ASSESSMENT OF THE PACIFIC COD STOCK IN THE GULF OF ALASKA

Grant G. Thompson, Harold H. Zenger, and Martin W. Dorn

EXECUTIVE SUMMARY
Summary of Major Changes
Relative to the November edition of last year's GOA SAFE report, the following substantive changes have been made in the Pacific cod stock assessment.

Changes in the Input Data

1) Size composition data from the 2000 and January-August 2001 commercial fisheries were incorporated into the model.
2) Size composition data from the 2001 GOA bottom trawl survey were incorporated.
3) The biomass estimate from the 2001 GOA bottom trawl survey was incorporated (the 2001 estimate of $256,025 \mathrm{t}$, which represents the western and central areas only, was down about 10% from the 1999 estimate for the same two areas).

Changes in the Assessment Model

The Bayesian meta-analysis which has formed the basis for a risk-averse ABC recommendation in the 19961999 assessments was not performed for the present assessment. Similar to last year's approach, the ratio between the recommended $F_{A B C}$ and $F_{40 \%}$ estimate given in the 1999 assessment (0.87) was assumed to be an appropriate factor by which to multiply the 2001 maximum permissible $F_{A B C}$ to obtain a recommended $2001 F_{A B C}$.

Changes in Assessment Results

1) The estimated 2002 spawning biomass for the GOA stock is $82,000 \mathrm{t}$, down about 13% from last year's estimate for 2001 and down about 2% from last year's $F_{A B C}$ projection for 2002.
2) The estimated 2002 total age 3+ biomass for the GOA stock is $428,000 \mathrm{t}$, down about 9% from last year's estimate for 2001 and down about 3% from last year's $F_{40 \%}$ projection for 2002.
3) The recommended 2002 ABC for the GOA stock is $57,600 \mathrm{t}$, down about 15% from last year's recommendation for 2001 and up about 3% from last year's $F_{A B C}$ projection for 2002.
4) The estimated 2002 OFL for the GOA stock is $77,100 \mathrm{t}$, down about 15% from last year's estimate for 2001.

SSC Comments Specific to the Pacific Cod Assessments

From the December, 2000 minutes: "The SSC recommends that a stock recruitment relationship be included in the next assessment and that the age composition of the adult spawning stock be assessed relative to recruitment levels, because other cod stocks (in the Atlantic) have shown that the occurrence of strong year classes is dependent on the presence of a broad age distribution in the spawning stock." A provisional stock-recruitment relationship is described, with appropriate caveats, in the "Recruitment" subsection of the "Results" section.

From the December, 2000 minutes: "Pacific cod is of special concern for precautionary measures in the setting of the ABC. That is not only because of the declining spawning biomass, but also because of the possibility of unknown fishery sampling inadequacy. Sampling is being reviewed currently by the Observer Program. The SSC expressed its concern more completely in last year's minutes, especially from the October 1999 meeting. Sampling the Pacific fishery is difficult because of the complexity of its various fishing sectors." A precautionary ABC is recommended in the "ABC recommendation" subsection of the "Projections and Harvest Alternatives" section.

SSC Comments on Assessments in General

From the December, 2000 minutes: "The unprecedented demands on the analysts related to SEIS and SSL issues resulted in less time and attention being devoted to stock assessments this year. It is ironic that with the increased scrutiny of the Council's management of groundfish, that one of the main responsibilities of the Council, the TAC-setting process, is being compromised to some extent. It is imperative that analysts serving the Council process be allowed to devote sufficient time and energy to produce quality stock assessments." The time available for development of improved stock assessment methodologies was much greater this year.

From the December, 2000 minutes: "Similarly, the consideration of new ABC and OFL definitions has been put on hold pending the freeing up of analysts' time. The SSC hopes that this issue can proceed in the year 2001 to assure that the Council's TAC-setting is based on solid conservation standards." Some progress has been made this year in the evaluation of alternative harvest strategies, though a full analysis of the ABC and OFL definitions has not been made.

From the December, 2000 minutes: "The issue of adjusting ABC based on uncertainties in data and information came up this year in the BSAI Atka mackerel assessment. While the SSC did not approve of the approach used, the SSC encourages further exploration of this issue. As the methodology evolves to constructing ADMB age-structured assessment models for most assessments, it is possible that formal definitions of risk to the population and to the fishery can be developed that conceivably would lead to greater downward adjustments when uncertainty is higher." Some progress has been made this year in developing adjustments to the maximum permissible ABC based on formal definitions of risk.

From the December, 2000 minutes: "The SSC heard that the 2001 survey in the Gulf of Alaska may only be a partial survey excluding the eastern Gulf. For some stock assessments, this could create major problems in using the survey information in the assessment, because of incomplete sampling of the population. The SSC hopes that a complete survey can be conducted." Pacific cod is relatively rare in the eastern GOA, accounting for only $2-7 \%$ of the total biomass estimated by the three previous surveys. The method used to adjust for the missing stations is described in the "Survey Data" subsection of the "Data" section.

INTRODUCTION

Pacific cod (Gadus macrocephalus) is a transoceanic species, occurring at depths from shoreline to 500 m . The southern limit of the species' distribution is about $34^{\circ} \mathrm{N}$ latitude, with a northern limit of about $63^{\circ} \mathrm{N}$ latitude. Pacific cod is distributed widely over Gulf of Alaska (GOA), as well as the eastern Bering Sea (EBS) and the Aleutian Islands (AI) area. Tagging studies (e.g., Shimada and Kimura 1994) have demonstrated significant migration both within and between the EBS, AI, and GOA, and genetic studies (e.g., Grant et al. 1987) have failed to show significant evidence of stock structure within these areas. Pacific cod is not known to exhibit any special life history characteristics that would require it to be assessed or managed differently from other groundfish stocks in the GOA.

