

Report to the Committee on Armed
Services, U.S. Senate

United States General Accounting Office

GAO

March 2004

 DEFENSE
ACQUISITIONS

Stronger Management
Practices Are Needed
to Improve DOD’s
Software-Intensive
Weapon Acquisitions

GAO-04-393

www.gao.gov/cgi-bin/getrpt?GAO-04-393.

To view the full product, including the scope
and methodology, click on the link above.
For more information, contact Katherine V.
Schinasi at (202) 512-4841 or
schinasik@gao.gov.

Highlights of GAO-04-393, a report to
the Committee on Armed Services,
U.S. Senate

March 2004

DEFENSE ACQUISITIONS

Stronger Management Practices
Are Needed to Improve DOD’s
Software-Intensive Weapon Acquisitions

Software developers and acquirers at firms that GAO visited use three
fundamental management strategies to ensure the delivery of high-quality
products on time and within budget: working in an evolutionary
environment, following disciplined development processes, and collecting
and analyzing meaningful metrics to measure progress. When these
strategies are used together, leading firms are better equipped to improve
their software development processes on a continuous basis. An
evolutionary approach sets up a more manageable environment—one in
which expectations are realistic and developers are permitted to make
incremental improvements. The customer benefits because the initial
product is available sooner and at a lower, more predictable cost. This
avoids the pressure to incorporate all the desired capabilities into a single
product right away. Within an evolutionary environment, there are four
phases that are common to software development: setting requirements,
establishing a stable design, writing code, and testing. At the end of each of
these phases, developers must demonstrate that they have acquired the right
knowledge before proceeding to the next development phase. To provide
evidence that the right knowledge was captured, leading developers
emphasize the use of meaningful metrics, which helps developers, managers,
and acquirers to measure progress. These metrics focus on cost, schedule,
the size of a project, performance requirements, testing, defects, and quality.

In a review of five DOD programs, GAO found that outcomes were mixed for
software-intensive acquisitions. The F/A-18 C/D, a fighter and attack aircraft,
and the Tactical Tomahawk missile had fewer additional cost and schedule
delays. For these programs, developers used an evolutionary approach,
disciplined processes, and meaningful metrics. In contrast, the following
programs, which did not follow these management strategies, experienced
schedule delays and cost growth: F/A-22, an air dominance aircraft; Space-
Based Infrared System, a missile-detection satellite system; and Comanche, a
multimission helicopter.

In response to congressional requirements, DOD, the military services, and
the Missile Defense Agency have taken positive steps to improve the
environment for acquiring software-intensive systems. However, their plans
to implement software process improvement programs are not yet complete
and more work is required to ensure controls that would help managers
increase the chances of successful acquisition outcomes. Such controls
include documenting baseline requirements agreements between the
developer and acquirer that leverage systems engineering knowledge,
meeting with the developer for periodic reviews (gates) during the
development process, and obtaining meaningful metrics from the developer
to manage the program. Furthermore, there are no assurances that program
managers will be held accountable for using the plans once they are
completed.

The Department of Defense (DOD)
has been relying increasingly on
computer software to introduce or
enhance performance capabilities
of major weapon systems. To
ensure successful outcomes,
software acquisition requires
disciplined processes and
practices. Without such discipline,
weapon programs encounter
difficulty in meeting cost and
schedule targets. For example, in
fiscal year 2003, DOD might have
spent as much as $8 billion to
rework software because of
quality-related issues.

GAO was asked to identify the
practices used by leading
companies to acquire software and
to analyze the causes of poor
outcomes of selected DOD
programs. GAO also was asked to
evaluate DOD’s efforts to develop
programs for improving software
acquisition processes and to assess
how those efforts compare with
leading companies’ practices.

GAO recommends that the
Secretary of Defense direct the
military services and agencies to
adopt specific controls to improve
software acquisition outcomes.
These practices should be
incorporated into DOD policy,
software process improvement
plans, and development contracts.
DOD concurred with two revised
recommendations and partially
concurred with two others.

http://www.gao.gov/cgi-bin/getrpt?GAO-04-393
http://www.gao.gov/cgi-bin/getrpt?GAO-04-393

Page i GAO-04-393 DOD Software Acquisition

Letter 1

Results in Brief 2
Background 4
Successful Outcomes Are Largely the Result of Creating the

Right Environment, Disciplined Processes, and Useful Metrics 9
Outcomes on DOD’s Software-Intensive Acquisitions Were

Influenced by Environment, Processes, and Metrics 21
DOD, the Services, and MDA Have Begun to Improve

the Acquisition Environment, but Controls Needed to Assist
Acquisition Managers 25

Conclusions 28
Recommendations for Executive Action 28
Agency Comments and Our Evaluation 29
Scope and Methodology 30

Appendix I Comments from the Department of Defense 35

Appendix II Software Models 41

Appendix III Section 804. Improvement of Software Acquisition

Processes 45

Related GAO Products 47

Tables

Table 1: Metrics Used by Leading Software Developers 18
Table 2: Program Outcomes Linked to Management Controls 21
Table 3: Highlights of SW-CMM 41
Table 4: Highlights of SA-CMM 42
Table 5: Highlights of CMMI Model 44

Contents

Page ii GAO-04-393 DOD Software Acquisition

Figures

Figure 1: Key Management Practices That Increase Chances of
Successful Outcomes 10

Figure 2: Highlights of the Knowledge-Based Software
Development Process 13

Abbreviations

CMM® Capability Maturity Models
CMMI® Capability Maturity Model Integration
CSC Computer Sciences Corporation
DOD Department of Defense
GSG Global Software Group
MDA Missile Defense Agency
NCR National Cash Register Corporation
SA-CMM® Software Acquisition Capability Maturity Model
SBIRS Space-Based Infrared System
SW-CMM® Capability Maturity Model for Software

This is a work of the U.S. government and is not subject to copyright protection in the
United States. It may be reproduced and distributed in its entirety without further
permission from GAO. However, because this work may contain copyrighted images or
other material, permission from the copyright holder may be necessary if you wish to
reproduce this material separately.

Page 1 GAO-04-393 DOD Software Acquisition

March 1, 2004

The Honorable John W. Warner
Chairman
The Honorable Carl Levin
Ranking Minority Member
Committee on Armed Services
United States Senate

Computer software has increasingly become a critical component for
Department of Defense (DOD) weapon systems. The development of
complex software represents a potential leap forward in operational
capability for any number of DOD defense acquisitions—from stabilizing a
weapon to providing all of the key functions needed in an avionics system.
Technological advancements have even made it possible for software to
perform functions once handled by hardware. As the demand for complex
software grows, the need for discipline while developing and delivering
software also increases. In recent years, DOD has attributed significant
cost and schedule overruns of software-intensive systems to difficulties in
developing and delivering software. DOD estimates that it spends about
40 percent of its Research, Development, Test, and Evaluation budget on
software—$21 billion for fiscal year 2003. Furthermore, DOD and industry
experience indicates that about $8 billion (40 percent) of that amount may
be spent on reworking software because of quality-related issues. We
previously reported that DOD did not have effective and consistent
corporate or software processes for software acquisitions, has had
difficulty in implementing disciplined processes developed by industry
experts, and some components had no software acquisition programs
focused on improving processes and practices. We recommended that
DOD correct these deficiencies by developing software process
improvement programs.1

1 See U.S. General Accounting Office, DOD Information Technology: Software and

Systems Process Improvement Programs Vary in Use of Best Practices, GAO-01-116
(Washington, D.C.: Mar. 30, 2001). Recommendations contained in this report also called
for specific components to consider basing their improvement programs on the Software
Engineering Institute’s IDEAL SM model. (IDEAL is a service mark of Carnegie Mellon
University.)

United States General Accounting Office

Washington, DC 20548

http://www.gao.gov/cgi-bin/getrpt?GAO-01-116

Page 2 GAO-04-393 DOD Software Acquisition

In December 2002 Congress required the Secretaries of each military
service and the head of those defense agencies that manage major defense
software-intensive acquisition programs to develop process improvement
programs for software acquisitions. Subsequently, the Senate Committee
on Armed Services requested that we (1) identify the best practices and
knowledge-based metrics used by leading companies to develop software,
(2) analyze the causes of poor outcomes of selected DOD software-
intensive acquisition programs, and (3) evaluate DOD’s efforts to develop
software process improvement programs and assess how those efforts
compare with leading companies’ practices to improve software
acquisition processes.

The leading companies we visited focus attention on the software
development environment, have disciplined development processes, and
use metrics methodically to ensure that software is developed within cost,
schedule and performance targets. Software acquirers, or organizations
that purchase software, and developers work in an evolutionary
environment where they are permitted to make incremental improvements
to performance—rather than feeling pressured to set unrealistic
expectations—and to strive to improve their software development
processes on a continuous basis. This environment limits development to
what is possible to manage. Software developers also are required to
follow disciplined development processes. Each development phase—
setting requirements, establishing a stable design, writing code, and
testing—ends in a management review, or gate, to ensure that the project
is on track. Additionally, software engineering requires peer reviews so
knowledgeable staff can check each other’s work and work together to
remove defects at the earliest stage of development. To pass the
management reviews, developers must demonstrate they have met the
acquirer’s expectations and quality standards before advancing to the next
development phase. Having this knowledge in hand not only significantly
increases the chances of successful outcomes but also helps leading
companies identify opportunities to improve their software development
processes over time. To track progress, confirm knowledge, manage risk,
improve processes, and ensure that acquirers are well-informed, the
leading developers we visited collect metrics from their development
processes. These metrics include cost, schedule, size, requirements, tests,
defects, and quality. By using these metrics, leading developers are able to
maintain consistent development practices and quantify process
outcomes.

