Problem Synthesis in MDO: an Overview

Natalia M. Alexandrov

Multidisciplinary Optimization Branch NASA Langley Research Center Hampton, Virginia

http://mdob.larc.nasa.gov

n.alexandrov@larc.nasa.gov

Outline

- Components of MDO
- MDO problem synthesis
 - Problem synthesis study
 - A two-discipline model problem
 - MDO problem formulations and their properties
 - Modular implementation
 - Algorithmic interactions
- Managing simulation-based models
- Concluding remarks

Multidisciplinary Design Optimization

- MDO systematic approaches to the design of complex, coupled systems
- "Multidisciplinary" different aspects of the design problem
- Actual definition depends on application, stage of design, etc.
- Define the MDO problem as the subset of the total design problem that can be expressed as a nonlinear programming problem.

Some Defining Features of MDO Problems

- Complexity of constituent analyses
- Difficulty of component integration
- Computational expense of function and constraint evaluations
- The need to attain multidisciplinary equilibrium at solutions
- Multiobjective nature of the problem
- Unreliable (non-automatic) evaluation of functions and constraints

•

Computational Components of MDO

Design-Oriented V Analysis	Design Problem Synthesis and Solution	Computational Infrastructure	
Variable-fidelity models	Design problem formulation with analysis	Analysis frameworks	
Data-fitting approximations	Decomposition and synthesis strategies	Design optimization frameworks	
Error estimates and bounds	SD/MD optimization algorithms, including multilevel optimization	Data standards	
Uncertainty quantification	Managing variable-fidelity models in optimization	Software engineering	
MD analysis	Nontraditional methods	Data/process visualization	
Sensitivity analysis	Multiobjective optimization and decision making	User interaction/expert-in- the-loop	
Automation and robustness	Optimization under uncertainty	Integration	

A Component of MDO: Problem Synthesis

Background

MDO formulation

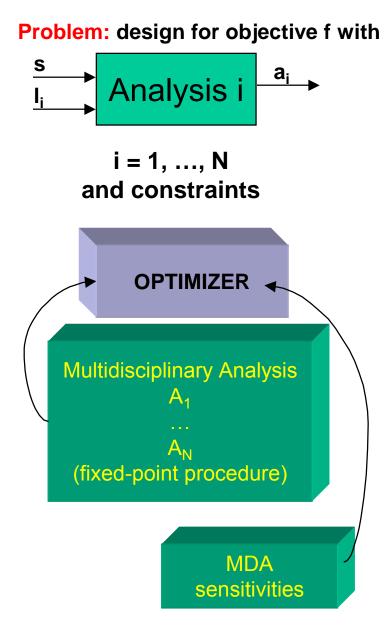
Statement of the problem as a nonlinear program

 Analysis answers questions of equivalence to canonical formulation, well-posedness, optimality conditions, solubility, sensitivity of solutions to perturbations in parameters

Optimization algorithm

- Scheme for solving the formulation
 - Analysis answers questions of global convergence, local convergence rates, etc.
- Analytical features of MDO problem formulation strongly influence the practical ability of optimization algorithms to solve the MDO problem reliably and efficiently

Canonical MDO Problem Synthesis: Fully Integrated Formulation (FIO)



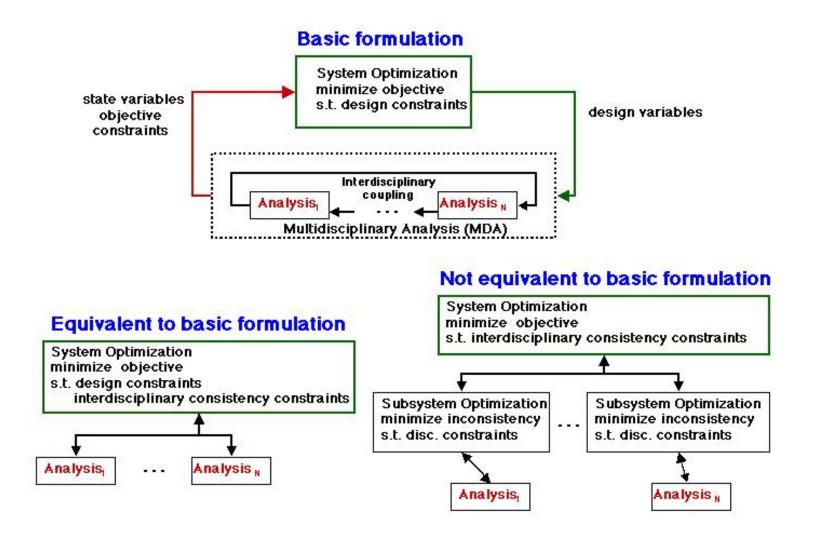
- Laborious, expensive, one-time process
- Difficult to transform or expand
- Need to develop Multidisciplinary Analysis (MDA) based derivatives
- Assumes that MDA is done via fixed-point iteration
- Expensive to maintain MDA far from solution
- Little disciplinary autonomy
- Drawbacks of FIO motivate other formulations