FISHERY

During the two decades prior to passage of the Magnuson Fishery Conservation and Management Act (MFCMA) in 1976, the fishery for Pacific cod in the GOA was small, averaging around $3,000 \mathrm{t}$ per year. Most of the catch during this period was taken by the foreign fleet, whose catches of Pacific cod were usually incidental to directed fisheries for other species. By 1976, catches had increased to $6,800 \mathrm{t}$. Catches of Pacific cod since 1978 are shown in Table 2.1, broken down by year, fleet sector, and gear type. The foreign fishery peaked in 1981 at a catch of nearly $35,000 \mathrm{t}$. A small joint venture fishery existed through 1988, averaging a catch of about $1,400 \mathrm{t}$ per year. The domestic fishery increased steadily through 1986, then increased more than three-fold in 1987 to a catch of nearly $31,000 \mathrm{t}$ as the foreign fishery was eliminated. Presently, the Pacific cod stock is exploited by a multiple-gear fishery, including trawl, longline, pot, and jig components. Trawl gear typically accounts for the bulk of the catch (over two-thirds on average since 1986).

The history of acceptable biological catch (ABC) and total allowable catch (TAC) levels is summarized and compared with the time series of aggregate commercial catches in Table 2.2. For the first year of management under the MFCMA (1977), the catch limit for GOA Pacific cod was established at slightly less than the 1976 total reported landings. During the period 1978-1981, catch limits varied between 34,800 and $70,000 \mathrm{t}$, settling at $60,000 \mathrm{t}$ in 1982. Prior to 1981 these limits were assigned for "fishing years" rather than calendar years. In 1981 the catch limit was raised temporarily to $70,000 \mathrm{t}$ and the fishing year was extended until December 31 to allow for a smooth transition to management based on calendar years, after which the catch limit returned to 60,000 t until 1986, when ABC began to be set on an annual basis. From 1986 (the first year in which an ABC was set) through 2001, TAC averaged about 82% of ABC and catch averaged about 86% of TAC. In 8 of these 16 years (50%), TAC equaled ABC exactly. In 4 of these 16 years (25%), catch exceeded TAC. However, it should be noted that two of these apparent overages occurred in the most recent five years, when a substantial fishery for Pacific cod was conducted inside State of Alaska waters. To accommodate the State-managed fishery, TAC was set well below ABC in each of those years (15% in 1997 and $1998,20 \%$ in 1999, and 23% in 2000 and 2001). Thus, the apparent overages in those years is basically an artifact of the bi-jurisdictional nature of the fishery. Catch has exceeded ABC only twice (in 1992 and 1996). Changes in ABC over time are typically attributable to three factors: 1) changes in resource abundance, 2) changes in management strategy, and 3) changes in the stock assessment model. For example, from 1986 through 2001, three different assessment models were used (Table 2.2), though the present model has remained unchanged since 1997.
Historically, the majority of the GOA catch has come from the Central regulatory area. The distribution of federally observed hauls or sets in the GOA is shown for the 2000 trawl, longline, and pot fisheries for Pacific cod in Figures 2.1, 2.2, and 2.3, and for the 2001 trawl, longline, and pot fisheries for Pacific cod in Figures 2.4, 2.5, and 2.6. To some extent the distribution of effort within the GOA is driven by regulation, as catch limits within this region have been apportioned by area throughout the history of management under
the MFCMA. Changes in area-specific allocation between years have usually been traceable to changes in biomass distributions estimated by Alaska Fisheries Science Center trawl surveys or management responses to local concerns. Currently, the allocation follows the biomass distribution estimated by the 1999 trawl survey. The complete history of allocation (in percentage terms) by regulatory area within the GOA is shown below:

Regulatory Area			
	$\frac{\text { Western }}{}$	$\underline{\text { Central }}$	$\underline{\text { Eastern }}$
$1977-1985$	28	56	16
1986	40	44	16
1987	27	56	17
$1988-1989$	19	73	8
1990	33	66	1
1991	33	62	5
1992	37	61	2
$1993-1994$	33	62	5
$1995-1996$	29	66	5
$1997-1999$	35	63	2
$2000-2001$	36	57	7

The catches shown in Tables 2.1 and 2.2 include estimated discards. Recent (2000-2001) discard rates of Pacific cod in the various GOA target fisheries are summarized in Table 2.3. In terms of absolute amounts, the target fishery for shallow-water flatfish had a higher level of Pacific cod discards than any other fishery in both years, with the target fishery for Pacific cod ranking fifth and second in 2000 and 2001, respectively. Expressed in relative terms, the target fishery for Pacific cod had the lowest rate of Pacific cod discards in 2000 and the fourth-lowest rate in 2001. In 2000, the target fishery defined as "no retained groundfish" had the highest relative discard rate for Pacific cod, followed by the target fisheries for deep-water flatfish and shallow-water flatfish, while in 2001, the target fishery for arrowtooth flounder had the highest relative rate, followed by the target fisheries for shallow-water flatfish and deep-water flatfish.