Results in Brief

Page 3 GAO-04-393 DOD Software Acquisition

In our review of five DOD weapon programs, we found that software
outcomes were mixed. Software for the F/A-18 C/D, a fighter and attack
aircraft, and the Tactical Tomahawk missile were very successful in
meeting initial cost and schedule estimates. These programs emulated
leading software development companies’ practices. They were
evolutionary, that is, they upgraded and fielded systems in incremental
blocks of time, had achievable requirements that were managed carefully,
required developers to gain the knowledge they needed to pass a
management review at each gate in the development process, and
collected meaningful metrics for management oversight. On the other
hand, the following complex development programs experienced cost
increases and schedule delays because of significant difficulties with
software development: F/A-22, an air superiority and ground attack
aircraft; Space-Based Infrared System (SBIRS), a missile-detection satellite
system; and Comanche, a multi-mission helicopter. While each of these
programs has been restructured with more oversight and has instituted
more realistic controls over software requirements, each experienced
significant requirements growth and cited that growth as a leading cause
of development problems. Before restructuring the programs, neither the
DOD program managers nor the software developers for these programs
had a process with reliable reviews and deliverables to reduce
development risk. None of the software developers for these programs
were able to demonstrate sufficient use of metrics to track progress or
whether the metrics they used were implemented consistently over time
and used as a basis for comparison to provide oversight.

DOD’s military services and the Missile Defense Agency (MDA) are at
various stages of responding to the congressional direction2 to improve
software processes. The efforts so far provide a good starting point for
changing the environment under which the services are managing
software acquisition, but they are not complete. DOD’s software
acquisition practices could be strengthened by incorporating practices we
found at leading companies, such as documenting agreements between the
developer and acquirer that contain baseline requirements for the software
developer based on systems engineering knowledge, meeting with the
developer for gated reviews during the development process, and
obtaining meaningful metrics from the developer to manage the program.
Two other tasks assigned by Congress to DOD in the 2003 Authorization

2 Bob Stump National Defense Authorization Act for Fiscal Year 2003, Pub. L. No. 107-314,
sec. 804, Dec. 2, 2002. The text is in appendix III.

Page 4 GAO-04-393 DOD Software Acquisition

Act—setting criteria for how contractors are selected and establishing a
best practices clearinghouse—are not yet complete.

We are making four recommendations to the Secretary of Defense to
strengthen DOD’s practices for managing software requirements, to ensure
use of disciplined processes and metrics, and to include provisions in
DOD’s acquisition policy, plans, and contracts for improving outcomes of
software acquisition. In written comments on a draft of this report, DOD
concurred with two recommendations that we modified to incorporate
wording that DOD suggested. The department partially concurred with
two other recommendations. DOD agreed that the report provides useful
insight for improving the software acquisition process and is consistent
with the department’s efforts to improve the process as it continues to
implement section 804 of the Fiscal Year 2003 National Defense
Authorization Act. DOD also agreed to take the report’s findings into
account as it monitors the process for continuous improvement and to
apply our recommendations as further guidance to its component services
and agencies.

DOD’s major weapon systems rely more heavily on software to achieve
their performance characteristics than ever before. According to
information in a 2000 Defense Science Board Report, in the last 40 years,
functionality provided by software for aircraft, for example, has increased
from about 10 percent in the early 1960s for the F-4 to 80 percent for the
F/A-22, which is currently under development.3 The reasons for this are
simple: performance requirements for weapon systems have become
increasingly demanding, and breakthroughs in software capability have led
to a greater reliance on software to provide more capability when
hardware limitations are reached. Along with this, DOD’s practice of
expecting leaps in capability has placed extreme reliance on software
development in most acquisitions. As DOD moves to more complex
acquisitions—such as the integration of multiple systems in a single
“system of systems”—understanding and addressing software
development issues have become even more critical for DOD in order to
control cost and deliver systems on time.

3 Report of the Defense Science Board Task Force on Defense Software, Office of the
Undersecretary of Defense, Acquisition and Technology, November 2000.

Background

Page 5 GAO-04-393 DOD Software Acquisition

We have issued a series of reports on the knowledge that leading
commercial firms gain and use to manage and control the acquisition and
development costs of their products. Leading firms attain knowledge early
in the development process about the technology they plan to incorporate
and ensure that resources match requirements. They make sure the design
is mature before approving production and have production processes
under control before production begins. Implicit in this approach to
product development is the successful development of software. Software
is rapidly becoming a significant, if not the most significant, part of DOD’s
acquisitions. For example, software enables a missile to recognize a target;
on some weapon systems, functionality as basic as flight is no longer
possible without sophisticated software.

In addition to successful commercial practices and other significant
resources that have proven effective for managing software acquisition
and development, DOD has at its disposal numerous reports and
recommendations by industry experts to transform DOD’s software
development process. This community of experts includes independent
engineering teams, senior advisors on DOD’s Defense Science Board, and
Carnegie Mellon University’s Software Engineering Institute. Although
they have offered detailed guidance, DOD’s software-intensive weapon
system acquisitions remain plagued by cost overruns, schedule delays, and
failure to meet performance goals.

DOD is an acquisition organization—that is, it acquires major weapon
systems and manages the overall acquisition process as well as the
contractors who are tasked with developing the systems and associated
software. The more managers know about software development
processes and metrics, the better equipped they are to acquire software.
On DOD’s weapon system programs, the software development process is
a part of the larger weapon system acquisition process. Software
development has similar phases and—in the case of new systems—occurs
in parallel with hardware development until software and hardware
components are integrated. The following describes the four phases
common to all software development:

Determining requirements: Software development begins with
performance requirements for the component or for the fully integrated
product. Ideally, a team of system and software engineers, users, acquirers
or their representatives analyzes the overall requirements—operational
characteristics, user interfaces, speed, maneuverability, survivability, and
usability—and translates them into specific requirements, allocating some

The Software
Development Process

Page 6 GAO-04-393 DOD Software Acquisition

to software and others to hardware. In more mature organizations, before
making a commitment to develop a component or product, the software
developer validates that the requirements allocated to software are
realistic, valid, testable, and supportable. Management approves the
requirements before the design phase begins.

Systems engineering, a comprehensive technical management tool,
provides the knowledge necessary to translate the acquirer’s requirements
into specific capabilities. With systems engineering knowledge in hand, the
acquirer and the developer can work together to close gaps between
expectations and available resources—well before a program is started.
Some gaps can be resolved by the developer’s investments, while others
can be closed by finding technical or design alternatives. Remaining
gaps—capabilities the developer does not have or cannot get without
increasing the price and timing of the product beyond what the acquirer
will accept—must be resolved through trade-offs and negotiation. The
basic steps in systems engineering include the following:

• defining what the acquirer wants, how the final product is to be used, what
the operating environment will be, and what the performance
characteristics are;

• turning the requirements into a set of specific functions that the system
must perform; and

• identifying the technical and design solutions needed to meet the required
functions.

Completion of these steps leads to a product design.

Establishing a stable design: The software development team develops
a design that meets the software’s desired functions. Numerous activities
and documents typically are necessary to demonstrate that all of the
software requirements are incorporated into a preliminary design and that
functionality can be fully tested. The developer may construct a prototype
for the acquirer to test the understanding of the requirements during the
design phase. If management approves the preliminary design, the
developer refines the design and managers conduct a critical design
review before giving approval for the coding phase to begin.

Manufacturing code: Software code translates requirements and a
detailed design into an executable series of instructions. In more mature
software development organizations, developers are required to follow
strict coding practices. These include ensuring that the code

Page 7 GAO-04-393 DOD Software Acquisition

• is reviewed by knowledgeable peers
• addresses requirements specified in the final design and
• follows strict configuration control procedures to ensure that no “secret

code” is put in the system and generally follows coding documentation
guidelines that enable software engineers other than the coder to
understand and maintain the software.

Testing to validate that software meets requirements: To ensure
that the design is ready for coding, testing activities start during the design
phase and then continue through the coding phase. The testing of code is
an important and critical phase and results in a series of quality-assurance
tasks that seek to discover and remove defects that would hinder the
software’s performance. Completing these tasks requires the testers to
coordinate with various stakeholders, such as the quality assurance group,
to define test criteria that sufficiently test the approved software
requirements.

Significant resources are available to DOD for improving its software
acquisition outcomes. Among these is Carnegie Mellon University’s
Software Engineering Institute, a federally funded research and
development center. The Software Engineering Institute has identified
specific processes and practices that have proven successful in fostering
quality software development. The institute has constructed models for
developing and acquiring software, developing and implementing software
process improvement programs, and integrating hardware and software
into a weapon system. To help organizations meet cost, schedule, and
performance goals, the institute has issued guidance for adopting its
models. The commercial firms we visited and DOD, both of which use the
institute’s models, consider them to be an industry standard. The institute
created the models to provide general guidance for software development
and acquisition activities that programs can tailor to meet their needs.
These models can also be used to assess an organization’s capability for
developing or acquiring software.

The Software Capability Maturity Model4®, for example, focuses on
improving software development processes. The model rates software
maturity according to five levels of maturity:

4 Capability Maturity Model is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

Resources for Quality
Software Development

Page 8 GAO-04-393 DOD Software Acquisition

• Initial: The software process is characterized as ad hoc. Success depends
on individual effort.

• Repeatable: The basic process is in place to track cost, schedule, and
functionality. Some aspects of the process can be applied to projects with
similar applications.

• Defined: There is a standardized software process for the organization.
All projects use some approved version of this process to develop and
maintain software.

• Managed: The organization uses and collects detailed data to manage and
evaluate progress and quality.

• Optimizing: Quantitative feedback about performance and innovative
ideas and technologies contribute to continuous process improvement.

In addition, the institute has created a model specifically for software
acquisition. This model follows the same five principles as the previous
model but emphasizes acquisition issues and the needs of individuals and
groups who are planning and managing software acquisition activities. A
third model focuses on the integration of hardware and software and has a
heavier emphasis in systems engineering. (See appendix II for a
description of the three models.)

Despite acknowledgment of significant problems and access to extensive
resources, DOD’s problems with software acquisition have continued. In
2000 the Defense Science Board’s Task Force on Defense Software
reviewed selected DOD software-intensive systems and found that the
programs lacked a well thought out, disciplined program management
plan and software development process. The programs lacked meaningful
cost, schedule, and requirements baselines, making it difficult to track
progress. These findings are echoed by the work of DOD’s Tri-Service
Assessment Initiative, an independent group that evaluates Army, Air
Force, and Department of Navy programs’ software management
processes and offers guidance for developing software in a disciplined
manner. The Tri-Service Initiative found that three of the leading causes of
problems in software-intensive systems are process capability,
requirements management, and organizational management. A 1999 study
performed by the Standish Group, an organization that researches risk,
cost, and investment return for information technology investments, found
that about one-third of software development programs—commercial or
military—resulted in cancellation. Furthermore, in a series of studies
completed through the 1990s, the group, found that the average cost
overrun was 189 percent; the average schedule overrun was 222 percent of

Problems with DOD’s
Software Development
Are Well Known

Page 9 GAO-04-393 DOD Software Acquisition

the original estimate; and, on average, only 61 percent of the projects were
delivered with originally specified features or functions.