Motivation for Analysis and Study

- Most alternatives to FIO are based on *ad hoc* approaches
- Anecdotal evidence indicates that some methods work better than others
- Limited computational evidence of relative performance properties (next page)
- Mathematical analysis looks into reasons

Example: HPCCP/HSCT Formulation Study Alexandrov and Kodiyalam, AIAA-98-4884

Evaluated 3 formulations with respect to a number of performance metrics:



Evaluating a Formulation

- Amenable to solution?
- Robust formulation?
 - Is the solution set the same as that of the canonical problem?
 - Do answers satisfy necessary conditions?
 - Is it sensitive to small changes in parameters?
- Efficiency of solution?
- Autonomy of implementation / ease of transformation?
 - Claim: this is the most labor-intensive part
 - Important because no single formulation is good for all problems
- Autonomy of execution?
 - Wish to follow organizational structure for design
 - Wish to optimize wrt local variables only in disciplines
- These questions are important in practice
 - Direct influence on software and solubility

Example, continued

- Contributing formulations
 - Basic formulation (FIO)
 - Equivalent (Distributed Analysis Optimization, DAO)
 - Non-equivalent (Collaborative Optimization, CO)
- Dramatic differences in performance

Problem	1	2	3	4	5	6	7	8	9	10
Method										
MDF	610	220	610	81	3234	-5024	8730	245	1574	1353
CO	15626	19872	1785	2102	837	40125	691058	_		
IDF	9530	8976	382	_	544	932	—	_	_	—

Example: representative # analyses (MDF = FIO, IDF CDAO)

Basic formulation for a two-discipline problem (simplified)

$$\begin{array}{lll} & \underset{s,l_{1},l_{2}}{\min initial} & f\left(s,R_{1}\left(u_{1}(s,l_{1})\right),R_{2}\left(u_{2}(s,l_{2})\right)\right)\\ & \text{subject to} & g_{1}\left(s,l_{1},u_{1}(s,l_{1})\right)\geq 0\\ & g_{2}\left(s,l_{2},u_{2}(s,l_{2})\right)\geq 0,\\ & \text{where, given } (s,l_{1},l_{2}),(u_{1},u_{2}) \text{ is the solution of the MDA}\\ & A_{1}\left(s,l_{1},u_{1}(s,l_{1}),T_{1}\left(u_{2}(s,l_{2})\right)\right) &= 0\\ & A_{2}\left(s,l_{2},u_{2}(s,l_{2}),T_{2}\left(u_{1}(s,l_{1})\right)\right) &= 0 \end{array}$$

s - shared variables, l_i - local variables, R_i, T_i - variable transformations.

- Amenable to standard NLP algorithms
- The smallest optimization problem
- Can be efficient and may be necessary
- MDA difficult to implement and expensive to use

An equivalent formulation

$$\begin{array}{ll} \underset{s,l_{1},l_{2},u_{12},u_{21}}{\text{minimize}} & f\left(s,R_{1}(u_{1}(s,l_{1},u_{12})),R_{2}(u_{2}(s,l_{2},u_{21}))\right)\\ \text{subject to} & g_{1}\left(s,l_{1},u_{1}(s,l_{1},u_{12})\right) \geq 0\\ g_{2}\left(s,l_{2},u_{2}(s,l_{2},u_{21})\right) \geq 0\\ & u_{12}-T_{1}\left(u_{2}(s,l_{2},u_{21})\right) = 0\\ & u_{21}-T_{2}\left(u_{1}(s,l_{1},u_{12})\right) = 0, \end{array}$$

where, given $(s, l_1, l_2, u_{12}, u_{21}), u_1$ and u_2 are solutions of independent

- Retains analytic properties of the basic formulation
- MDA attained at solution, not at every iteration
- A larger optimization problem

