a,, a2 as independent
variables by closing the disciplinary analysis constraints at every iteration of
optimization

— Fully Integrated Optimization (FIO): In addition, eliminate ¢, t> as

independent variables by closing {1 = a1 and t2 = a-.

— Optimization by Linear Decomposition (OLD): Eliminate l4, 12, t,, %> as

independent variables via optimization subproblems (MDA remains)

— Collaborative Optimization (CO): Eliminate I1, I> (but not £,, t2) via

optimization subproblems



Autonomy / Modularity in Implementation

« Computational elements needed for
optimization (in particular, sensitivities)
can be implemented autonomously by
disciplines

* All formulations require roughly the same
amount of work to implement

« Can reconfigure the same set of
computational components to implement
one formulation of another



MDO Problem Synthesis / Implementation
Problem: design for objective f with FUTURE

l'.'.-

(fixed-poin* f)rccedure)

MDA
sensitivities

Expend the effort at the outset to implement analysis and
sensitivity modules; easy to transform and expand: an
opportunity for a general framework

Laborious, expensive, one-time
integration, difficult to transform/
expand



Example: Sensitivities in DAO vs FIO
Consider DAO:

minimize .ﬁ@bGAmuﬁf&uv - %Amu aj Amumuumuu ﬁﬂvu DuAmu mfhuuﬁuvv

huhHuhNuHHuHH

subjectto go(s,t1,12) > 0
g1(s,1l1,t1) > 0
gz2(s,12,t2) > 0

i, = DHAmumHummuﬁuv

t2 DuAmumuummuﬁHuu

where, given (s,ly,15,t1,t3),a; and a, are found from

a; — Ay(s,ly,t2) = 0
asz — kﬁmmmuhmuﬁuv

|
e



Example: Sensitivities in DAO vs FI1O, cont.

For the objective fpao(s,t1,t2), we need

of of of
Os’ 8t Ot

For the design constraints g, (s,l,,%,) and g, (s,l3,t;) we need

dg1 0g1 9g1 and 0g2 0g2 0g2
ds’ al,’ 0ty 9s’ Oly Bty
For the consistency constraints £; — kﬁim, 4, SW = (0 and

1o — kﬁuﬁmummu&Hv = 0 we need

OA, A, OA, - A, OA, OA,
ds ' 9ly Ot ds  Ol, Oty




Example: Sensitivities in DAO vs FIO, cont.
Consider FIO:

Ew.“mﬂ;mm f(s,ay1(s,1l1,13),az(s,11,13))

subject to  go(s,l1,a1(s,l1,12),a2(s,11,12)) > 0
%HAmumHuDHAmumfhva N 0
%mAmummuﬁmAmumHumva N 0,

where a; and a, are computed in MDA

kﬁummumf Duv
kﬁmﬁmuhmu _D..Hv

ai

S
¥)
|



Example: Sensitivities in DAO vs FIO, cont.

In FIO approach, we need to compute the sensitivities of the objective

HﬂhﬂhﬁuﬁmuhHuth — Hﬂﬁ.m: ..H._HAM: hHuthq .,H‘MAM:MH____MMVV.

By the chain rule,
Ofrio _ .w.wan_n of Oa, n of 0Oas
Os Os da1 Os daz Os
9frro _  Of Oax 4 Of da-
ol da, Ol da-s Ol
Ofrro _ of 0a,q i Of Oas
ol da, 0Ol, Oa-, 0Ol

We compute the derivatives of a; and a- by implicit differentiation of the
multidisciplinary analysis equations

a; ILHAMQMH_WD‘MV — C
Eﬁlkﬁﬂﬁh»hmqﬁ,uv — 0



This yields

9 A, da, 0A,
I " dao Os _ Os
_9A- 7 daz | 0A, |’
da, Js Js
dA; da, dA,
! ~ da Ol al,
2 —
_ 94, I Oas B ,.
@Dﬁ @hu 0
and 5
0A1 ai
I " Das Ol2 _ 0
e qwkﬁm T qm‘ﬁ__,m - @xﬁm
da, Ol 2 ol,

to be solved for the sensitivities of a; and a2 wrt (s,11,12). (Referred to as the

““generalized sensitivity equations” by Sobieski, 1990)



Example: Sensitivities in DAO vs FI10O, cont.

Observe that the same elements are needed for FIO and DAO sensitivity
computations

Can implement constituent elements with disciplinary autonomy if do not
integrate MDA via fixed-point iteration early

The elements are integrated differently in FI1O and DAO

Analogous results for CO and OLD

Conclusion: The same computational components are required



Algorithmic Interactions

Saw how, in principle, can re-arrange computational components
associated with one formulation and obtain components for another

Re-arrangement may require substantial effort

Now show how for some of the formulations, minor changes in an
optimization algorithm may yield an algorithm for solving another

formulation

Straightforward to pass among some formulations —> facilitate the use of
hybrid approaches: may use one far from solution, another near solution



mwmamu_mu DAO vs FIO vs SAND (analysis and coupling constraints only)
Simplified FIO formulation: minimize frro(x) = f(x,a1(x),az(x)),
where, given az, we solve the MDA

A;(x) _ a1 — Ai(z,a1(z),az(z)) —o

Az () az — Az(z, a1(z),az(z))

Simplified SAND formulation:

minimize fsanp(x,ai1,az2) = f(x,a1,a2)

i,y a3z

subject to  A;(xz,a1,az2) =0
MMAH,;H,QMV =0

Simplified DAO formulation:

minimize fpao(x,a1,az)
e,al1,az2,l1,l2

subjectto t; — ai1(x,t1,t2) =0
tz — D.m_ﬁﬁg&f_&mv =0



Example: DAO vs FIO vs SAND, cont.