To address its problems with weapon acquisition, including software-
intensive weapon systems, DOD recently revised its requirements
generation and acquisition policies to incorporate a more evolutionary
framework and improve its ability to deliver more capability to the
acquirer faster.

Leading software companies we visited have been successful at software
development largely because they establish a manageable product
development environment, disciplined processes, and strong metrics to
manage program outcomes. Key characteristics of a successful
environment include evolutionary product development and continuous
improvement of development capabilities so outcomes are more
predictable. Within this environment, these companies use a structured
management review process, and at the end of each of four key
development phases—requirements, design, coding, and testing—the
companies conduct reviews so that the development team does not
progress to the next phase unless it attains a certain level of knowledge. A
great deal of management attention is placed on the requirements-setting
phase because missing, vague, or changing requirements tend to be a
major cause of poor software development outcomes. Finally, leading
developers we visited track cost and schedule outcomes with the help of a
critical management tool, called earned value, a key indicator, or metric,
for identifying and mitigating risk. In addition to earned value, developers
use metrics for the size of a project, requirements, tests, defects, and
quality to assess software development progress and to identify potential
areas of improvement. Developers share this information with acquirers,
who use the data to assess the risk software development has on overall
product development and to make informed decisions about acquisitions.
Figure 1 shows that a manageable environment, disciplined processes, and
useful metrics are used together to form an effective process for software
development.

Successful Outcomes
Are Largely the Result
of Creating the
Right Environment,
Disciplined
Processes, and
Useful Metrics

Page 10 GAO-04-393 DOD Software Acquisition

Figure 1: Key Management Practices That Increase Chances of Successful
Outcomes

Three leading companies we visited—General Motors Powertrain Unit
Motorola Global Software Group (GSG); and Teradata, a division of
National Cash Register Corporation (NCR)—made a concerted effort to
establish an environment that lowers risk and increases the chances of
successful software development outcomes. This environment focuses on
producing what is possible by establishing evolutionary product
development while adhering to well-understood, well-defined, manageable
requirements and encouraging continuous improvement of development
processes. The environment enables leading companies to effectively
compete in markets where delivery times are paramount and the acquirer
expects reasonable prices and can go elsewhere with its business if not
satisfied. Over time, these leading companies have learned that an
evolutionary process emphasizing knowledge and quality enables
successful outcomes. In comparison, an environment that allows too many
risks, unknowns, and immature processes into product development can

The Right Environment
Reduces Software
Development Risk

Page 11 GAO-04-393 DOD Software Acquisition

have poor outcomes. In high-risk, low-technology maturity environments,
developers find themselves forcing software to meet unrealistic
expectations.

Officials at each of the companies we visited said that evolutionary
product development is one of the fundamental elements of a manageable
environment. Evolutionary development reduces risk because it allows
software to be developed in small, manageable increments, with the
availability of the complete software package coming later in the
development life cycle. The General Motors Powertrain unit, which
manufactures engines and transmissions, follows an evolutionary
approach that calls for four to eight releases of the software product line
each year. This approach offers many benefits, including allowing the
software teams to restrict the size of projects to make them more
manageable and to reduce risk. In addition, only well-defined requirements
are included in the scope of the work, allowing the software teams to
make improvements to previous releases.

These leading companies consider continuous improvement to be an
important part of their environment and culture, and most have
implemented one of the Software Engineering Institute’s Capability
Maturity Models®. They have found that ad-hoc processes make it
impossible to gain a clear understanding of when and how defects occur
and make it difficult to fix processes so that the same defects can be
avoided in the future. Motorola GSG officials told us it is not enough to
hire talented software developers to achieve successful outcomes. Rather,
companies must establish the right environment and use disciplined
processes to help developers work efficiently and then target their
recruiting efforts toward staff who can work in a process-oriented
environment. This is not an easy task. Companies must be willing to invest
time and money to develop new processes, collect meaningful data on a
consistent basis, and train employees to follow the processes and interpret
the data. In addition, management must display a strong commitment
toward implementing the improved processes.

Page 12 GAO-04-393 DOD Software Acquisition

Within a low-risk, continuous improvement environment, leading
companies we visited use a very structured, gated software development
process that requires teams to obtain knowledge about the maturity of
their software projects at key points in time. They plan, manage, and track
activities for requirements, design, coding, and testing and rely heavily on
such activities as configuration management, peer reviews, and quality
assurance to help ensure the quality of their software. They also identify
areas of risk and take actions to control the risks. Developers pay
particular attention to the requirements-setting process because
requirements are the foundation of a development effort. If requirements
are not well defined or if there are too many changes, the result is
additional, sometimes unmanageable risk.

Figure 2 is a general depiction of the process used by the companies we
visited to manage software development. There are four development
phases: determining requirements, establishing a stable design,
manufacturing code, and testing to validate that the software meets the
requirements and to detect errors. Within each phase are key activities
that must take place and knowledge, or information, that must be attained
to pass a review and move to the next phase of development.

Disciplined Software
Development Processes
Improve Software
Outcomes

Page 13 GAO-04-393 DOD Software Acquisition

Figure 2: Highlights of the Knowledge-Based Software Development Process

In addition to the four software development phases, these companies
consider quality assurance, configuration management, measurement, and
analysis to be integral parts of their software development activities.
These activities assist developers in adequately managing software
projects and collectively give the developer and the acquirer a level of
confidence that the software is being developed within cost, schedule,
performance, and quality targets. For example, configuration management
allows developers to maintain a historical perspective of each software
version change, keep a record of the comments made about the changes,
and verify the resolution of defects. Quality assurance activities are
typically focused on detecting and resolving defects. However, some
companies, like Motorola GSG, may assign responsibility for detecting and

Page 14 GAO-04-393 DOD Software Acquisition

resolving defects to the project team and focus their quality assurance
activities on evaluating whether project-associated work products adhere
to the applicable process standards and procedures. In this case, quality
assurance activities would also include ensuring that when the project
teams do not comply with processes, these instances are identified,
reported, and resolved at the appropriate level. Officials at each company
we visited told us that the earlier defects are found and fixed, the less
costly it is to the organization. If the defects are not found in the phase in
which they occur, the cost to correct them grows in subsequent phases to
the point where it could cost the company a significant amount of money
to fix the problem once the software is fielded than if it had been
corrected earlier.

Senior managers at software development and acquisition companies we
visited expect requirements to be managed and controlled before design
work begins and virtually all lower-level design elements to be adequately
defined before the start of coding. Without adequate definition and
validation of requirements and design, software engineers could be coding
to an incorrect design, resulting in missing functionality or errors.
Motorola GSG, a communications company, and Teradata, a division of
NCR that specializes in database technology, estimate that about
95 percent of their requirements are set by the end of the requirements
phase and 98 percent by the end of the design phase. Officials view
managing requirements as the most critical development task to ensure
successful software outcomes. They said that many software problems,
often referred to as defects, could be traced to missing, vague, or changing
requirements. Although company officials stated that some requirements-
related defects are inevitable, such as those that arise when requirements
are not sufficiently detailed, they said significant time and effort are
necessary to elicit and document all requirements and determine the
appropriate sequence for meeting these requirements. Nevertheless,
mature organizations take time to conduct the various activities to
sufficiently document and validate requirements before proceeding to
preliminary design.

Leading software developers told us they typically devote about 20 to
30 percent of their software development time to requirements-setting
activities. Doing so ensures that developers will be able to provide
managers with key knowledge at the requirements review gate and show
that requirements have been properly vetted with the acquirer and that
they are achievable and well written. Activities they complete are
highlighted below.

Requirements

Page 15 GAO-04-393 DOD Software Acquisition

• Establish integrated project teams: Representatives from all acquirer
and developer stakeholder groups use sound systems engineering
techniques to establish software requirements.

• Categorize requirements: Acquirer and software team develop a
comprehensive list of requirements and then categorize them on the basis
of how critical they are to the product’s performance.

• Negotiate requirements: Software team develops resource and schedule
estimates on the basis of system engineering knowledge and past projects
of similar size and scope. The software team then advises the acquirer
which requirements may have to be delayed or sacrificed on the basis of
resource and schedule goals.

• Agree to requirements baseline: Software team and acquirer agree to a
requirements baseline that details the software requirements, including
cost, schedule, performance, and quality goals the software team is
expected to achieve.

• Develop more detailed software requirements: Using systems
engineering, software team breaks the requirements into lower-level
requirements, discusses the requirements with the acquirer, and formally
documents the more detailed requirements.

• Perform quality check: Organization performs quality checks on
requirements-related documents, such as the functional requirements
document, to ensure that requirements are written clearly and all of the
acquirer’s requirements have been adequately addressed.

Company officials stress that to develop effective software requirements,
the acquirer and developer must work closely together and have open and
honest discussions about what can and cannot be done within desired
time frames. Motorola GSG officials, for example, emphasize the
importance of a written requirements baseline agreement with the
acquirer to solidify software requirements and then strict adherence to
requirements agreed to in order to avoid cost and schedule growth. They
also perform detailed quality reviews to detect requirements problems
early and to avoid costly rework in later stages.

Once developers establish requirements, they must also effectively
manage the number and timing of requirements changes. Each developer
we visited acknowledged that requirements could change at any point.
However, officials told us that they aggressively manage requirements
changes to make sure that they are reasonable and do not have a
detrimental impact on project outcomes. For example, before making
changes, they analyze the potential impact on cost, schedule, and
performance and negotiate with the acquirer about whether the changes
should be made within the ongoing project or in a future release. The

Page 16 GAO-04-393 DOD Software Acquisition

negotiation usually involves preparing an impact report for review by the
acquirer or a governing board. Teradata, a division of NCR, goes further by
limiting the number of changes it will make during the development cycle.

A stable design ensures that all requirements are addressed and that
components and interfaces are defined. A Motorola GSG official stated
that at least 90 percent of the company’s software designs are stable
before coding and suggested that developers that do not effectively
manage the design phase could spend as much as 40 percent of a project’s
resources on rework activities. Leading companies complete a series of
activities to stabilize their design and assure management that the
software team is ready to advance to the next stage of development. These
activities include, among other things, defining the overall functions and
structure of the software on the basis of established requirements;
selecting a system design; and developing the detailed system design
specifications, which are sometimes referred to as the low-level design.