A non-equivalent formulation (a CO_2 version)

$$\begin{array}{ll} \underset{s,u_{12},u_{21}}{\text{minimize}} & f\left(s,R_{1}\left(u_{1}(s,u_{12})\right),R_{2}\left(u_{2}(s,u_{21})\right)\right) \\ \text{subject to} & c_{1}(s,u_{12}) = \parallel \sigma_{1} - s \parallel^{2} + \parallel T_{1}(u_{2}) - u_{12} \parallel^{2} \\ & c_{2}(s,u_{21}) = \parallel \sigma_{2} - s \parallel^{2} + \parallel T_{2}(u_{1}) - u_{21} \parallel^{2} \end{array}$$

c_i - interdisciplinary consistency constraints

 $\sigma_i(s, u_{ij})$ $l_i(s, u_{ij})$ are computed by

In the disciplinary subproblems
$$u_i$$
 are computed via

$$A_i(\sigma_i, l_i, u_i(\sigma_i, l_i, u_{ij}), u_{ij}) = 0$$

Salient characteristics of the non-equivalent formulation

- Solution set is equivalent to that of the basic formulation
- MDA is not attained until solution
- Nonlinear, nonconvex, bilevel programming problem
- Features that will cause difficulties for optimization algorithms (and exist even if the functions of the basic formulation are perfectly well behaved):
- System-level constraints make it difficult to find feasible points
- I System-level constraints may be, in a practical sense, discontinuous
- I Lagrange multipliers do not exist for the system-level problem
- I Optimization problems will be more nonlinear than the original problem
- L Derivatives of system-level constraints (CO₁) will be discontinuous
- L The difficulties occur at and near solutions of the system-level problem

Illustration: World's simplest problem

(e.g., a bar of fixed length and variable cross-section area under a longitudinal force)

On reformulating as CO_2 , system and subsystem problems become

One readily checks that the subproblem solutions are

$$\sigma_1(s) = \begin{cases} 0 & \text{if } s \leq 0 \\ s & \text{if } s \geq 0 \end{cases} \qquad \sigma_2(s) = \begin{cases} s & \text{if } s \leq 1 \\ 1 & \text{if } s \geq 1 \end{cases}$$

Example continued

Breakdown of the standard stationarity conditions in CO₂

- $\nabla c_i(s) = s \sigma_i(s)$ and at $s_* = \alpha$, $\nabla c_1(s_*) = 0$
- Stationarity conditions: there exist λ_1 and λ_2 such that

$$\nabla f(s_*) + \lambda_1 \nabla c_1(s_*) + \lambda_2 \nabla c_2(s_*) = 0$$

- But $\nabla f(s_*) + \lambda_1 \nabla c_1(s_*) + \lambda_2 \nabla c_2(s_*) = \nabla f(s_*) = 1$
- Algorithms rely on the stationarity conditions for
- computing steps
- gauging progress
- making decisions about termination
- Could start at a solution and not recognize it

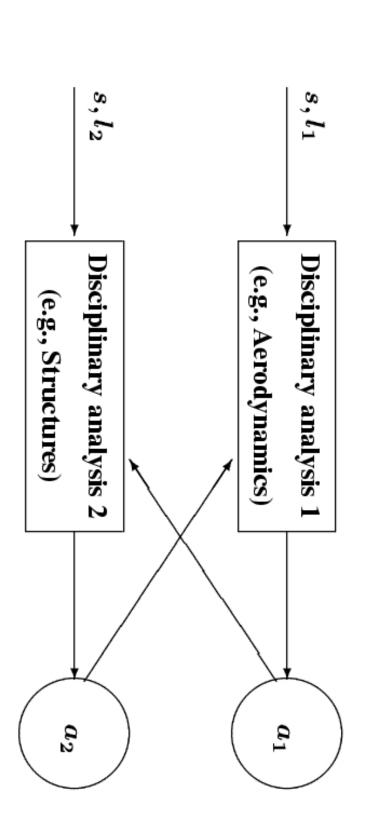
Example continued:

Results of NPSOL with $s_0 = 0.001$ and $s_* = 0$

Iteration	8	Penalty
0	1.000e-03	0.0e+00
1	-9.990e-01	4.2e+00
2	-9.847e-01	5.7e+00
3	-8.282e-01	7.4e+00
4	-4.142e-01	2.7e+01
5	-3.430e-01	5.9e+01
6	-1.718e-01	4.0e+02
7	-1.436e-01	8.2e+02
8	-7.251e-02	5.4e+03
9	-6.076e-02	1.1e+04
10	-3.203e-02	6.5e+04
11	-2.717e-02	1.2e+05
12	-1.727e-02	5.1e+05
13	-1.442e-02	1.9e+06
14	-1.414e-02	4.7e+06

Intermediate summary

- Formulations are distinguished from algorithms
- Formulations are equivalent if
 - Solutions sets are equivalent
 - Algorithmic implications are similar
- Reformulating a problem can make it much harder to solve
- Some objectives can be accomplished by an algorithm no need to complicate the problem formulation
- Coupling must be resolved somewhere
- If avoiding MDA is the goal, can use an equivalent alternative to the basic formulation



