

Massachusetts General Hospital

New Technologies in RT and Secondary Cancer

Herman Suit

Department of Radiation Oncology Massachusetts General Hospital Harvard Medical School Boston, MA

New Technologies in RT

Advise and Support From:

A Niemierko

S Goldberg

H Paganetti

G Chen

New Technologies in RT

- I. Basis for [↑] Concern
- II. New Technologies
- **III. Experimental Model Systems**
- **IV. Patient Data Analysis**
- V. Implications for New Technologies

Secondary Cancer Post RT

↑ in 20-30 year survivors

:. [↑] Concern re Late Morbidity

Especially, Secondary Cancer

Radiation Treatment

Goal: Eradicate Tumor

No Complications

ie [↑] Complication Free Cures

Medical Practice

There are no Risk Free Procedures

Aim: \downarrow Frequency and Severity

of Complications

Radiation Complications

Late: Organ Dysfunction

Fibrosis Necrosis

Cancer Induction

Fact of Radiation Oncology

Radiation Injury Never Develops

In Unirradiated Tissues

Radiation Treatment

Goal: Confine Dose to Target

Reduce or Eliminate Dose

to Normal Tissues

1 Technology

Yield:

TCP Tumor Control Probability

VALUATE VALUATION VIEW AND COMPLICATION Probability

Portal Films Simulation

2° Collimination

⁶⁰Co, Lin Acc

Electrons

IORT

Computer Plans

US, CT BRT

Stereotactic RT

Aim of Each of These:

Reduce Irradiation of Normal Tissue

These have Increased Cost:

Time Staff Space

Yield has been Clinical Gains

Reduced Treatment Volume

That a \downarrow Rx V is Superior is

not a Medical Research Question

Reduced Treatment Volume

The 1 of the Gain vs Cost

Constitutes a Research Question

Society Judges the Gain

vs the Cost

Decides Yes/No for Small Gains

Risk Factors for 2º Rad Cancer

Dose Fractionation LET

Age Organ Irradiated Species

Observation Time Autopsy Data

Secondary Cancer Post RT

R T is Whole Body Irradiation

Heterogeneous Dose Distribution

Dose Gradient ≈ 10³

New Technologies

IMXT IMRT 12 CRT

IORT 4 D RT Stereotactic

Image Guided Radiation Therapy

Intensity Modulated XRT

Vary Dose Across Each Beam

5-9 Beams

† Volume at Low Dose

Intensity Modulated PBRT

Proton Beam RT

No Dose Distal to Target for Each

Beam Path Less Dose Proximally

Intra-Operative β⁻**Therapy**

Direct Electron Irradiation, ie

No Normal Tissues in Beam Path

Stereotactic Rad Therapy

Single Dose

Fractionated Dose

Cranial and Extra-Cranial Sites

Biomathematical Modeling

TCP Tumor Control Probability

NTPC Complication Probability

Biomathematical Modeling

Clinician Reviews Impact of

Changes in Value[s] of Radiation

Response Parameters, eg α , β

Biomathematical Modeling

Display Uncertain Bands on Each

Dose Display or Statement

4 D Radiation Treatment

Target and Normal Thoracic-Pelvic

Organs Move and Contour Distorted

by Respiration, Heart Beat

4D CT of 6 cm Sphere

Respiration at 4 Sec 2 cm Motion

Image A 4 D CT

Images B-L Uncorrected for Motion

3 cm radius 1 cm amplitude HS mode Period 4 sec

Evidence: Reduced Artifacts / GTV

Std light breathing scan

Massachusetts General Hospital Coronal Ex: 2578 Se: 10 +c no_name_2578 IOP32180.662.1036259800 09/30/2002 15:26:42 S 234 F P: 58.1 2.5 mm/2.5sp DFOV 50.0cm _R 2 1.0 / 0% W = 400 L = 401 255

0% Phase of 4D scan

New Technologies

Select Strategy with Best

Predicted

TCP: NTCP Relationship

Proton Beams

Heavy Charged Particles: H⁺

Finite Range Low LET

Biological Effectiveness ~ **Photons**
Proton Beams

RBE Values for in vivo Experimental

Systems: Mean Value is 1.1

This is Used as Generic RBE

Carbon Ion Beams

Heavy Charged Particles:¹²C

Finite Range High LET

Biological Effectiveness «**Neutrons**

Proton Beam RT

Planning Options

Proton and Photon Beams

are Equivalent in Terms of:

Proton Beam RT

Beam Number Direction

Co-Planar/Non Co-Planar

Static/Dynamic

Proton Beam RT

Intensity Modulation

4 D Planning/ Delivery

Critical Historical Points

1919 E Rutherford

Manchester University

Demonstrated Protons

Natural Radioactivity Age of Earth Concept of Atom Structure Discovered Proton Postulated Neutron

Alpha Particles on Nitrogen

Products:

Oxygen and Protons

Proposed and Named Neutrons

His Student Chadwick Discovered

Neutron 1931

Robert Wilson

Robert Wilson

One of the Central Physicists

In Atom Bomb Project

Wished to Benefit Mankind

Historical Point

1946 R Wilson Harvard Univ

Proposed Proton Radiation Therapy

Article in Radiology

Patient B 4027418 CT scan

4027418 IMXT plan (dose in Gy)

4027418 IMPT plan (dose in Gy)

4027418 DVH comparison

4027418 DVH comparison

Dose vs. Distance from Central Axis of 10x10 cm Field

Dose Lateral to Beam Paths

Target Dose is 70 Gy

Dose at 70 cm is 0.07 Gy [0.001%]

Dose at 20 cm is 2 Gy [0.03%]