Typically, software teams will have two management reviews during this
phase of development. A preliminary design review is used to examine the
design rationale and design assumptions to ensure that the resulting
software systems will meet the stated requirements. Particular attention is
given to high-priority aspects of the system, such as performance, security,
maintainability, and system recovery. User manuals and software test
plans may also be examined at this time. A critical design review is
conducted once the detailed design of the software system has been
completed. The purpose of this review is to examine all design features to
determine if they meet the acquirer’s requirements. Throughout this phase
companies typically perform peer reviews of design documents to detect
errors and may also construct prototypes for the acquirers to test their
understanding of the requirements.

During the coding phase, software developers translate the requirements
and design into a series of software steps that will control the system.
According to company officials, well-written, achievable requirements, as
well as very detailed designs, greatly enhance a software developer’s
ability to create software with relatively few defects. Additional processes
that are critical to the success of this phase include peer reviews, coding
standards, frequent unit testing, access to a library of pre-coded and tested
functionality, and use of programming languages that enable the software
engineer to document the code to facilitate understanding at a later time.
For example, the leading companies we visited rely heavily on previously
developed software to reduce development time, costs, and testing.
According to company officials, it is not uncommon for them to reuse

Design

Coding and Testing

Page 17 GAO-04-393 DOD Software Acquisition

70 percent of previously developed software on a new project. General
Motors Powertrain officials emphasized that reuse is a top consideration
for their projects and they have developed a software product line that
teams use to complete requirements, design, and coding activities. Over
the past few years, they have also re-engineered some of their electronic
modules to allow for greater standardization of components within and
across their Powertrain portfolio. This has greatly enhanced their ability to
reuse software.

Testing is then performed to uncover defects or gaps in the code. Leading
software companies we visited develop test plans after requirements are
stable and take steps to ensure that there are one or more tests for each
requirement. Through testing, teams assess the quality of the software to
make it as defect-free as possible. For Motorola GSG, the software team is
in control of all of the coding, testing, and quality-assurance activities.
Officials stated that teams have access to online training and rely on
libraries of previously used and tested code. They use peer reviews and
inspections extensively during the requirements, design, and coding
phases, for all software documents and test software and hardware
components together to identify any integration problems that must be
corrected.

Leading developers we visited commonly use seven major types of
metrics—cost, schedule, size, requirements, tests, defects and quality—to
gauge a project’s progress and identify areas for improvement. Acquirers
use some of these same metrics to assess whether the developer will be
able to deliver the software within cost, schedule, performance, and
quality parameters.

We found that leading developers are relentless in their efforts to collect
metrics to improve project outcomes and processes. The importance of
metrics to these companies cannot be overemphasized. Motorola GSG and
Teradata, a division of NCR, measure key aspects of software development
for individual projects from the usual cost and schedule goals to process-
improvement-type metrics that track the number and type of defects
within each software development phase. They also have goals and
metrics for companywide initiatives, such as cost-reduction efforts and
customer satisfaction. Equally important, they have emphasized the
critical nature of measuring processes, collecting metrics, and using them
to analyze performance into their workforce through training.

Metrics Provide Useful
Insight to Software
Development Activities

Page 18 GAO-04-393 DOD Software Acquisition

Table 1 provides an overview of the seven categories of metrics used by
the leading developers we visited, examples of their specific metrics, and
how the companies use the metrics to manage their projects. Company
officials cautioned that a variety of metrics could be used to satisfy each
category listed in table 1 and that no one set of specific metrics would
necessarily apply to all companies. Rather, companies tailor metrics from
each category to fit their own needs.

Table 1: Metrics Used by Leading Software Developers

Major metric Examples of metrics used Usefulness of metrics

Cost • Cost and effort per phase

• Planned versus actual cost
• Cost performance index

Cost performance metrics, products of an earned value management
system, indicate actual progress toward completing the software
development against the plan. Large deviations between actual and
estimated costs indicate that the project will have problems meeting
cost and schedule goals. Management may have to consider taking
actions such as reducing the scope of the project to meet release
dates or even canceling the program.

Schedule • Planned versus actual delivery dates
• Schedule estimation accuracy

• Percentage of project on time

• Schedule performance index

Schedule performance metrics, also products of an earned value
management system, indicate achieved schedule progress against the
plan. They are used throughout the software development phases to
gauge progress toward developing key products or meeting critical
milestones. Close attention to schedule deviations allows management
to identify the team’s ability to meet project goals and to determine if
and when additional resources need to be added.

Size • Amount of new, modified, and reused
code

• Size estimation accuracy

Size metrics are used by management to compare the amount of code
produced with the amount estimated. Changes to the size needed
indicate potential cost and schedule problems.

Requirements • Total requirements or features committed
to deliver

• Percentage of requirements completed

• Number of requirements changes by
phase

Requirements metrics are used to assess the organization’s progress
towards meeting the acquirer’s performance demands. Developers try
to avoid a large number of requirements changes or late changes
because changes can impact cost and schedule commitments and can
also result in software with a higher number of defects.

Tests • Number of tests planned, completed, and
passed

• Percent of planned tests completed

Test metrics are used to determine the extent to which planned
software tests have been successfully accomplished. Deviations from
the planned number of tests suggest that software might not have been
adequately tested and may have quality problems, which could lead to
costly rework in later phases.

Defects

• Number of defects per phase
• Phase defect originated versus phase

found

• Cost to fix defect
• Severity of defects

• Total unresolved defects

Defect metrics are used to track problems with the software.
Developers track defects to the phase where they were found, where
they should have been found, and the cost to fix the problem. Large
numbers of defects, particularly those that are found after the phase in
which they were created, indicate performance problems that may lead
to increased cost and schedule due to rework and the need to review
development processes so that defects are found earlier. Identifying
fewer defects than expected could also be problematic. For example, it
may indicate that there is inadequate test coverage in the testing
phase or that an insufficient formal technical review was performed on
design documents in the design phase.

Page 19 GAO-04-393 DOD Software Acquisition

Major metric Examples of metrics used Usefulness of metrics

Quality • Cost of quality efforts

• Cost of poor quality (rework)

• Number of quality goals missed and
achieved

• Customer satisfaction survey results

Quality metrics provide information on the potential reliability of the
delivered software and also provide an indication of the amount of
money and time the developer invested in the development process in
an attempt to assure a given level of quality. If defects are found and
fixed during the phase in which they occur, this provides an indication
that quality activities are performing well. If a defect is not identified in
the phase in which it occurred, it becomes more expensive and time-
consuming to fix and indicates weaknesses in the development
process that need to be addressed.

Source: GAO’s analysis of leading companies’ practices.

Leading developers we visited use metrics from each category above to
actively oversee their projects and continuously assess their processes and
projects to identify opportunities for improvement. Motorola GSG, for
example, uses a standard set of metrics to enable project managers, as
well as other levels of management, to assess the status of their individual
software projects, staff productivity, requirements volatility, cost and
schedule estimation accuracy, and the effectiveness of their quality
assurance processes. Management also uses the information to compare
similar projects within a software center or across the company to identify
trends and areas that can be improved. They are particularly interested in
tracking the number of defects by software development phase, the
amount of rework associated with correcting the defect, and the amount
of project resources spent to ensure quality. For example, data from one
project show that developers were able to find and correct 92 percent of
their problems during the phase in which they occurred. The other
8 percent were corrected by the end of the system test phase, resulting in
only 1 percent of total project resources being spent to correct defects.

Motorola GSG uses an earned value management system to track the
actual amount of time and effort it spends on project activities versus what
it estimated for the projects. The earned value system, when properly
implemented, provides developers and acquirers with early warnings of
problems that could significantly affect the software project’s cost and
schedule. For example, according to private industry research, once a
project is over 15 percent complete, developers will be unable to make up
any overruns incurred to that point and the overruns will be even greater
once the project is finished. This is often because project planning
typically underestimates the time and effort required to implement
planned tasks.

Motorola GSG uses a project time-tracking system to record the time spent
on project activities attributed to the cost of quality and cost of poor

Page 20 GAO-04-393 DOD Software Acquisition

quality metrics. The cost of quality metric tracks the amount of time and
money spent on such activities as formal quality reviews, testing, defect
prevention, and rework to ensure a reliable product. If more resources
were expended on these activities than expected, Motorola GSG would
identify the reasons for this occurrence and improve its processes to try to
prevent overruns from happening again. The cost of poor quality is also a
concern to Motorola GSG because it quantifies the amount of rework that
was necessary to address any product nonconformance, such as defects
before (internal failure) and after (external failure) releasing the software
product to the acquirer. According to company officials, the cost of poor
quality is a direct reflection of the effectiveness of a company’s software
development processes. Generally speaking, poor processes lead to
greater rework and a higher cost of poor quality, while better processes
lead to a small amount of rework and a low cost of poor quality. Motorola
GSG officials stated they have been able to hold the cost of poor quality
(rework) to less than 5 percent for its projects by identifying when defects
occur and then looking for improvements in their processes to try to
prevent them from happening again.

Acquirers also need the types of metrics presented in table 1 to plan,
manage, and track overall product development. These types of metrics
allow acquirers to make their own assessments of the status of the
software development project, where the software project is headed, the
potential risk that software presents to overall product development, and
if the developer’s processes are effective in terms of reducing cost and
schedule and improving quality. The earned value management system
could provide acquirers with key information for calculating cost and
schedule variations and also determining how much effort will be needed
to complete a project on time when a project is behind schedule. If
acquirers determine that software is likely to be late or over cost at
completion, they then have the option to move some of the software
requirements to a later development effort or allow the software
development team more time to complete the project.

Page 21 GAO-04-393 DOD Software Acquisition

In our reviews of five major DOD software-intensive weapon system
acquisitions, we found mixed results. When DOD managers had a smaller,
more evolutionary product with manageable requirements, used
disciplined development process with gated reviews, and collected and
used metrics to manage software development progress—such as the
Tactical Tomahawk and the F/A-18-C/D programs—they delivered their
product with less cost increase and less schedule delay. When DOD
managers had expectations of developing revolutionary capabilities and
did not use structured management reviews or collect and use metrics for
software development—such as the F/A-22, SBIRS, and Comanche
programs—they experienced significant cost growth and schedule delays.
Table 2 illustrates how an evolutionary environment, effective process
management, and use of meaningful metrics correlate with cost and
schedule outcomes experienced by each program.