- Coupled MDA \sim the physical requirement that a solution satisfy both analyses
- Given $x = (s, l_1, l_2)$, we have

$$egin{array}{rcl} a_1 &=& A_1(s,l_1,a_2) \ a_2 &=& A_2(s,l_2,a_1) \end{array}$$

Relationship among Optimization Problem Formulations

Write MDA as
$$a_1 = A_1(s, l_1, t_2)$$

 $a_2 = A_2(s, l_2, t_1)$
 $t_1 = a_1$
 $t_2 = a_2$

Start with Simultaneous Analysis and Design (SAND) formulation:

$$\begin{array}{ll} \underset{s,a_{1},a_{2},l_{1},l_{2},t_{1},t_{2}}{\min ise} & f_{SAND}(s,a_{1},a_{2}) \\ & subject \mbox{to} & g_{1}(s,l_{1},a_{1}) \geq 0 \\ & g_{2}(s,l_{2},a_{2}) \geq 0 \\ & a_{1} = A_{1}(s,l_{1},a_{2}) \geq 0 \\ & a_{2} = A_{2}(s,l_{2},t_{2}) \\ & a_{2} = A_{2}(s,l_{2},t_{1}) \\ & t_{1} = a_{1} \\ & t_{2} = a_{2} \end{array}$$

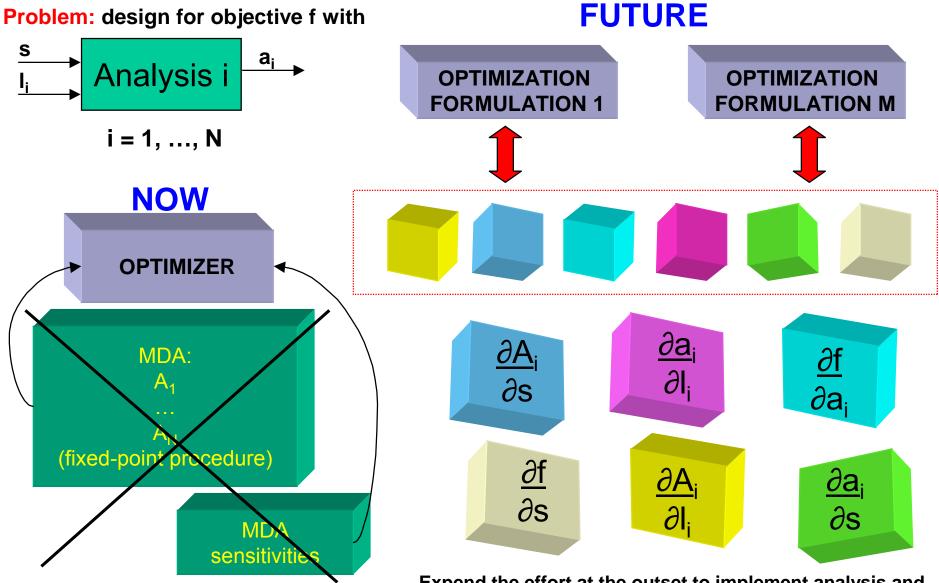
Relationship among Optimization Problem Formulations (cont.)

- $constraints \Longrightarrow get other formulations:$ Eliminate subsets of variables from SAND by *closing* various subsets of
- Distributed Analysis Optimization (DAO): Eliminate a_1, a_2 as independent optimization variables by closing the disciplinary analysis constraints at every iteration of
- Fully Integrated Optimization (FIO): In addition, eliminate t_1, t_2 as independent variables by closing $t_1 = a_1$ and $t_2 = a_2$.
- Optimization by Linear Decomposition (OLD): Eliminate l_1, l_2, t_1, t_2 as independent variables via optimization subproblems (MDA remains)
- L Collaborative Optimization (CO): Eliminate l_1, l_2 (but not t_1, t_2) via optimization subproblems

Autonomy / Modularity in Implementation

- Computational elements needed for optimization (in particular, sensitivities) can be implemented autonomously by disciplines
- All formulations require roughly the same amount of work to implement
- Can reconfigure the same set of computational components to implement one formulation of another

MDO Problem Synthesis / Implementation



Laborious, expensive, one-time integration, difficult to transform/ expand

Expend the effort at the outset to implement analysis and sensitivity modules; easy to transform and expand: an opportunity for a general framework