For the 2001 fishery, several new regulations were adopted in an attempt to mitigate possible fishery impacts on the endangered western population of Steller sea lion (Eumetopias jubatus). Some of these regulations were designed to spread the catch of Pacific cod more evenly throughout the year. The table below compares the distribution of catch during the periods January-May and June-August for the 2001 fishery with the average for the preceding three years (for each gear type, the numbers in a given row sum to 1.0):

	Trawl			Longline		Pot	
Area	Year(s)	$\underline{\text { Jan-May }}$	$\underline{\text { Jun-Aug }}$	$\underline{\text { Jan-May }}$	$\underline{\text { Jun-Aug }}$	$\underline{\text { Jan-May }}$	$\underline{\text { Jun-Aug }}$
GOA	2001	0.85	0.15	0.88	0.12	0.98	0.02
GOA	$1998-2000$	0.92	0.08	0.98	0.02	0.94	0.06

Because year-end catch statistics for 2001 are not yet available, the above table provides only a partial indication of the extent to which the new regulations were or will be successful in spreading the 2001 catch evenly throughout the entire year.

DATA

This section describes data used in the current assessment. It does not attempt to summarize all available data pertaining to Pacific cod in the GOA.

Commercial Catch Data

Catch Biomass

Catches (including estimated discards) taken in the GOA since 1978 are shown in Table 2.4, broken down by the three main gear types and the following within-year time intervals, or "periods": January-May, JuneAugust, and September-December. This particular division, which was suggested by participants in the BSAI fishery, is intended to reflect actual intra-annual differences in fleet operation (e.g., fishing operations during the spawning period may be different than at other times of year). In years for which estimates of the distribution by gear or period were not available, proxies based on other years' distributions were used.

Catch Size Composition

Fishery size compositions are presently available, by gear, for the years 1978 through the first part of 2001. As in the past two assessments, size composition data from trawl catches sampled on shore were not included in the set of input data, because a comparison of cruises for which both at-sea and shoreside size composition samples were available showed that, in the case of trawl catches, the shoreside data typically contained a smaller proportion of small fish than the at-sea data, indicating that these data may reflect post-discard landings rather than the entire catch. For ease of representation and analysis, length frequency data for Pacific cod can usefully be grouped according to the following set of 25 intervals or "bins," with the upper and lower boundaries shown in cm :

Lower Bound: 912151821242730333639424550556065707580859095100105
Upper Bound: 1114172023262932353841444954596469747984899499104115
Total length sample sizes for each year, gear, and period are shown in Table 2.5. The collections of relative length frequencies are shown by year, period, and size bin for the pre-1989 trawl fishery in Table 2.6, the pre-1989 longline fishery in Table 2.7, the post-1988 trawl fishery in Table 2.8, the post-1988 longline fishery in Table 2.9, and the pot fishery in Table 2.10.

Survey Data

Survey Size Composition and Abundance Estimates

The relative size compositions from trawl surveys of the GOA conducted triennially by the Alaska Fisheries Science Center since 1984 are shown in Table 2.11, using the same length bins defined above for the commercial catch size compositions. Total sample sizes are shown below:

Year:	1984	1987	1990	1993	1996	1999	2001
Sample size:	17413	19589	11440	17152	12190	8645	6772

Estimates of total abundance (both in biomass and numbers of fish) obtained from the trawl surveys are shown in Table 2.12, together with the standard errors and upper and lower 95% confidence intervals (CI) for the biomass estimates. One potentially problematic aspect of the survey time series is that the 2001 survey did not cover the Eastern regulatory area. The 2001 survey produced a biomass estimate of 258,025 t with a standard error of $52,113 \mathrm{t}$ and a numerical abundance estimate of $157,386,813$ fish. To obtain an estimate of what the 2001 survey would have found had the Eastern regulatory area been surveyed, the biomass trends for the Eastern and combined Western/Central regulatory areas estimated by previous surveys were first compared to determine whether a consistent relationship existed. Finding no such relationship, the 1999 survey results for the Eastern regulatory area were assumed to represent the best point estimates of what the 2001 survey would have observed in that area. The 1999 survey estimates of biomass, biomass variance, and numbers for the Eastern regulatory area were therefore added to the respective 2001survey values for the combined Western/Central regulatory areas. This procedure resulted in a Gulf-wide biomass estimate of $277,743 \mathrm{t}$ with a standard error of $52,355 \mathrm{t}$ and a Gulf-wide numerical abundance estimate of $167,386,950$ fish.

The highest biomass ever observed by the survey was the 1984 estimate of $571,188 \mathrm{t}$, and the low point is the 2001 estimate of $277,743 \mathrm{t}$. In terms of numbers (as opposed to biomass), the record high was observed in 1996, when the population was estimated to include over 315 million fish. This estimate was more than 90% higher than the previous survey's estimate of 165 million fish, which was the low point in the time series. The 2001 estimate is only about 2% above the all-time low.

The 1999 trawl survey biomass estimate was distributed by regulatory area as follows: Western- 36%, Central-57\%, and Eastern-7\%. The 2001 trawl survey of the Western and Central regulatory areas estimated 51% of the biomass to be in the Western regulatory area and 49% to be in the Central regulatory area. If the procedure described above for extrapolating the actual 2001 survey biomass estimate into a Gulf-wide equivalent is accepted, the implied distribution by regulatory area is as follows: Western-47\%, Central-45\%, and Eastern-8\%.