Table 2: Program Outcomes Linked to Management Controls

Program
Evolutionary
environment

Disciplined
process

Use of
meaningful
metrics

Percent change in research,
development, test, and

evaluation cost estimate

Percent change
in cycle time

estimate

Tomahawk Yes Yes Yes 7.6 22.4

F/A-18 C/D Yes Yes Yes 36.4 6.2

F/A-22a No No No 127 104

SBIRSa No No No 88 Not available

Comanchea No No No 231 120

Source: GAO’s analysis of DOD programs and selected acquisition reports.

aGAO’s assessment of the evolutionary environment, disciplined process, and use of meaningful metrics addresses conditions found before these
programs were restructured.

The Tactical Tomahawk and F/A-18 C/D programs were developed in an
evolutionary environment, engaged in extensive work on requirements,
controlled requirements’ changes, collected and used detailed metrics to
track development progress, and had less cost and schedule increase than
the other programs we reviewed.

The Navy’s Tactical Tomahawk missile will provide ships and submarines
with enhanced capability to attack targets on land. New features include
improved anti-jamming global positioning system, in-flight retargeting, and
the ability to transmit battle damage imagery. Tomahawk program
developers had disciplined development processes and used extensive
peer reviews to discover defects and provided the acquirer with insight at
each stage in development: requirements, design, code and test. They were

Outcomes on DOD’s
Software-Intensive
Acquisitions Were
Influenced by
Environment,
Processes, and
Metrics

Successful Outcomes for
Two DOD Acquisitions

Page 22 GAO-04-393 DOD Software Acquisition

responsible for collecting and reporting data on a monthly basis, relying
on metrics—cost, schedule, effort, size, requirements, testing, and defects
that are similar to those used by leading commercial firms. The program
office managed the acquisition based on the trends found in these metrics.

The F/A-18 C/D is a Navy attack fighter aircraft that has been deployed for
a number of years. Periodically, the Navy upgrades the flight software to
incorporate new features, add the capability to fire new munitions, and
correct deficiencies discovered since the last upgrade. Working in an
evolutionary environment, F/A-18 C/D program officials recognized that
the success of the software upgrade to incorporate additional performance
into the flight operations software depended on extensive requirements
analysis before program start and firm control as requirements changed
throughout development. This analysis ensured that the effort needed to
meet requirements was well understood at the beginning of development,
thus limiting the amount of redesign. Proposals for new requirements or
changes to requirements after the program began were analyzed for cost,
schedule, and performance impact. As with the Tomahawk program,
FA-18 developers adhered to disciplined development processes, used
extensive peer reviews to discover defects, and collected meaningful
metrics to track progress.

The F/A-22, SBIRS, and Comanche are complex programs that attempted
to achieve quantum leaps in performance requiring extensive use of
software rather than follow an evolutionary approach to software
development. They all initially lacked controls over requirements,
software processes, and metrics, causing major program upheavals. They
encountered significant requirements changes, schedule slips, and cost
increases because software defects were not discovered until later stages
of the programs. Each of these programs has been restructured to
incorporate requirements management controls, more-defined software
development processes, and additional metrics.

The Air Force’s F/A-22, originally planned to be an air dominance aircraft,
will also have air-to-ground attack capability. It is expected to have
advanced features, such as stealth characteristics, to make it less
detectable to adversaries and capable of high speeds for long ranges. The
F/A-22’s avionics are designed to greatly improve pilots’ awareness of the
situation surrounding them. Early in the development process for the

Outcomes Were Poor for
Programs That Did Not
Use an Evolutionary
Approach, Disciplined
Processes, and Meaningful
Metrics

Page 23 GAO-04-393 DOD Software Acquisition

F/A-22, we reported that the program’s planned strategy for software
development and acquisition was generally sound.5 We cited the Air
Force’s plans to collect software costs and other software metrics to
measure progress as examples of this sound strategy. At that time, we
endorsed the program’s plans to be event- rather than schedule-driven.
However, as early as 1994, many features of this sound strategy were not
being followed. Delayed software deliveries contributed to cost increases
and schedule delays. Requirements and design changes accounted for
37 percent of the critical problem reports leading to avionics shutdowns in
the F/A-22, according to program office reports. Program officials and
contractor personnel agreed that requirements volatility had been a
problem; however, they were unable to provide any specific measure of
requirements changes because they had not tracked the overall growth in
software requirements since the first 3 years of the program.

According to Lockheed Martin officials, the avionics system software is
made up of 84 computer software configuration items,6 each of which
accounts for a specific avionics function, such as the interaction between
the pilot and the aircraft. In our discussion with contractor and program
personnel, they stated that disciplined processes in requirements control,
design, testing, and configuration management were not uniformly
followed because of cost and schedule pressures. The F/A-22 software
strategy also called for the collection of software metrics to measure
costs. Program and contractor officials were unable to provide metrics for
sufficient management visibility over the overall progress of the software.
The contractor stated that the Air Force did not compile metrics from
lower levels into major segments such as avionics.

The Air Force’s SBIRS satellites are being developed to replace DOD’s
older missile-warning satellites. In addition to missile warning and missile
defense missions, the satellites will perform technical intelligence and
battlespace characterization missions. Since the program was initiated in
1996, SBIRS has faced cost, scheduling, and technology problems. We
have reported that SBIRS has experienced serious software design
problems. Officials from Lockheed Martin, the prime contractor, stated
that the program had uncontrolled requirements growth as well as overly

5 U.S. General Accounting Office, Air Force F-22 Embedded Computers,
GAO/AIMD-94-177R (Washington, D.C.: Sept. 23, 1994).

6 A computer software configuration item is a software program that performs a common
end-use function, follows its own development cycle, and is individually managed.

http://www.gao.gov/cgi-bin/getrpt?GAO/AIMD-94-177R

Page 24 GAO-04-393 DOD Software Acquisition

optimistic expectations about reusing software from a previous program.
Program and contractor officials agreed that deficient systems engineering
and the scarcity of personnel in software engineering disciplines
contributed to ineffective control and to not understanding how much of
the previous software could be reused. These officials also stated that
neither the program office nor the contractor had a change management
control process in place to analyze change requests. A thorough analysis
late in the program revealed that very little of the software could be
reused. Furthermore, because of a deficiency in resources devoted to
systems engineering, the total requirements for the system were not
adequately defined.

A report from an independent review team stated that more robust
systems engineering could have precluded some of the problems. The
report concluded that problems with the first SBIRS increment were
primarily due to problems with software development and poor program
execution. Peer reviews and engineering review boards were in place to
monitor development, but, for reasons ranging from schedule pressures to
reduced staffing, these decision bodies were ineffective. SBIRS contractor
officials stated that they collected data on additions to requirements and
on the number of lines of code, but because there were no restrictions on
accepting new requirements and no control limits to the size of code, the
metrics were not used to manage the project on a daily basis.

The Army’s Comanche is a multi-mission helicopter intended to perform
tactical armed reconnaissance. It is designed to operate in adverse
weather across a wide spectrum of threat environments and provide
improved speed, agility, reliability, maintainability, and low observability
over existing helicopters. Since the program’s first cost estimate, originally
approved in 1985, the research and development cost for Comanche has
almost quadrupled, and the time to obtain an initial capability has
increased from 9 to over 21 years.

Several studies have identified software development as a problem area
and highlighted requirements volatility and inadequate requirements
analysis as having a large impact on the program. The lack of a disciplined
process for Comanche’s software acquisition was also cited as a reason for
program shortfalls; however, the exact percentage of cost growth
attributed to software is not known because the program office lacked
adequate visibility into the software development process and, therefore,
has little historical data on software. Comanche officials stated that
initially they did not require a uniform set of metrics from the contractor.

Page 25 GAO-04-393 DOD Software Acquisition

They said they received earned value information from the contractor, but
it combined software and hardware development data.

All three programs have been restructured and have instituted changes to
bring more knowledge into the programs. For example, F/A-22 program
officials report that their contractors have teamed with divisions within
their companies that have more disciplined processes and they are
reporting fewer problems with the avionics software. SBIRS program
officials stated that they have instituted more controls over requirements
changes, requiring analysis and approval at higher levels. Comanche
officials reported that the program office has quarterly software reviews to
focus attention on software development progress with the contractor and
has adopted an incremental, block development strategy for software
development. Program officials stated that they have asked for more-
detailed metrics by which to manage the programs.

As a result of congressional requirements to initiate improvement plans
and revisions to requirements and acquisition policies, DOD, the military
services and MDA have created a more conducive environment for
software acquisition and development. However, additional steps must be
taken. We have found that leading software acquirers and developers we
visited create disciplined software development processes and collect
useful metrics for management oversight. These practices have proven to
be a significant factor in their ability to achieve successful outcomes.
DOD, the services, and MDA still lack controls in these areas that would
put acquisition program managers in a better position to achieve
successful program outcomes.

The plans that the services and MDA have begun in response to
congressional direction have varying levels of detail and are at various
stages of approval within the organizations. The Army, for example, has
completed and has begun to implement its plan. The plan includes using
pilot programs to provide information on metrics, and the Army expects to
team with the Software Engineering Institute to identify training needs and
continuous improvement. MDA has prepared a detailed draft that includes
forming a baseline assessment of each missile defense element and
making recommendations to the program office for each element to adopt
improvement processes. MDA expects the elements to begin work once
the baseline assessment is complete. The Navy’s response includes
teaming with the Software Engineering Institute to identify a course of
action, including a training program for acquisition professionals and
identifying software acquisition requirements and management initiatives.