Consider DAO:

$$\begin{array}{ll} \underset{s,l_{1},l_{2},t_{1},t_{2}}{\text{minimize}} & f_{DAO}(s,t_{1},t_{2}) = f(s,a_{1}(s,l_{1},l_{2},t_{2}),a_{2}(s,l_{1},l_{2},t_{1})) \\ \\ \text{subject to} & g_{0}(s,t_{1},t_{2}) \geq 0 \\ \\ g_{1}(s,l_{1},t_{1}) \geq 0 \\ g_{2}(s,l_{2},t_{2}) \geq 0 \\ \\ t_{1} = a_{1}(s,l_{1},l_{2},t_{2}) \\ t_{2} = a_{2}(s,l_{2},l_{2},t_{1}), \end{array}$$

where, given $(s, l_1, l_2, t_1, t_2), a_1$ and a_2 are found from

$$a_1 - A_1(s, l_1, t_2) = 0$$

 $a_2 - A_2(s, l_2, t_1) = 0.$

For the objective $f_{DAO}(s, t_1, t_2)$, we need

$$rac{\partial f}{\partial s}, rac{\partial f}{\partial t_1}, rac{\partial f}{\partial t_1}$$

For the design constraints $g_1(s, l_1, t_1)$ and $g_2(s, l_2, t_2)$ we need

$$rac{\partial g_1}{\partial s}, rac{\partial g_1}{\partial l_1}, rac{\partial g_1}{\partial t_1} \hspace{0.1 cm} ext{and} \hspace{0.1 cm} rac{\partial g_2}{\partial s}, rac{\partial g_2}{\partial l_2}, rac{\partial g_2}{\partial t_2}.$$

$$t_2 \ - \ A_2(s, l_2, t_1) = 0$$
 we need

 $rac{\partial A_1}{\partial s}, rac{\partial A_1}{\partial l_1}, rac{\partial A_1}{\partial t_2}$

and

 $rac{\partial A_2}{\partial s}, rac{\partial A_2}{\partial l_2}, rac{\partial A_2}{\partial t_1}.$

For the consistency constraints $t_1 - A_1(s, l_1, t_2) = 0$ and

Consider FIO:

$$\begin{array}{ll} \underset{s,l_{1},l_{2}}{\text{minimize}} & f(s,a_{1}(s,l_{1},l_{2}),a_{2}(s,l_{1},l_{2}))\\ \text{subject to} & g_{0}(s,l_{1},a_{1}(s,l_{1},l_{2}),a_{2}(s,l_{1},l_{2})) \geq 0\\ & g_{1}(s,l_{1},a_{1}(s,l_{1},l_{2})) \geq 0\\ & g_{2}(s,l_{2},a_{2}(s,l_{1},l_{2})) \geq 0, \end{array}$$

where a_1 and a_2 are computed in MDA

$$a_1 = A_1(s, l_1, a_2)$$

 $a_2 = A_2(s, l_2, a_1)$

In FIO approach, we need to compute the sensitivities of the objective

$$f_{FIO}(s,l_1,l_2)=f(s,a_1(s,l_1,l_2),a_2(s,l_1,l_2)).$$

By the chain rule,

$$\frac{\partial f_{FIO}}{\partial s} = \frac{\partial f}{\partial s} + \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial s} + \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial s}$$
$$\frac{\partial f_{FIO}}{\partial l_1} = \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial l_1} + \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial l_1}$$
$$\frac{\partial f_{FIO}}{\partial l_2} = \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial l_2} + \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial l_2}$$

multidisciplinary analysis equations We compute the derivatives of a_1 and a_2 by implicit differentiation of the

$$a_1 - A_1(s, l_1, a_2) = 0$$

$$a_2 - A_2(s, l_2, a_1) = 0$$

and		
$\left(egin{array}{c} I \ -rac{\partial A_2}{\partial a_1} \end{array} ight.$	$\left(egin{array}{c} I \ -rac{\partial A_2}{\partial a_1} \end{array} ight.$	$\left(egin{array}{c} I \ -rac{\partial A_2}{\partial a_1} \end{array} ight.$
$-rac{\partial A_1}{\partial a_2} \ I \ \end{pmatrix} \left(egin{array}{c} rac{\partial a_1}{\partial l_2} \ rac{\partial a_1}{\partial l_2} \ rac{\partial a_2}{\partial l_2} \end{array} ight)$	$-rac{\partial A_1}{\partial a_2} \ I \ \end{pmatrix} \left(egin{array}{c} rac{\partial a_1}{\partial l_1} \ rac{\partial a_1}{\partial l_1} \ rac{\partial a_2}{\partial l_1} \end{array} ight)$	$-rac{\partial A_1}{\partial a_2} \ I \ \end{pmatrix} \left(egin{array}{c} rac{\partial a_1}{\partial s} \ rac{\partial a_2}{\partial s} \ rac{\partial a_2}{\partial s} \end{array} ight)$
$\left. \frac{a_1}{l_2} \\ \frac{a_2}{l_2} \right) = - \left(\begin{array}{c} 0 \\ \frac{\partial A_2}{\partial l_2} \end{array} \right)$	$\left(\frac{\frac{l_1}{l_1}}{\frac{l_2}{l_2}} \right) = - \left(\begin{array}{c} \frac{\partial A_1}{\partial l_1} \\ 0 \end{array} \right)$	$\left(egin{array}{c} rac{arlapha_1}{s} \\ rac{arlapha_2}{s} \end{array} ight) = - \left(egin{array}{c} rac{\partial A_1}{\partial s} \\ rac{\partial A_2}{\partial s} \\ rac{\partial A_2}{\partial s} \end{array} ight)$
	, ,	<i>,</i>