Survey Removals

The amount of Pacific cod removed from the population as a result of NMFS hydroacoustic, longline, and bottom trawl survey operations is summarized for the GOA in Table 2.13. In all years, the magnitude of these removals has been negligible in comparison to the commercial catch (the average ratio of survey removals to commercial removals in the GOA over the period 1978-2001 was approximately 0.001).

Length at Age, Weight at Length, and Maturity at Length

The set of reliable length at age data for GOA Pacific cod has been small for the past several years and such data are used only sparingly in this assessment. The otoliths which have been read provide the following data regarding the relationship between age and length and the amount of spread around that relationship (lengths are in cm and ages are back-dated to January 1):

Age group:	3	4	5	6	7	8	9	10	11	12
Average length:	45	52	60	66	74	81	85	90	94	95
St. dev. of length:	2.6	3.5	3.8	4.0	3.9	5.0	6.2	6.9	5.5	7.0

Although the supply of reliable length at age data has been severely limited in the past, it now appears likely that such data will become much more available in the future. Studies at the Alaska Fisheries Science Center have resulted in an ageing methodology for Pacific cod that gives reliable age determinations, and production ageing of this species is scheduled to begin soon (Nancy Roberson, pers. commun.).

Weight measurements taken during summer bottom trawl surveys since 1987 yield the following data regarding average weights (in kg) at length, grouped according to size composition bin (as defined under "Catch Size Composition" above):

Bin Number: | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| :--- |

In 1993, a sampling program was initiated to collect Pacific cod maturity information, using commercial fishery observers. So far, data have been analyzed for 1994 only. These data consist of observers' visual determinations regarding the spawning condition of 2312 females taken in the EBS fishery, which are used as proxy data for the GOA stock. Of these 2312 females, 231 were smaller than 42 cm (the lower boundary of length bin 12). None of these sub- 42 cm fish were mature. The observed proportions of mature fish in the remaining length bins, together with the numbers of fish sampled in those length bins, are shown below (bins are defined under "Catch Size Composition" above):

Bin number:	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Prop. mature:	0.03	0.05	0.14	0.19	0.28	0.53	0.69	0.82	0.89	0.94	0.94	0.91	0.89	1.00
Sample size:	39	122	226	313	295	300	320	177	103	70	50	35	19	12

ANALYTIC APPROACH

Model Structure

This year's model structure is identical to the base model structure used in all assessments of the EBS Pacific cod stock since 1997 (Thompson and Dorn 1997). Beginning with the 1994 SAFE report (Thompson and Zenger 1994), a length-structured Synthesis model (Methot 1986, 1989, 1990, 1998) has formed the primary analytical tool used to assess the GOA Pacific cod stock. Synthesis is a program that uses the parameters of a set of equations governing the assumed dynamics of the stock (the "model parameters") as surrogates for the parameters of statistical distributions from which the data are assumed to be drawn (the "distribution parameters"), and varies the model parameters systematically in the direction of increasing likelihood until a maximum is reached. The overall likelihood is the product of the likelihoods for each of the model components. Each likelihood component is associated with a set of data assumed to be drawn from statistical distributions of the same general form(e.g., multinomial, lognormal, etc.). Typically, likelihood components are associated with data sets such as catch size (or age) composition, survey size (or age) composition, and survey biomass.

Symbols used in the stock assessment model are listed in Table 2.14 (note that this list applies to the stock assessment model only, and does not include all symbols used in the "Projections and Harvest Alternatives" section of this assessment or Appendices 2B and 2C). Synthesis uses a total of 16 dimensional constants, special values of indices, and special values of continuous variables, all of which are listed on the first page of Table 2.14. The values of these quantities are not estimated statistically, in the strict sense, but are typically set by assumption or as a matter of structural specification. The values of these constants, indices, and variables are listed in Table 2.15, with a brief rationale given for each value used. In contrast to the quantities whose values are specified in Table 2.15, Synthesis uses a large number of parameters that are estimated statistically (though the estimation itself may not necessarily take place within Synthesis). For ease of reference, capital Roman letters are used to designate such "Synthesis parameters," which are listed on the second page of Table 2.14.

Functional representations of population dynamics are given in Appendix 2A, using the symbols defined in Table 2.14. It should be noted that, while the equations given in Appendix 2A are generally similar to those used in Synthesis, they may differ in detail. Also, only a subset of the equations actually used by Synthesis is shown. Basically, enough equations are shown to illustrate at least one use for each of the symbols shown in Table 2.14.