DOD, the Services,
and MDA Have
Begun to Improve
the Acquisition
Environment, but
Controls Needed to
Assist Acquisition
Managers

Page 26 GAO-04-393 DOD Software Acquisition

The Air Force has called for a working group to begin in March 2004 to
baseline Air Force practices and to suggest a course of action.
These efforts establish an environment of change for the services and
provide a platform upon which to make additional improvements.
Furthermore, they make explicit to software an evolutionary approach to
systems development and acquisition that DOD included in the recently
revised requirements generation and acquisition policies.7

However, the services’ and MDA’s planning does not include practices we
found at leading commercial firms that enable those firms to have
successful outcomes. Furthermore, the plans do not incorporate controls
that would ensure that the plans now being formulated are incorporated
into acquisition practice. The plans could be strengthened by adding
specific criteria to ensure that

• requirements’ baselines based on systems engineering are documented
and agreed to by both the acquirer and developer before a program’s
initiation and that cost/benefit analyses are required when new
requirements are proposed;

• software developers and acquirers make efforts to continually improve
practices over time;

• gated reviews and deliverables are integrated into the development
processes; and

• developers collect and analyze metrics, including earned value to obtain
knowledge about development progress and to manage risk.

Army, Navy, Air Force, and MDA officials said they have high-level support
for improving software acquisition and for the plans they are developing,
and the Army and MDA stated that they had included funding for software
improvements in their budgets. Officials at the leading companies we
visited emphasized that strong management support is needed to ensure
success with process improvements. Although DOD has embraced an
evolutionary approach in its acquisition policy, DOD has not yet
incorporated a requirement specific to software process improvement into
the policy. Furthermore, DOD has not said how it will require individual

7 DOD Directive 5000.1, The Defense Acquisition System, describes the management
principles for DOD’s acquisition programs. DOD Instruction 5000.2, The Operation of the
Defense Acquisition System, outlines a framework for managing acquisition programs.
Collectively, these are known as the 5000 series. Chairman of the Joint Chiefs of Staff
Instruction 3170.01C describes requirements generation policies and procedures of the
Joint Capabilities Integration and Development System.

Page 27 GAO-04-393 DOD Software Acquisition

program offices to follow the guidance once the services and MDA
establish full-fledged programs to improve software development
processes.

Apart from the software acquisition improvement plans, DOD has taken
some initiatives to strengthen software acquisition and development as
well as address repeated performance shortfalls attributed to software.
Since 1999 the Tri-Service Initiative has conducted detailed assessments of
software-intensive programs to identity and mitigate software risks. The
initiative has assessed about 50 programs spanning all military branches.
While the results of individual initiatives are confidential to their
programs, an overview shows three of the main causes of critical program
performance problems: (1) the ability of the programs to establish and
adhere to processes to meet program needs, (2) requirements
management, and (3) organizational management. Process capability was
a problem in 91 percent of case studies while problems with requirements
management and organizational management were identified as problems
87 percent of the time. These findings are consistent with our discussions
with leading companies about significant problem areas for software
development management. This kind of information could prove useful to
the military services and agencies as they plan for improving software
acquisition. DOD has begun another initiative to strengthen the role that
systems engineering plays in weapons system development as well as in
software development. According to DOD officials, this initiative will
include provisions for gated reviews of systems engineering baselines on
an event-driven basis. Furthermore, the officials stated that they were
working to incorporate the new systems engineering directives into
acquisition policy.

DOD has tasked a source selection criteria working group with clarifying
policy regarding source selection criteria for software-intensive systems,
and another working group is creating a clearinghouse for best practices.
The source selection criteria working group is discussing the application
of software product maturity measures, and the Software Intensive
Systems office is developing a proposal for a centralized clearinghouse of
software best practices, but these initiatives are not complete.

To provide a better method of estimating the cost of software, DOD added
a requirement to its acquisition policy to report such information as type
of project, size, effort, schedule, and quality data to the Cost Analysis
Improvement Group. DOD policy requires the Software Resource Data
Report for major defense programs for any software development element
with a projected software effort greater than $25 million.

Page 28 GAO-04-393 DOD Software Acquisition

Organizations we visited that have established a strong, consistent,
evolutionary environment and practices for setting product requirements,
maintaining a disciplined development process, and using metrics to
oversee development progress achieve favorable cost, schedule, and
quality outcomes for software projects. These practices limit development
efforts to what can be managed and result in decisions throughout the
development process that are based on knowledge obtained through
systems engineering that is sufficient to adequately gauge risks. The
organizations we visited made business decisions to invest time and
resources in achieving high process maturity levels to improve these
practices. For the most part, in the programs reviewed, DOD garnered
poor results from its software acquisition process because it has not
employed consistent practices in these areas. Much as we have found in
DOD’s overall acquisition management process, the decisions to begin
programs and to make significant investments throughout development
are made without matching requirements to available resources and
without demanding sufficient knowledge at key points. The acquisition
programs we reviewed that used evolutionary environments, disciplined
processes, and managed by metrics were more successful, and the
programs that did not use these practices were less successful.

DOD has attempted to improve acquisition outcomes by establishing a
framework for an evolutionary environment in its requirements generation
and acquisition policies that develops manageable increments of
capability. This is a positive step. However, DOD’s policies do not contain
the controls needed to ensure individual programs will adhere to
disciplined requirements and development processes, nor do they include
the metrics needed to do so. As DOD works to finalize its software process
improvement plans, it has the opportunity to put in place those practices
that have proven successful in achieving improved outcomes for software-
intensive systems. In moving into a more complex, “system of systems”
acquisition environment, much more will be demanded from software. The
need for consistent practices and processes for managing software
development and acquisition will become paramount if DOD is to deliver
capabilities as promised.

We have previously made recommendations to DOD to adopt certain
specific practices developed by the Software Engineering Institute. As
DOD changes the way it manages software intensive systems, it must take
steps to ensure better acquisition outcomes. We recommend the Secretary
of Defense take the following four actions:

Conclusions

Recommendations for
Executive Action

Page 29 GAO-04-393 DOD Software Acquisition

• To assure DOD appropriately sets and manages requirements, we
recommend that DOD document that software requirements are
achievable based on knowledge obtained from systems engineering prior
to beginning development and that DOD and the contractor have a mutual
understanding of the software requirements. Furthermore, we recommend
that trade-off analyses be performed, supported by systems engineering
analysis, considering performance, cost, and schedule impacts of major
changes to software requirements.

• To ensure DOD acquisitions are managed to a disciplined process,
acquirers should develop a list of systems engineering deliverables
(including software), tailored to the program characteristics, and based on
the results of systems engineering activities that software developers are
required to provide at the appropriate stages of the system development
phases of requirements, design, fabrication/coding, integration, and
testing.

• To ensure DOD has the knowledge it needs to oversee software-intensive
acquisitions, we recommend that acquirers require software contractors to
collect and report metrics related to cost, schedule, size, requirements,
tests, defects, and quality to program offices on a monthly basis and before
program milestones and that acquirers should ensure that contractors
have an earned value management system that reports cost and schedule
information at a level of work that provides information specific to
software development.

• These practices should be included and enforced with controls and
incentives in DOD’s acquisitions policy, software acquisition improvement
plans and development contracts.

DOD provided us with written comments on a draft of this report. The
department concurred with two of the recommendations, subject to our
incorporating some minor revisions. Since the suggested revisions did not
materially change the intent of the recommendations, we revised them.
For two other recommendations, the department partially concurred. The
department agreed that the report provides useful insight for improving
the software acquisition process and is consistent with its efforts to
improve the process as it continues to implement section 804 of the Fiscal
Year 2003 National Defense Authorization Act. It also agreed to take the
report’s findings into account as it monitors the process for continuous
improvement and to apply our recommendations as further guidance to its
component services and agencies.

The department further noted that the techniques highlighted in the report
should not be seen as a panacea. We agree. Our report provides evidence
that acquisitions can succeed if they take place in an evolutionary

Agency Comments
and Our Evaluation

Page 30 GAO-04-393 DOD Software Acquisition

environment rather than an environment that requires complex solutions
for a single quantum leap in software capabilities. To augment an
evolutionary environment, requirements must be carefully managed and
existing systems and software engineering knowledge must be taken into
account, the development processes must be disciplined and transparent
to decision makers, and key metrics must be gathered and used to support
decisions. We disagree with the department’s observation that the report
“plays down significant challenges associated with acquisition of complex
defense systems .…” To the contrary, our report highlights those
challenges as inherent to acquisitions that proceed with limited knowledge
about how to achieve quantum leaps in capability in a single acquisition.
Our comparison of two successful evolutionary programs (Tactical
Tomahawk and F/A-18 C/D, both categorized as major defense acquisition
programs) with three revolutionary programs (F/A-22, SBIRS, and
Comanche) shows different outcomes in terms of cost, schedule, and
delivery of equipment to the warfighter.

DOD’s rationale for providing programs with data less frequently than we
recommended in our third recommendation suggested that data did not
create knowledge and that knowledgeable software professionals are
needed to interpret data. We agree that both knowledgeable people and
data are needed, but those professionals must have data to interpret. We
found that initially the F/A-22, SBIRS, and Comanche programs had
knowledgeable staff but little data to analyze.

DOD indicated that it was already addressing software acquisition in
policy in response to the fourth recommendation and cited multiple
sections of DOD Directive 5000.1 as evidence. We do not agree that the
current policy puts adequate controls in place to improve software
practices to a level achieved by leading commercial companies. DOD is
silent about including incentives in contracts for improving software
processes. The department’s comments are printed in appendix I.

To determine the best practices commercial companies use to manage
software development and acquisition, we first conducted general
literature searches. From these literature searches and discussions with
experts, we identified numerous companies that follow structured and
mature processes for software development and acquisition. We visited
the following commercial companies:

Computer Sciences Corporation (CSC) develops individual business
solutions for commercial and government markets worldwide. The

Scope and
Methodology

Page 31 GAO-04-393 DOD Software Acquisition

company is specialized in management and information technology
consulting, systems consulting and integration, operations support, and
information services outsourcing. In 2003, the company generated
revenues of $11.3 billion. We visited CSC’s Federal Sector office in
Moorestown, New Jersey, and discussed its practices for developing and
acquiring commercial and federal software. The Federal Sector unit has
achieved a Level 5 Capability Maturity Model rating.

Diebold, Incorporated manufactures self-service products, such as
automated teller machines, electronic and physical security products, and
software and integrated systems. In 2002 the company reported revenues
of $1.9 billion. We visited the company’s headquarters in North Canton,
Ohio, and discussed the process it uses to develop software for automated
teller systems.

General Motors, the world’s largest vehicle manufacturer, designs,
builds, and markets cars and trucks worldwide. In 2002 the company
reported total net sales of $186.7 billion. We spoke with representatives
from the Powertrain Group to discuss the processes used to develop and
acquire electronic controls.