"generalized sensitivity equations" by Sobieski, 1990) to be solved for the sensitivities of a_1 and a_2 wrt (s, l_1, l_2) . (Referred to as the

This yields

- **Observe that the same elements are needed for FIO and DAO sensitivity** computations
- integrate MDA via fixed-point iteration early Can implement constituent elements with disciplinary autonomy if *do not*
- The elements are integrated differently in FIO and DAO
- Analogous results for CO and OLD
- **Conclusion:** The same computational components are required

Algorithmic Interactions

- Saw how, in principle, can re-arrange computational components associated with one formulation and obtain components for another
- **Re-arrangement may require substantial effort**
- Now show how for some of the formulations, minor changes in an formulation optimization algorithm may yield an algorithm for solving another
- Straightforward to pass among some formulations \Longrightarrow facilitate the use of hybrid approaches: may use one far from solution, another near solution

Example: DAO vs FIO vs SAND (analysis and coupling constraints only)

where, given x, we solve the MDA Simplified FIO formulation: minimize $f_{FIO}(x) \equiv f(x, a_1(x), a_2(x)),$ 8

$$\left(egin{array}{c} ilde{A}_1(x) \ ilde{A}_2(x) \end{array}
ight) = \left(egin{array}{c} a_1 - A_1(x, a_1(x), a_2(x)) \ a_2 - A_2(x, a_1(x), a_2(x)) \end{array}
ight) = 0$$

Simplified SAND formulation:

$$\begin{array}{ll} \underset{x,a_{1},a_{2}}{\text{minimize}} & f_{SAND}(x,a_{1},a_{2}) \equiv f(x,a_{1},a_{2}) \\ \text{subject to} & \tilde{A}_{1}(x,a_{1},a_{2}) \equiv 0 \\ & \tilde{A}_{2}(x,a_{1},a_{2}) = 0 \end{array}$$

Simplified DAO formulation:

$$\begin{array}{ll} \text{minimize} & f_{DAO}(x,a_1,a_2) \\ & x,a_1,a_2,t_1,t_2 & \\ & \text{subject to} & t_1 - a_1(x,t_1,t_2) = \\ & t_2 - a_2(x,t_1,t_2) = \end{array}$$

0

0

Example: DAO vs FIO vs SAND, cont.

the sensitivities for the three methods: implicit differentiation and the derivations by Lewis, 1997, note the relationship among W_i — basis of the null-space associated with the derivative of the block A_i . Relying on

Suppose, (x, a) is feasible with respect to MDA. Then the (projected) gradients at (x, a) of FIO and SAND are related by

$$\nabla_{x} f_{FIO}(x) = W_{SAND}^{T}(x, a) \nabla_{x,a} f_{SAND}(x, a),$$

approach where W_{SAND} denotes a particular basis for the null-space of $abla ilde A^T$ in the SAND

Suppose that (x, a) is feasible with respect to MDA. Then

$$V_{DAO}^T
abla_{x,a} f_{DAO}(x,a) = W_{SAND}^T(x,a)
abla_{x,a} f_{SAND}(x,a)$$

three formulations with minimal modifications. Can use these relationships to implement a reduced-basis optimization algorithm for the

Sketch of a conceptual algorithm

Consider one step of a reduced-basis algorithm for the SAND formulation:

- Construct a local model of the Lagrangian about the current design.
- 2. Take a substep to improve feasibility.
- 3. Subject to improved feasibility, take a substep to improve optimality.
- 4. Set the total step to the sum of the substeps, evaluate and update.
- MDA after step $4 \Longrightarrow$ a corresponding algorithm for FIO.
- Solving the disciplinary equations as in DAO \Longrightarrow an algorithm for DAO.
- Passing between algorithms for distinct formulations is a straightforward step.