The assessments conducted during the period 1997-1999 (Thompson et al. 1997, Thompson et al. 1998, Thompson et al. 1999) used approximate Bayesian methods to address uncertainty surrounding the true values of two key model parameters, the natural mortality rate M and the survey catchability coefficient Q. Due to limitations of the Synthesis software, a type of meta-analysis was used to implement the Bayesian portion of those assessments. This meta-analysis involved fitting a pair of bivariate distributions to the loglikelihood maxima and projected $F_{40 \%}$ catches returned from a very large number of individual model runs, each of which held M and Q constant at a unique pair of values. The pairs of M and Q values corresponded to points placed at regularly spaced intervals within a grid spanning the 95% confidence ellipse of the fitted bivariate log-likelihood surface. The purpose of the Bayesian meta-analysis was to recommend an ABC that accounted for parameter uncertainty in an appropriately risk-averse manner. This was accomplished by setting the recommended ABC equal to the geometric mean of the catch distribution corresponding to the product of the catch profile and the posterior distribution. However, the Bayesian meta-analysis was always extremely labor intensive. In the course of conducting the 2000 stock assessment (Thompson et al. 2000), it therefore seemed prudent to seek an efficient shortcut. Looking back at the results of the 1997-1999 stock
assessments, it appeared that the ratio between the recommended $F_{A B C}$ emerging from the Bayesian metaanalysis and the $F_{40 \%}$ estimate emerging from the base model was converging over time. The average value of this ratio over the 1997-1999 period was 0.86 , with a 1999 value of 0.87 . Interestingly, identical threeyear average and 1999 values were obtained in the 1997-1999 assessments of the BSAI Pacific cod stock (Thompson and Dorn 1997, Thompson and Dorn 1998, Thompson and Dorn 1999). Because the 1999 value represented the most recent estimate and was approximately equal to the 1997-1999 average, the 2000 stock assessment multiplied this value (0.87) by the maximum permissible $F_{A B C}$ to obtain the recommended $F_{A B C}$. The resulting ABC recommendation was accepted by the SSC and the Council. The same procedure is used in the present assessment, thereby eliminating the need to re-perform the Bayesian meta-analysis. For future assessments, Appendices 2B and 2C describe a modeling framework which should permit a more thorough yet less labor-intensive Bayesian solution.

Parameters Estimated Independently

Table 2.16 divides the set of Synthesis parameters into two parts, the first of which lists those parameters that were estimated independently (i.e., outside of Synthesis), and the second of which lists those parameters that were estimated conditionally (i.e., inside of Synthesis). This section describes the estimation of parameters in the first part of Table 2.16.

Natural Mortality

The natural mortality rate was estimated independently of other parameters at a value of 0.37 . This value was used in the present assessment for the following reasons: 1) it was derived as the maximum likelihood estimate of M in the 1993 BSAI Pacific cod assessment, 2) it has been used to represent M in all BSAI Pacific cod assessments since 1993 and in all GOA Pacific cod assessments except one since 1994, 3) it was explicitly accepted by the SSC for use as an estimate of M in the GOA Pacific cod assessment (SSC minutes, December, 1994), and 4) it lies well within the range of previously published estimates of M shown below:

Area	Author	Year	Value
Eastern Bering Sea	Low	1974	$0.30-0.45$
	Wespestad et al.	1982	0.70
	Bakkala and Wespestad	1985	0.45
	Thompson and Shimada	1990	0.29
	Thompson and Methot	1993	0.37
Gulf of Alaska	Thompson and Zenger	1993	0.27
	Thompson and Zenger	1995	0.50
British Columbia	Ketchen	1964	$0.83-0.99$
	Fournier	1983	0.65

Trawl Survey Catchability

The trawl survey catchability coefficient was estimated independently of other parameters at a value of 1.0. This value was used in the present assessment mostly because it had been used in all previous assessments. Also, preliminary results of recent experimental work conducted in the EBS by the Alaska Fisheries Science Center's Resource Assessment and Conservation Engineering Division tend to confirm that this is a reasonable value (David Somerton, pers. commun.).

Weight at Length

Parameters (Table 2.14) governing the relationship between weight and length (Appendix 2A) were estimated by regression from the available data (see "Data" above), giving the following values (weights are in kg , lengths in cm): $W_{1}=5.80 \times 10^{-6}, W_{2}=3.159$.

Length at First Age of Survey Observation

Assuming that the first age at which Pacific cod are seen in the trawl survey $\left(\alpha_{1}\right.$, Table 2.14$)$ is approximately 1.5 years, the length at this age (L_{1}, Table 2.14) was estimated to be 23.2 cm by averaging the lengths corresponding to the first mode greater than or equal to 14 cm (bin 2) from each of the five most recent survey size compositions.

Variability in Length at Age

Parameters (Table 2.14) governing the amount of variability surrounding the length-at-age relationship (Appendix 2A) were estimated by linear regression from the observed standard deviations in the available length-at-age data (see "Data" above), giving the following values (in cm): $X_{1}=1.8, X_{2}=6.9$. Estimation of these two parameters constituted the only use of age data in the present assessment.

Maturity at Length

Maximum likelihood estimates of the parameters (Table 2.14) governing the female maturity-at-length schedule (Appendix 2A) were obtained using the method described by Prentice (1976), giving the following values: $P_{1}=0.142, P_{2}=67.1 \mathrm{~cm}$. The variance-covariance matrix of the parameter estimates gave a standard deviation of 0.006 for the estimate of P_{1}, a standard deviation of 0.39 cm for the estimate of P_{2}, and a correlation of -0.154 between the estimates of the two parameters.

Parameters Estimated Conditionally

Those Synthesis parameters that are estimated internally are listed in the second part of Table 2.16. The estimates of these parameters are conditional on each other, as well as on those listed in the first part of the table and discussed in the preceding section (i.e., those Synthesis parameters that are estimated independently).

Likelihood Components

As noted in the "Model Structure" section, Synthesis is a likelihood-based framework for parameter estimation which allows several data components to be considered simultaneously. In this assessment, four fishery size composition likelihood components were included: the January-May ("early") trawl fishery, the June-September ("late") trawl fishery, the longline fishery, and the pot fishery. In addition to the fishery size
composition components, likelihood components for the size composition and biomass trend from the bottom trawl survey were included in the model. To account for possible differences in selectivity between the mostly foreign (also joint venture) and mostly domestic fisheries, the fishery size composition time series were split into pre-1987 and post-1986 eras.