Motorola GSG provides integrated communications and embedded
electronic solutions, such as wireless phones, two-way radio products, and
internet-access products to consumers, network operators, commercial,
government, and industrial customers. In 2002 the company reported net
sales of $26.7 billion. We visited its Global Software Group offices in
Montreal, Canada, and discussed the company’s software and product
development processes. The Global Software Group has achieved a
Level 5 Capability Maturity Model rating.

NCR offers solutions for data warehousing, retail store automation, and
financial self-services. In 2002 the company reported sales totaling
approximately $5.6 billion. We visited the Teradata Data Warehousing
group office in San Diego, California, and discussed the software
development process for the company’s Teradata database software. The
Teradata unit has achieved a Level 4 Capability Maturity Model rating.

Software acquisition covers myriad activities and processes from planning
and solicitation, to transition, to the support of a developed product. In
fact, the Software Engineering Institute’s Capability Maturity Models
(CMM)® for software acquisition and development delineate more than a
dozen different processes of this nature and offer principles governing the
goals, activities, necessary resources and organizations, measurements,

Page 32 GAO-04-393 DOD Software Acquisition

and validation of each process. This report does not attempt to judge
software acquisitions against all of those processes. Instead, our scope
targets practices in three critical management areas we identified as
problem areas from our previous work on weapon systems acquisitions
and through discussions with leading companies. We limited our focus to
ways to develop an environment that encourages continual improvement;
improve the management of software development processes, including
software requirements; and metrics to improve overall weapon system
acquisition outcomes. In doing so, we borrowed criteria from each CMM®
that offered a road map for continuous improvement in each of those
specific areas.

At each of the five companies, we conducted structured interviews with
representatives to gather uniform and consistent information about the
practices, processes, and metrics that each company uses to manage
software development and software acquisition. During meetings with
representatives, we obtained a detailed description of the practices and
processes they use to develop software within cost and schedule and
ensure quality. We also consistently used a structured data collection
instrument to collect metrics from the companies on their software
projects. We met with company directors, software engineers, project
managers, configuration managers, and quality assurance personnel.

Our report highlights several best practices in software development and
acquisition on the basis of our fieldwork. As such, they are not intended to
describe all practices or suggest that commercial companies are without
flaws. Representatives from the commercial companies we visited told us
that their practices have evolved over many years and that they continue
to be improved on the basis of lessons learned and new ideas and
information. This is not to say that the application and use of these
practices have always been consistent or without error or that they
subscribe to a single model for their practices and processes. However,
they strongly suggested that the probability of success in developing and
acquiring software is greatly enhanced by the use of these practices and
processes.

We also selected five DOD weapon systems: RAH-66 Comanche, F/A-22,
F/A-18 C/D, SBIRS, and Tactical Tomahawk. These systems are at various
stages of development. We compared the practices, processes, and metrics
the programs were using to manage software development and acquisition
with the best practices commercial companies use. To identify the current
policy, processes, and acquisition practices used in software development,
for each program we visited, we conducted structured interviews with

Page 33 GAO-04-393 DOD Software Acquisition

representatives from the program office and prime contractors Boeing
Sikorsky for Comanche; Lockheed Martin, Marietta, Georgia, for F/A-22;
and Lockheed Martin, Boulder, Colorado, for SBIRS. We also used a data
collection instrument to determine which metrics program offices were
collecting.

We selected Air Force, Army, and Navy programs because they all manage
major defense acquisition programs. We also obtained the responses to
date that the services and MDA have prepared in response to section 804
of the Bob Stump National Defense Authorization Act for Fiscal Year 2003.
The legislation states that the Secretary of each military service and the
head of each defense agency that manages a major defense acquisition
program with a substantial software component shall establish a program
to improve the software acquisition processes of that military service or
defense agency. To determine how DOD responded to Congress’s
requirement, we met with DOD officials from the Tri-Service Assessment
Initiative and the Software Intensive Systems Office and the staff
responsible for developing the process improvement plans for the Air
Force, Army, Department of the Navy, and MDA. We also met with
officials from the Office of the Under Secretary of Defense (Acquisition,
Technology and Logistics) concerning systems engineering initiatives and
officials from the Office of the Assistant Secretary of Defense (Networks
and Information Integration) concerning the software improvement plans.
Because the plans are in varying stages of completeness, we did not
evaluate to what degree the military services and MDA have complied with
section 804. To determine whether the responses so far would help
improve DOD’s software acquisition, we evaluated the responses on the
basis of the information we obtained from leading organizations
concerning environment, disciplined processes, and collection of
meaningful metrics.

We conducted our review between March 2003 and February 2004 in
accordance with generally accepted government auditing standards.

We are sending copies of this report to the Secretary of Defense; the
Secretaries of the Air Force, Army, and Navy; the Director of the Missile
Defense Agency; and the Director of the Office of Management and
Budget. We will also provide copies to others on request. In addition, the
report will be available at no charge on the GAO Web site at
http://www.gao.gov.

http://www.gao.gov/

Page 34 GAO-04-393 DOD Software Acquisition

Please contact me at (202) 512-4841 if you have any questions concerning
this report. Other key contributors to this report were Cheryl Andrew,
Beverly Breen, Lily Chin, Ivy Hubler, Carol Mebane, Mike Sullivan,
Sameena Nooruddin, Marie Penny Ahearn, Madhav Panwar, and Randy
Zounes.

Katherine V. Schinasi
Director, Acquisition and Sourcing Management

Appendix I: Comments from the Department of Defense

Page 35 GAO-04-393 DOD Software Acquisition

Appendix I: Comments from the Department
of Defense

Appendix I: Comments from the Department of Defense

Page 36 GAO-04-393 DOD Software Acquisition

Appendix I: Comments from the Department of Defense

Page 37 GAO-04-393 DOD Software Acquisition

Appendix I: Comments from the Department of Defense

Page 38 GAO-04-393 DOD Software Acquisition

Appendix I: Comments from the Department of Defense

Page 39 GAO-04-393 DOD Software Acquisition

Appendix I: Comments from the Department of Defense

Page 40 GAO-04-393 DOD Software Acquisition

Appendix II: Software Models

Page 41 GAO-04-393 DOD Software Acquisition

The Capability Maturity Model for Software (SW-CMM)1® describes the
principles and practices underlying software process maturity and is
intended to help software organizations improve the maturity of their
software process in terms of an evolutionary path organized into five
maturity levels. Except for level 1, each maturity level is decomposed into
several key process areas that indicate the areas that an organization
should focus on to improve its software process. Table 3 describes the
characteristics of each level of process maturity and the applicable key
process areas.

Table 3: Highlights of SW-CMM

Level Characteristics Key process areas

1 Initial The software process is ad hoc, and occasionally chaotic. Few processes
are defined, and success depends on individual effort.

2 Repeatable Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to
repeat earlier successes on projects with similar applications.

• Requirements Management
• Software Project Planning

• Software Project Tracking &
Oversight

• Software Subcontract Management

• Software Quality Assurance

• Software Configuration Management

3 Defined The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process
for the organization. All projects use an approved, tailored version of the
organization’s standard software process for developing and maintaining
software.

• Organization Process Focus
• Organization Process Definition

• Training

• Integrated Software Management
• Software Product Engineering

• Intergroup Coordination

• Peer Reviews

4 Managed Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and
controlled.

• Quantitative Process Management
• Software Quality Management

5 Optimizing Continuous process improvement is enabled by quantitative feedback from
the process and from plotting innovative ideas and technologies.

• Defect Prevention
• Technology Change Management

• Process Change Management

Source: Software Engineering Institute, Carnegie Mellon University.

1 CMM is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Appendix II: Software Models

Software
Development

Appendix II: Software Models

Page 42 GAO-04-393 DOD Software Acquisition

The Software Acquisition Capability Maturity Model (SA-CMM)® is a
model for benchmarking and improving the software acquisition process.
The model follows the same architecture as SW-CMM® but with a unique
emphasis on acquisition issues and the needs of individuals and groups
who are planning and managing software acquisition efforts. Each
maturity level indicates an acquisition process capability and has several
Key Process Areas. Each area has goals and common features and
organizational practices intended to institutionalize common practice.

Table 4: Highlights of SA-CMM

Level Focus Key process areas

1 Initial Competent people and heroics

2 Repeatable Basic Project Management • Transition to Support

• Evaluation

• Contract Tracking and Oversight
• Project Management

• Requirements Development and Management

• Solicitation
• Software Acquisition Planning

3 Defined Process Standardization • Training Program

• Acquisition Risk Management

• Contract Performance Management
• Project Performance Management

• Process Definition and Maintenance

4 Quantitative Quantitative Management • Quantitative Acquisition Management

• Quantitative Process Management

5 Optimizing Continuous Process Improvement • Acquisition Innovation Management
• Continuous Process Improvement

Source: Software Engineering Institute, Carnegie Mellon University.

Software Acquisition

Appendix II: Software Models

Page 43 GAO-04-393 DOD Software Acquisition

In 1997 a team led by DOD, in conjunction with Software Engineering
Institute, government, and industry, concentrated on developing an
integrated framework for maturity models and associated products. The
result was the Capability Maturity Model Integration (CMMI)®,2 which is
intended to provide guidance for improving an organization’s processes
and the ability to manage the development, acquisition, and maintenance
of products and services while reducing the redundancy and inconsistency
caused by using stand-alone models. CMMI® combines earlier models
from Software Engineering Institute and the Electronic Industries Alliance
into a single model for use by organizations pursuing enterprise-wide
process improvement. Ultimately, CMMI® is to replace the models that
have been its starting point.

Many integrated models consist of disciplines selected according to
individual business needs. Models can include systems engineering,
software engineering, integrated product and process development, and
supplier sourcing. There are also two representations of each CMMI®
model: staged and continuous. A representation reflects the organization,
use, and presentation of model elements. Table 5 shows the CMMI® model
for staged groupings.