W — basis of the null-space associated with the derivative of the block A;. Relying on
implicit differentiation and the derivations by Lewis, 1997, note the relationship among
the sensitivities for the three methods:

e Suppose, (x, a) is feasible with respect to MDA. Then the (projected) gradients at
(z, @) of FIO and SAND are related by

ﬂ.e.ﬂMHOAHV — E\MWZU AH“. Qv.ﬂ.eup,ﬁmhhﬂb AHJ Qvu

where Wgs 4 v p denotes a particular basis for the null-space of VAT in the SAND
approach.

e Suppose that (2, a) is feasible with respect to MDA. Then

.-\ﬂ.ﬂm.”uﬂﬁu qﬁfﬁ:ﬂbbﬁuﬁﬁu .Hv — .—.\ﬂ\‘m_uuﬂzhﬁu Tﬁq quﬂuﬁ.ﬂmbzb AH__. ..u,v

Can use these relationships to implement a reduced-basis optimization algorithm for the

three formulations with minimal modifications.



Sketch of a conceptual algorithm
Consider one step of a reduced-basis algorithm for the SAND formulation:

1. Construct a local model of the Lagrangian about the current design.
2. Take a substep to improve feasibility.

3. Subject to improved feasibility, take a substep to improve optimality.

4. Set the total step to the sum of the substeps, evaluate and update.

e MDA after step 4 —=> a corresponding algorithm for FIO.
e Solving the disciplinary equations as in DAO —> an algorithm for DAO.

e Passing between algorithms for distinct formulations is a straightforward step.



Our Currently Favorite Formulation: Expanded DAO

minimize foao(s,t1,t2)
8,00,01:,02,l1,l2,t1,i2
subject to go(@ost1,t2) > 0

QHAD.:h:ﬁHv w 0
QMAQM,._«E&MV w 0

wu = E‘HAD.H“..@H“ ﬁmV

t2 = az(o2,1l2,t1)
Op — 8
o1 = 8
O — 8

e Expand variable space to relax the requirement that the disciplinary design
constraints be satisfied with the system-level values of s

¢ Implementation autonomy, no MDA

e Single-level optimization problem - readily soluble



Moral of the Story

Problem formulation determines the
practical solubility of the MDO problem

No single formulation or algorithm is
good for all problems

Need to ease implementation of the
formulations and enable easy interchange
among formulations and hybrid
formulations

All formulations need roughly the same
components — identify them

Create disciplinary modules that can be
reconfigured dynamically



MDO Problem Synthesis / Implementation
Problem: design for objective f with FUTURE

l'.'.-

(fixed-poin* f)rccedure)

MDA
sensitivities

Expend the effort at the outset to implement analysis and
sensitivity modules; easy to transform and expand: an
opportunity for a general framework

Laborious, expensive, one-time
integration, difficult to transform/
expand



Appendix: Comparative Summary of Formulations

FI0O: Single-level optimization, arbitrary coupling, some autonomy of
implementation, MDA required

SAND: Single-level optimization, arbitrary coupling, some autonomy of
implementation, MDA not done, large optimization problem

DAO: Single-level optimization, not for broadly coupled problems, autonomy of
implementation, some autonomy of execution

CO: Bilevel optimization, autonomy of implementation and autonomy of execution
(distributed MDA ), local variables handled in subproblems, no MDA, not for
broadly coupled problems, not robust, can be difficult to solve

OLD: Bilevel optimization, MDA required, autonomy of implementation and some
autonomy of execution, not robust, can be difficult to solve



Managing simulation-based models

* Limiting factors:
— Extreme expense of repeated
simulations

— Function and derivative evaluations
prone to failure away from the nominal
design

— Derivative-free optimization is not an
option due to computational expense



Approach

Engineering
— A variety of approximations and models available and
used for along time

— Ad hoc optimization techniques

Mathematical programming
— Generally limited to local Taylor series models
— Rigorous and robust optimization techniques

AMMO

— Use of engineering approximations and models
— Rigorous and robust optimization techniques

— Can be used with any gradient-based algorithm

Modeling and grid difficulties also being
addressed



AMMO Idea

Conventional Optimization |OPi€ctive: reduce costof design | \y,n1q
optimization with simulations

High-fidelity codes Low-fidelity codes
A

i

n7s -

COST COST

AMMO gives Navier-Stokes answers with five-fold savings




Concluding Remarks

« MDO is a very complex problem
— Synthesis is difficult
— Function evaluations are not automated
— Infrastructure is in its infancy

* Some current promising areas
— Modeling for design optimization
— Rigorous approaches to problem synthesis
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