The Synthesis program allows the modeler to specify "emphasis" factors that determine which components receive the greatest attention during the parameter estimation process. As in previous assessments, all components were given an emphasis of 1.0 in the present assessment.

Use of Size Composition Data in Parameter Estimation

Size composition data are assumed to be drawn from a multinomial distribution specific to a particular year, gear/fishery, and time period within the year. In the parameter estimation process, Synthesis weights a given size composition observation (i.e., the size frequency distribution observed in a given year, gear/fishery, and period) according to the emphasis associated with the respective likelihood component and the sample size specified for the multinomial distribution from which the data are assumed to be drawn. In developing the model upon which Synthesis was originally based, Fournier and Archibald (1982) suggested truncating the multinomial sample size at a value of 400 in order to compensate for contingencies which cause the sampling process to depart from the process that gives rise to the multinomial distribution. As in previous assessments, the present assessment uses a multinomial sample size equal to the square root of the true sample size, rather than the true sample size itself. Given the true sample sizes observed in the present assessment, this procedure tends to give values somewhat below 400 while still providing the Synthesis program with usable information regarding the appropriate effort to devote to fitting individual samples. Multinomial sample sizes derived by this procedure for the commercial fishery size compositions are shown in Table 2.17. In the case of survey size composition data, the square root (SR) assumption was also used, giving the multinomial sample sizes shown below:

Year:	1984	1987	1990	1993	1996	1999	2001
SR(sample size):	132	140	107	131	110	93	82

Use of Survey Biomass Data in Parameter Estimation

Each year's survey biomass datum is assumed to be drawn from a lognormal distribution specific to that year. The model's estimate of survey biomass in a given year serves as the geometric mean for that year's lognormal distribution, and the ratio of the survey biomass datum's standard error to the survey biomass datum itself serves as the distribution's coefficient of variation.

MODEL EVALUATION

Only a single model is considered in the present assessment.

Evaluation Criteria

Two criteria will be used to evaluate the model developed in the present assessment: 1) the effective sample sizes of the size composition data and 2) the root mean squared error (RMSE) of the fit to the survey biomass data.

Effective Sample Size

Once maximum likelihood estimates of the model parameters have been obtained, Synthesis computes an "effective" sample size for the size composition data specific to a particular year, gear/fishery, and time period within the year. Roughly, the effective sample size can be interpreted as the multinomial sample size that would typically be required in order to produce the given fit. More precisely, it is the sample size that sets the sum of the marginal variances of the proportions implied by the multinomial distribution equal to the sum of the squared differences between the sample proportions and the estimated proportions (McAllister and Ianelli 1997). As a function of a multinomial random variable, the effective sample size has its own distribution. The harmonic mean of the distribution is equal to the true sample size in the multinomial distribution. Thus, if the effective sample size is less than the true sample size in the multinomial distribution, it is reasonable to conclude that the fit is not as good as expected. The following table shows the average of the input sample sizes and the average effective sample sizes for each of the size composition components (in each column, the average is computed with respect to all years and periods present in the respective time series):

	Ave. Effective Sample Size	Ave. Input Sample Size	Ratio
Likelihood Component	307	134	2.29
Early-season trawl fishery size composition	67	38	1.78
Late-season trawl fishery size composition	235	93	2.53
Longline fishery size composition	292	92	3.16
Pot fishery size composition	126	114	1.11

The model produces average effective samples larger than the average input values for all likelihood components. All components except the survey have average effective sample sizes at least 75% greater than the average input sample size.

Fit to Survey Biomass Data

The log-scale RMSE from the model's fit to the survey biomass time series is 0.184 . This is about 18% higher than the average log-scale standard error in the data (0.155).

Parameter Estimates Associated with the Final Model

The model estimated length-at-age parameter values of $K=0.144$ and $L_{2}=84.5$. Estimates of fishing mortality rates $F_{g, y, i}$, recruitments R_{y} and initial numbers at age N_{a}, and selectivity parameters $S_{1-7, g, e(y \mid g)}$ are shown in Tables 2.18, 2.19, and 2.20, respectively. In addition, the parameter estimates listed in the section entitled "Parameters Estimated Independently" also pertain.

Lengths at age defined by the final parameter estimates are shown below (lengths are in cm and are evaluated at the mid-point of each age group):

Age group:	1	2	3	4	5	6	7	8	9	10	11	12
Average length:	24	34	43	51	58	64	69	73	77	81	83	89

The distribution of lengths at age (measured in mid-year) defined by the final parameter estimates is shown in Table 2.21.

Weights at length and maturity proportions at length defined by the final parameters are shown in Table 2.22, and selectivities at length defined by the final parameter estimates are shown in Table 2.23.

RESULTS

Definitions

The biomass estimates presented here will be defined in three ways: 1) age $3+$ biomass, consisting of the biomass of all fish aged three years or greater in January of a given year (vector b in Appendix 2A); 2) spawning biomass, consisting of the biomass of all spawning females in March of a given year (vector c in Appendix 2A); and 3) survey biomass, consisting of the biomass of all fish that the Model estimates should have been observed by the survey in July of a given year (vector d in Appendix 2A). The recruitment estimates presented here will be defined in two ways: 1) as numbers of age 3 fish in January of a given year and 2) as the recruitment parameter R_{y}, which represents numbers at age 1 in January of year y. The fishing mortality rates presented here will be defined as full-selection, instantaneous fishing mortality rates expressed on a per annum scale.