2 CMMI is registered with the U.S. Patent and Trademark Office by Carnegie Mellon
University.

Integrated Model

Appendix II: Software Models

Page 44 GAO-04-393 DOD Software Acquisition

Table 5: Highlights of CMMI Model

Staged grouping Process area

Maturity Level 2 • Requirements Management
• Project Planning

• Project Monitoring and Control

• Supplier Agreement Management
• Measurement and Analysis

• Process and Product Quality Assurance

• Configuration Management

Maturity Level 3 • Requirements Development
• Technical Solution

• Product Integration

• Verification
• Validation

• Organizational Process Focus

• Organizational Process Definition
• Organizational Training

• Integrated Project Management

• Risk Management
• Integrated Teaming

• Integrated Supplier Management

• Decision Analysis and Resolution
• Organizational Environment for Integration

Maturity Level 4 • Organizational Process Performance

• Quantitative Project Management

Maturity Level 5 • Organizational Innovation and Deployment

• Causal Analysis and Resolution

Source: Software Engineering Institute, Carnegie Mellon University.

Appendix III: Section 804. Improvement of Software Acquisition Processes

Page 45 GAO-04-393 DOD Software Acquisition

(a) Establishment of Programs—

(1) The Secretary of each military department shall establish a program to
improve the software acquisition processes of that military department.

(2) The head of each Defense Agency that manages a major defense acquisition
program with a substantial software component shall establish a program to
improve the software acquisition processes of that Defense Agency.

(3) The programs required by this subsection shall be established not later than
120 days after the date of the enactment of this Act.

(b) Program Requirements.—A program to improve software acquisition processes
under this section shall, at a minimum, include the following:

(1) A documented process for software acquisition planning, requirements
development and management, project management and oversight, and risk
management.

(2) Efforts to develop appropriate metrics for performance measurement and
continual process improvement.

(3) A process to ensure that key program personnel have an appropriate level of
experience or training in software acquisition.

(4) A process to ensure that each military department and Defense Agency
implements and adheres to established processes and requirements relating to the
acquisition of software.

(c) Department of Defense Guidance—The Assistant Secretary of Defense for
Command, Control, Communications, and Intelligence, in consultation with the Under
Secretary of Defense for Acquisition, Technology, and Logistics, shall—

(1) prescribe uniformly applicable guidance for the administration of all of the
programs established under subsection (a) and take such actions as are necessary
to ensure that the military departments and Defense Agencies comply with the
guidance; and

(2) assist the Secretaries of the military departments and the heads of the Defense
Agencies to carry out such programs effectively by—

(A) ensuring that the criteria applicable to the selection of sources provides
added emphasis on past performance of potential sources, as well as on the

Appendix III: Section 804. Improvement of
Software Acquisition Processes

Appendix III: Section 804. Improvement of Software Acquisition Processes

Page 46 GAO-04-393 DOD Software Acquisition

maturity of the software products offered by the potential sources; and

(B) identifying, and serving as a clearinghouse for information regarding, best
practices in software development and acquisition in both the public and private
sectors.

(d) Definitions—In this section:

(1) The term “Defense Agency” has the meaning given the term in section
101(a)(11) of title 10, United States Code.

(2) The term “major defense acquisition program” has the meaning given such
term in section 139(a)(2)(B) of title 10, United States Code.

Related GAO Products

Page 47 GAO-04-393 DOD Software Acquisition

Defense Acquisitions: DOD’s Revised Policy Emphasizes Best

Practices, but More Controls Are Needed. GAO-04-53. Washington, D.C.:
November 10, 2003.

Best Practices: Setting Requirements Differently Could Reduce

Weapon Systems’ Total Ownership Costs. GAO-03-57. Washington, D.C.:
February 11, 2003.

Best Practices: Capturing Design and Manufacturing Knowledge

Early Improves Acquisition Outcomes. GAO-02-701. Washington, D.C.:
July 15, 2002.

Defense Acquisitions: DOD Faces Challenges in Implementing Best

Practices. GAO-02-469T. Washington, D.C.: February 27, 2002.

DOD Information Technology: Software and Systems Process

Improvement Programs Vary in Use of Best Practices. GAO-01-116.
Washington, D.C.: March 30, 2001.

Best Practices: Better Matching of Needs and Resources Will Lead

to Better Weapon System Outcomes. GAO-01-288. Washington, D.C.:
March 8, 2001.

Best Practices: A More Constructive Test Approach Is Key to

Better Weapon System Outcomes. GAO/NSIAD-00-199. Washington, D.C.:
July 31, 2000.

Defense Acquisition: Employing Best Practices Can Shape Better

Weapon System Decisions. GAO/T-NSIAD-00-137. Washington, D.C.:
April 26, 2000.

Best Practices: DOD Training Can Do More to Help Weapon

System Program Implement Best Practices. GAO/NSIAD-99-206.
Washington, D.C.: August 16, 1999.

Best Practices: Better Management of Technology Development

Can Improve Weapon System Outcomes. GAO/NSIAD-99-162.
Washington, D.C.: July 30, 1999.

Defense Acquisitions: Best Commercial Practices Can Improve Program

Outcomes. GAO/T-NSIAD-99-116. Washington, D.C.: March 17, 1999.

Related GAO Products

http://www.gao.gov/cgi-bin/getrpt?GAO-04-53
http://www.gao.gov/cgi-bin/getrpt?GAO-03-57
http://www.gao.gov/cgi-bin/getrpt?GAO-02-701
http://www.gao.gov/cgi-bin/getrpt?GAO-02-469T
http://www.gao.gov/cgi-bin/getrpt?GAO-01-116
http://www.gao.gov/cgi-bin/getrpt?GAO-01-288
http://www.gao.gov/cgi-bin/getrpt?GAO/NSIAD-00-199
http://www.gao.gov/cgi-bin/getrpt?GAO/T-NSIAD-00-137
http://www.gao.gov/cgi-bin/getrpt?GAO/NSIAD-99-206
http://www.gao.gov/cgi-bin/getrpt?GAO/NSIAD-99-162
http://www.gao.gov/cgi-bin/getrpt?GAO/T-NSIAD-99-116

Related GAO Products

Page 48 GAO-04-393 DOD Software Acquisition

Defense Acquisition: Improved Program Outcomes Are Possible.
GAO/T-NSIAD-98-123. Washington, D.C.: March 17, 1998.

Best Practices: DOD Can Help Suppliers Contribute More to Weapon

System Programs. GAO/NSIAD-98-87. Washington, D.C.: March 17, 1998.

Best Practices: Successful Application to Weapon Acquisition Requires

Changes in DOD’s Environment. GAO/NSIAD-98-56. Washington, D.C.:
February 24, 1998.

Best Practices: Commercial Quality Assurance Practices Offer

Improvements for DOD. GAO/NSIAD-96-162. Washington, D.C.:
August 26, 1996.

(120215)

http://www.gao.gov/cgi-bin/getrpt?GAO/T-NSIAD-98-123
http://www.gao.gov/cgi-bin/getrpt?GAO/NSIAD-98-87
http://www.gao.gov/cgi-bin/getrpt?GAO/NSIAD-98-56
http://www.gao.gov/cgi-bin/getrpt?GAO/NSIAD-96-162

The General Accounting Office, the audit, evaluation and investigative arm of
Congress, exists to support Congress in meeting its constitutional responsibilities
and to help improve the performance and accountability of the federal
government for the American people. GAO examines the use of public funds;
evaluates federal programs and policies; and provides analyses,
recommendations, and other assistance to help Congress make informed
oversight, policy, and funding decisions. GAO’s commitment to good government
is reflected in its core values of accountability, integrity, and reliability.

The fastest and easiest way to obtain copies of GAO documents at no cost is
through the Internet. GAO’s Web site (www.gao.gov) contains abstracts and full-
text files of current reports and testimony and an expanding archive of older
products. The Web site features a search engine to help you locate documents
using key words and phrases. You can print these documents in their entirety,
including charts and other graphics.

Each day, GAO issues a list of newly released reports, testimony, and
correspondence. GAO posts this list, known as “Today’s Reports,” on its Web site
daily. The list contains links to the full-text document files. To have GAO e-mail
this list to you every afternoon, go to www.gao.gov and select “Subscribe to e-mail
alerts” under the “Order GAO Products” heading.

The first copy of each printed report is free. Additional copies are $2 each. A
check or money order should be made out to the Superintendent of Documents.
GAO also accepts VISA and Mastercard. Orders for 100 or more copies mailed to a
single address are discounted 25 percent. Orders should be sent to:

U.S. General Accounting Office
441 G Street NW, Room LM
Washington, D.C. 20548

To order by Phone: Voice: (202) 512-6000
TDD: (202) 512-2537
Fax: (202) 512-6061

Contact:

Web site: www.gao.gov/fraudnet/fraudnet.htm
E-mail: fraudnet@gao.gov
Automated answering system: (800) 424-5454 or (202) 512-7470

Jeff Nelligan, Managing Director, NelliganJ@gao.gov (202) 512-4800
U.S. General Accounting Office, 441 G Street NW, Room 7149
Washington, D.C. 20548

GAO’s Mission

Obtaining Copies of
GAO Reports and
Testimony

Order by Mail or Phone

To Report Fraud,
Waste, and Abuse in
Federal Programs

Public Affairs

http://www.gao.gov/
http://www.gao.gov/
http://www.gao.gov/fraudnet/fraudnet.htm
mailto:fraudnet@gao.gov
mailto:NelliganJ@gao.gov

	Results in Brief
	Background
	The Software Development Process
	Resources for Quality Software Development
	Problems wit\൨ DOD’s Softwar\൥ Development A\൲e Wel�

	Successful O\൵tcomes Are Lar\൧ely the Result\ഠof Cre
	The Right Environment Reduces Software Development Risk
	Disciplined Software Development Processes Improve Software Outcomes
	Requirements
	Design
	Coding and Testing

	Metrics Provide Useful Insight to Software Development Activities

	Outcomes on \ൄOD’s Software-\൉ntensive Acqui\൳itions
	Successful Outcomes for Two DOD Acquisitions
	Outcomes Were Poor for Programs That Did Not Use an Evolutionary Approac\
h, Disciplined Processes, and Meaningful Metrics

	DOD, the Ser\൶ices, and MDA \ൈave Begun to \൉mprove�
	Conclusions
	Recommendations for Executive Action
	Agency Comments and Our Evaluation
	Scope and Methodology
	Appendix I: Comments from the Department of Defense
	Appendix II: Software Models
	Software Development
	Software Acquisition
	Integrated Model
	Appendix III: Section 804. Improvement of Software Acquisition Processes\

	Related GAO Products
	Order by Mail or Phone