Our Currently Favorite Formulation: Expanded DAO $s, \sigma_0, \sigma_1, \sigma_2, l_1,$ minimize $f_{n,An}(s,t_{1},t_{n})$

$$\sigma_{1,\sigma_{2},l_{1},l_{2},t_{1},t_{2}} \qquad JDAU(s,v1,v2)$$
subject to
$$g_{0}(\sigma_{0}, t_{1}, t_{2}) \geq 0$$

$$g_{1}(\sigma_{1}, l_{1}, t_{1}) \geq 0$$

$$g_{2}(\sigma_{2}, l_{2}, t_{2}) \geq 0$$

$$t_{1} = a_{1}(\sigma_{1}, l_{1}, t_{2})$$

$$t_{2} = a_{2}(\sigma_{2}, l_{2}, t_{2})$$

$$\sigma_{0} = s$$

$$\sigma_{1} = s$$

constraints be satisfied with the system-level values of s Expand variable space to relax the requirement that the disciplinary design

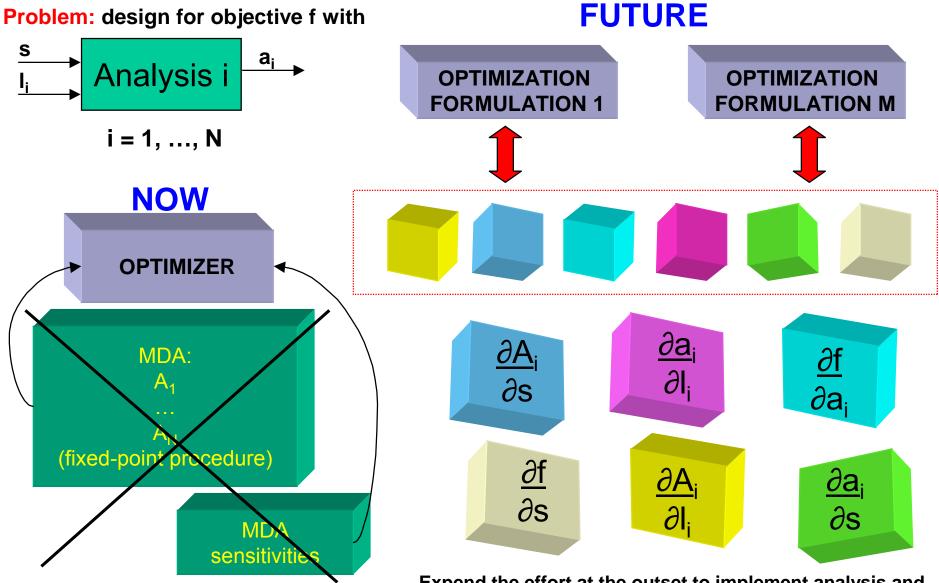
 $\sigma_2 = s$

- Implementation autonomy, no MDA
- Single-level optimization problem readily soluble

Moral of the Story

- Problem formulation determines the practical solubility of the MDO problem
- No single formulation or algorithm is good for all problems
- Need to ease implementation of the formulations and enable easy interchange among formulations and hybrid formulations
- All formulations need roughly the same components – identify them
- Create disciplinary modules that can be reconfigured dynamically

MDO Problem Synthesis / Implementation



Laborious, expensive, one-time integration, difficult to transform/ expand

Expend the effort at the outset to implement analysis and sensitivity modules; easy to transform and expand: an opportunity for a general framework

Appendix: Comparative Summary of Formulations

- FIO: Single-level optimization, arbitrary coupling, some autonomy of implementation, MDA required
- SAND: Single-level optimization, arbitrary coupling, some autonomy of implementation, MDA not done, large optimization problem
- DAO: Single-level optimization, not for broadly coupled problems, autonomy of implementation, some autonomy of execution
- CO: Bilevel optimization, autonomy of implementation and autonomy of execution broadly coupled problems, not robust, can be difficult to solve (distributed MDA), local variables handled in subproblems, no MDA, not for
- **OLD:** Bilevel optimization, MDA required, autonomy of implementation and some autonomy of execution, not robust, can be difficult to solve