Biomass

The model's description of the recent history of the stock is shown in Table 2.24, together with estimates provided in last year's final SAFE report (Thompson et al. 2000). The biomass trends estimated in the present assessment are also shown in Figure 2.7. The age 3+ biomass trend shows an increase during the early 1980s followed by a period of sustained high abundance throughout the rest of that decade, followed by a steady decline through the present.

Roughly paralleling the estimated age 3+ biomass trend, the model's estimated spawning and survey biomass trends show declines throughout the past decade. The model's estimates of 2001 spawning and survey biomass are the lowest in their respective time series.

Recruitment

Numbers at Age 3

Traditionally, recruitment strengths for Pacific cod have been assessed at age 3, because this is the approximate age of first significant recruitment to the fishery and because model estimates of relative year class strength tend to stabilize by this age. The model's estimated time series of age 3 recruitments is shown in Table 2.25, together with the estimates provided in last year's final SAFE report (Thompson et al. 2000). The model's recruitment estimates are also plotted in Figure 2.8. The current time series has a mean value of 124 million fish, a coefficient of variation of 36%, and an autocorrelation coefficient of 0.068 .

One possible means of assigning a qualitative ranking to each year class within this time series is as follows: an "above average" year class can be defined as one in which numbers at age 3 are at least 120% of the mean, an "average" year class can be defined as one in which numbers at age 3 are less than 120% of the mean but at least 80% of the mean, and a "below average" year class can be defined as one in which numbers at age 3 are less than 80% of the mean. These criteria give the following classification of year class strengths:

Above average:	1976	1977	1979	1980	1984	1987	1989			
Average:	1978	1981	1982	1983	1985	1986	1988	1990	1991	1995
Below average:	1975	1992	1993	1994	1996	1997	1998			

With respect to last year's assessment (Thompson et al. 2000), the changes in the above table consist of an upgrade in the relative strength of the 1976 and 1980 year classes from "average" to "above average," an upgrade in the relative strength of the 1978 year class from "below average" to "average," and the addition of the 1998 year class to the "below average" category. It may be noted that six of the seven cohorts following the 1991 year class are in the "below average" category (the exception being the "average" 1995 year class).

Numbers at Age 1

The model's estimated time series of age 1 recruitments is shown in Table 2.19. This time series has mean value of 261 million fish, a coefficient of variation of 35%, and an autocorrelation coefficient of 0.076 . /The qualitative rankings of year class strengths at age 1 naturally parallel the rankings at age 3 , except that estimates for the 1975 and 1976 year classes do not exist at age 1 and the 1999 and 2000 year classes are added to the time series. The 1999 year class appears to be well below average, while the 2000 year class appears to be at least in the "average" category. The model's estimate of age 1 recruitment from the 2000 year class is the seventh highest in the time series, although it should be noted that this estimate is based almost entirely on the 2001 survey size composition data.

The present assessment model is not configured to estimate a stock-recruitment relationship. Estimation of stock-recruitment relationships is a notoriously difficult exercise in the field of stock assessment, because both the stock data and the recruitment data are measured with error and because the errors in the stockrecruitment data are autocorrelated (Walters and Ludwig 1981). Also, if the stock and recruitment data are generated by a model which assumes that no stock-recruitment relationship exists, these data will be biased. Nevertheless, the stock-recruitment relationship is potentially such an important component of stock dynamics that it seems prudent to provide some kind of investigation, albeit provisional, as to its possible shape. In addition, the SSC has requested that the assessment include a stock-recruitment relationship (SSC minutes, December, 2000). To this end, the following analysis was conducted (use of symbols in this description does not necessarily follow Table 2.14, which pertains to the Synthesis assessment model only):

1) Age 1 recruitment R in year $y+1$ was assumed to be related to spawning biomass S in year y by the Ricker (1954) stock-recruitment relationship subject to lognormal error:

$$
R_{y+1}=S_{y} \exp \left(-\alpha-\beta S_{y}+\varepsilon_{y}\right)
$$

where α and β are parameters and the $\boldsymbol{\varepsilon}_{y}$ are drawn from a normal distribution with mean 0 and variance σ^{2}.
2) The estimates of spawning biomass generated by Synthesis were treated as known constants (i.e., it was assumed that they are measured without error).
3) Parameters were estimated by the method of maximum likelihood.
4) The covariance of the parameter estimates was assumed to equal the inverse of the Hessian matrix.

The point estimates of the parameters were $\alpha=-1.021, \beta=0.003398$, and $\sigma=0.235$. The 95% confidence interval of the stock-recruitment parameters is shown in the upper panel of Figure 2.9. One of the attractive features of the method described above is that it implies that the stock-recruitment relationship $r(S)=\operatorname{Sexp}(-$ $\alpha-\beta S)$ is itself a lognormal random variable with parameters that are functions of stock size. The coefficient of variation for the relationship is minimized at the mean of the stock data. The lower panel of Figure 2.9 shows the data (solid squares), the stock-recruitment relationship defined by the point estimates of the parameters (thick curve), and the 95% confidence interval around the stock-recruitment relationship (thin curves). This analysis is useful mostly because it indicates a considerable level of uncertainty regarding the shape of the stock-recruitment relationship. Moreover, this description of uncertainty should be regarded as an underestimate because of the problems noted in the paragraph above. The estimates given here are not recommended for use in estimating maximum sustainable yield.