Radiation Carcinogenesis

86,572 Atom Bomb Survivors Very

Intensively Studied for Cause of

Mortality 1950-1997

Radiation Cancer in ABS

$\textbf{Risk} \rightarrow \textbf{for} \geq \textbf{52 Yrs}$

Female > Males

 \downarrow with Age

Not Equal for All Organs

Radiation Cancer in ABS

114 of 440 [26%] of Cancer Deaths

Attributed to Radiation of ABS

Occurred at 45-52 Years

Human Rad Carcinogenesis

Uncommon

Late, viz > 5 - 10 - 50 years

FU Exams: ↓ Frequency Thoroughness

Ca Cervix: O/E for Rad Ca

Yrs FU	O/E
1-9	1.1
10-19	1.4
20-29	1.6
30+ yrs	2.1

Klinnerman etal

Radiation Carcinogenesis

Life Time Risk to 30 y/o Person

of Fatal Cancer from 1 Sv Acute

Whole Body Dose is $\approx 10\%$
Radiation Carcinogenesis

Accepted: Risk [↑] Linearly with Dose

to 2 Gy for Worker Safety

Risk at Higher Dose Less Understood

Radiation Carcinogenesis

Some Data Are Not in Accord with

Linear Model For Dose <0.2-1 Gy

Consider Some Mice Experiments

In-Bred Mouse Studies

Minimal Heterogeneity in Subjects

Uniform: Age

Gender

In-Bred Mouse Studies

Minimal Heterogeneity in Subjects

Uniform: Uniform Treatment

Food, Bedding, Temp

Autopsy Rate ≥ 95%

Mouse Model Studies

In-Bred Mice of One Strain are

Extremely Close To Being Clones,

viz Nearly Identical Genetically

Whole Body Irradiation and Breast Cancer

Whole Body Irradiation and Lung Cancer in Female Mice

Whole Body Irradiation and Liver Cancer

Life Time Lung Cancer Incidence in I Mice

	#Mice	Control	2 Gy WBI
Balb/c	809	8%	20%
C ₃ H	258	0.4%	6%
C57BL	256	0.6%	2%
RFM	759	2%	6%

Life Time Lung Cancer Rates

		Control	2 Gy	
C ₃ H	é	0.4%	6%	
	I	2%	11%	
C57B	Lé	0.6%	2%	
	I.	0.6%	8%	

2 Gy Life Shortening

F Mouse	Days Lost	%Life Short
Balb/c	110	14
C ₃ H	97	12
C57BL	25	3
RFM	162	25

2 Gy Life Shortening

Mouse	Days Lost	%Life Short
C ₃ H F	97	12
Μ	54	7
C57 F	25	3
Μ	20	2

Life Shortening in Mice by 2 Gy

Strain	Days	%
BALB/c F	109	14
C3H F	97	12
C3H M	54	7
C57BL6 F	25	3
C57BL6 M	20	2
RFM F	162	25

Rhesus Monkey 2º Cancer

WBI and Bone Marrow Salvage

Control 21 Monkeys

WBI 8 Gy 15 3.5 Gy 5 Monkeys

4 Gy Neutrons 9 Monkeys

Broerse etal; Hollander etal

WBI and Cancer in Monkeys

Gy	#	%
0.0	5/57	8.8
0.25-1.1	2/57	3.5
2-2.8	2/58	3.4
3.6-4	10/51	19.6
5-6.5	9/42	21.4
8	3/9	33.3

Rhesus Monkey 2º Cancer

WBI and Bone Marrow Salvage Control WBI 0/21 12/30 **Kidney Osteo Sarc** 4 0 Mal. Glomus 4 0 CNS 2 0 Soft Tiss 2 0

Broerse etal; Hollander etal

Rhesus Monkey 2º Cancer

WBI and B M Salvage
ControlWBIIntestine33Genital20Breast10Stomach11

Broerse etal; Hollander etal

Radiation Brain Ca: Primates

Macaca mulatta Monkeys 3 y/o

3.5 Gy x 10 to Brain

GBM in 9 of 11 at 2.9 – 8.3 Yrs

Lonser et al 2002

Secondary Cancer Post RT

Analysis of 11 Series of Radiation

Treated Patients. Large Numbers

Observed > 10 Years

Patient Series Evaluated

Cervix 3 Prostate 3

Testis2Peptic Ulcer1

Spine 1 Metropathia 1

Patient Series Evaluated

Cervix, Prostate and Peptic Series:

Also, NonRT Parallel Series

RR is Observed + Expected

Secondary Cancer In Radiation Treated Patients

2º Cancer in Rad or Surgery Patients

Uterine Cervix86,000 PtsProstate122,000 PTs

RR_{RT/NonRT} [>10 yrs] vs Dose

- Dose (Gy)RR50-701.5210-251.28
- 4-8
- 1-3
- <1
- All Doses

1.52 1.28 0.84 1.30 1.23 1.28 (1.14-1.44)

New Technologies to Yield

Important Clinical Gains

↑ Dose to Target ↑ TCP

\downarrow Dose to NTs \downarrow NTCP

New Techniques 4 Lateral

Dose

Major \downarrow Risk of Rad 2^o Cancer

By \downarrow Tissue Volume at <2 Gy

↓ Risk of Rad 2⁰ Cancer

Independent of Dose Over

Range 2-50 Gy???

Sacral Chordoma IMXT (Gy)

Sacral Chordoma IMPT (Gy)

↓ Risk of Rad 2⁰ Sarcoma

↑ With Dose > 50 Gy

Risk is Volume Dependent
Conclusions

Risk of Rad 2^o Sarcoma >60 Gy

↓ Risk of Non Cancer Change

Fibrosis, Necrosis, Fistula

Conclusions

Risks are Small for 10 Yr FU

May [↑] Progressively with Time

eg to 50+ Yrs