Managing simulation-based models

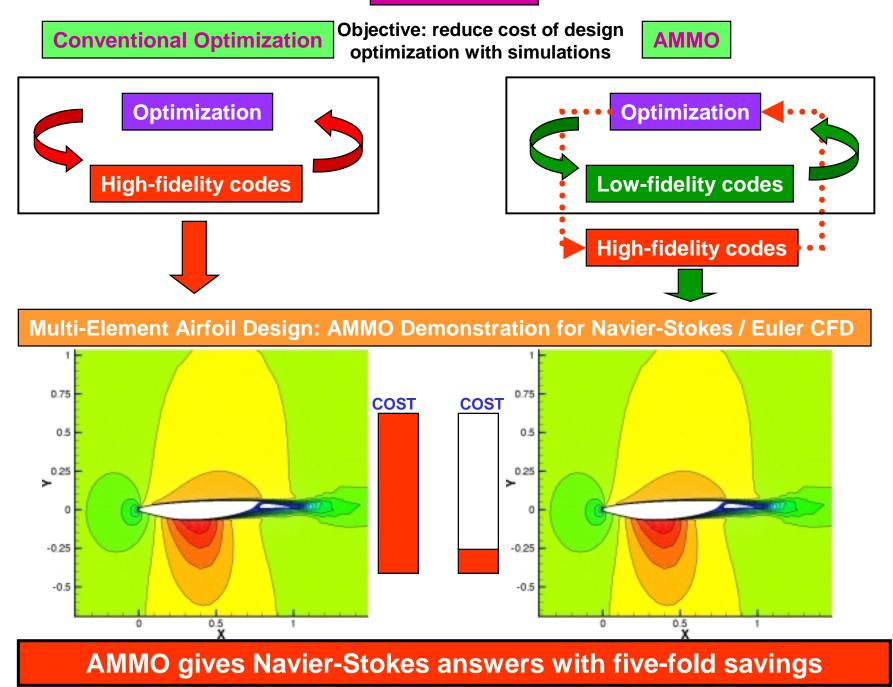
- Limiting factors:
 - Extreme expense of repeated simulations
 - Function and derivative evaluations prone to failure away from the nominal design
 - Derivative-free optimization is not an option due to computational expense

Approach

• Engineering

- A variety of approximations and models available and used for a long time
- Ad hoc optimization techniques
- Mathematical programming
 - Generally limited to local Taylor series models
 - Rigorous and robust optimization techniques
- AMMO
 - Use of engineering approximations and models
 - Rigorous and robust optimization techniques
 - Can be used with any gradient-based algorithm
- Modeling and grid difficulties also being addressed

AMMO Idea



Concluding Remarks

- MDO is a very complex problem
 - Synthesis is difficult
 - Function evaluations are not automated
 - Infrastructure is in its infancy
- Some current promising areas
 - Modeling for design optimization
 - Rigorous approaches to problem synthesis

Some Publications on MDO Problem Synthesis:

Optimization", NASA/TM-210104-2000, AIAA Journal, in press. LTRS Alexandrov, N. M.; Lewis, R. M.: "Analytical and Computational Properties of Collaborative

to MDO", AIAA Paper 2000-4719, 8th AIAA/USAF/NASA/ISSMO Symposium on MA&O, Long Beach, CA, 9/5-9/00. LTRS Alexandrov, N. M.; Lewis, R. M.: "Analytical and Computational Properties of Distributed Approaches

Paper 2000-4718, 8th AIAA/USAF/NASA/ISSMO Symposium on MA&O, Long Beach, CA, 9/5-9/00 Alexandrov, N. M.; Lewis, R. M.: "Algorithmic Perspectives on Problem Formulation in MDO", AIAA LTRS

Optimization, St. Louis, MO, Sept. 2-4, 1998. LTRS Paper 98-4884, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Alexandrov, N.; and Kodiyalam, S.: "Initial Results of an MDO Method Evaluation Study," AIAA

Some Publications on Model Management:

Optimization and Engineering, 2001, in press Alexandrov, N. M.; Lewis, R. M.: "First-Order Model Management for Engineering Optimization",

Optimization", Large-Scale PDE-Constrainted Optimization, 2001, Springer-Verlag, Berlin, in press Alexandrov, N. M.; Lewis, R. M.: "First-Order Approximation and Model Management in

Optimization, Long Beach, CA, 6-8 Sept. 2000; also Journal of Aircraft, in press. LTRS with Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization", AIAA Paper Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.: "First-Order Model Management 2000-4886, 8th ALAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Variable-Fidelity Models Applied to Wing", AIAA Paper 2000-0841, 38th Aerospace Sciences Meeting and Exhibit, 10-13 January 2000, Reno, NV. LTRS. Alexandrov, N. M.; Lewis, R. M.; Gumbert, C. R.; Green, L. L.; and Newman, P.A.: "Optimization with

Optimization, St. Louis, MO, Sept. 2-4, 1998. LTRS Alexandrov, N.: "On Managing the Use of Surrogates in General Nonlinear Optimization and MDO", ALAA Paper 99-4798, 7th ALAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization and MDO Problems", ISSMO/NASA 1st Internet Conference on Approximations and Fast Re-Analysis in Engineering Optimization, June 14-27, 1998. Alexandrov, N.: "A Trust-Region Framework for Managing Approximations in Constrained