The SSC has suggested that occurrence of strong year classes may depend "on the presence of a broad age distribution in the spawning stock" (SSC minutes, December, 2000). A natural way to define "breadth" is the number of age groups present in the spawning stock. However, this definition is difficult to use in practice for two reasons. First, the number of explicit ages in the present model is fixed, with an indeterminate number of ages represented implicitly in the "age-plus" group. Second, even if all potential age groups were represented in the model explicitly, the difficulty of determining the presence or absence of a particular age group in the population varies inversely with the number of individuals in that age group (in which case variation in the estimated breadth may be due more to vacation in sampling intensity than variation in the actual breadth). Alternatively, "breadth" could be measured in terms of the diversity or evenness of the age structure. Two such measures are the Shannon-Wiener information index

$$
\sum_{a=a_{\min }}^{a_{\max }} \theta_{a} \ln \left(\theta_{a}\right)
$$

and the Simpson diversity index
$1-\sum_{a=a_{\min }}^{a_{\max }} \theta_{a}{ }^{2}$, where θ_{a} is the proportion of the spawning population contained in age group a.
Table 2.27 shows the age structures of the total population (ages 1 and above) and the spawning population over time. Table 2.28 compares the values of the Shannon-Wiener information index and the Simpson diversity index with lagged age 1 recruitment. The correlation between both indices and subsequent recruitment is negative (-0.158 and -0.166 , respectively). Similar to the method described above for ranking Pacific cod recruitment at age 3, a year class can be defined here as "strong" if its age 1 recruitment exceeds 120% of the time series average, "average" if its age 1 recruitment is between 80% and 120% of the time series average, and "weak" if its age 1 recruitment is less than 80% of the time series average. The ranges of index values corresponding to strong, average, and weak year classes are summarized in the table below:

| Year class rank | Shannon-Wiener index | | Simpson index | |
| :--- | :---: | ---: | :--- | ---: | ---: |
| | $\underline{\text { Low }}$ | $\underline{\text { High }}$ | $\underline{\text { Low }}$ | $\underline{\text { High }}$ |
| Strong | 1.84 | 2.26 | 0.79 | 0.89 |
| Average | 1.64 | 2.27 | 0.75 | 0.89 |
| Weak | 2.18 | 2.27 | 0.87 | 0.89 |

Note that the minimum index values corresponding to strong year classes are lower than the respective values corresponding to weak year classes. The years with the two lowest index values were 1978 and 1979 (for both indices). However, neither of these resulted in a weak year class the following year (the spawning stock in 1978 produced an average year class in 1979, while the spawning stock in 1979 produced a strong year class in 1980. The available information therefore does not corroborate the hypothesis that strong year classes depend on the presence of a broad age distribution in the spawning stock, although this may simply reflect sufficient breadth in the age structure of the spawning stock throughout the entire time series.

Exploitation

The model's estimated time series of the ratio between catch and age 3+ biomass is shown in Table 2.26, together with the estimates provided in last year's final SAFE report (Thompson et al. 2000). The average value of this ratio over the entire time series is about 0.071 . The estimated values meet or exceed the average for every year after 1989 except 1994, whereas the estimated values fall below the average for every year prior to 1990.

PROJECTIONS AND HARVEST ALTERNATIVES

Amendment 56 Reference Points

Amendment 56 to the GOA Groundfish Fishery Management Plan defines the "overfishing level" (OFL), the fishing mortality rate used to set OFL ($F_{O F L}$), the maximum permissible ABC, and the fishing mortality rate used to set the maximum permissible ABC . The fishing mortality rate used to set $\mathrm{ABC}\left(F_{A B C}\right)$ may be less than this maximum permissible level, but not greater. Because reliable estimates of reference points related to maximum sustainable yield (MSY) are currently not available but reliable estimates of reference points related to spawning per recruit are available, Pacific cod in the GOA are managed under Tier 3 of Amendment 56. Tier 3 uses the following reference points: $B_{40 \%}$, equal to 40% of the equilibrium spawning biomass that would be obtained in the absence of fishing; $F_{35 \%}$, equal to the fishing mortality rate that reduces the equilibrium level of spawning per recruit to 35% of the level that would be obtained in the absence of fishing; and $F_{40 \%}$, equal to the fishing mortality rate that reduces the equilibrium level of spawning per recruit to 40% of the level that would be obtained in the absence of fishing. The following formulae apply under Tier 3:

$$
\begin{array}{ll}
\text { 3a) } & \text { Stock status: } B / B_{40 \%}>1 \\
& F_{\text {OFL }}=F_{35 \%} \\
& F_{A B C} \leq F_{40 \%} \\
\text { 3b) } & \text { Stock status: } 1 / 20<B / B_{40 \%} \leq 1 \\
& F_{O F L}=F_{35 \%} \times\left(B / B_{40 \%}-1 / 20\right) \times 20 / 19 \\
& F_{A B C} \leq F_{40 \%} \times\left(B / B_{40 \%}-1 / 20\right) \times 20 / 19 \\
\text { 3c)Stock status: } B / B_{40 \%} \leq 1 / 20 \\
& F_{\text {OFL }}=0
\end{array}
$$

$$
F_{A B C}=0
$$

Estimation of the $B_{40 \%}$ reference point used in the above formulae requires an assumption regarding the equilibrium level of recruitment. In this assessment, it is assumed that the equilibrium level of recruitment is equal to the post-1976 average (i.e., the arithmetic mean of all estimated recruitments from year classes spawned in 1977 or later). Other useful biomass reference points which can be calculated using this assumption are $B_{100 \%}$ and $B_{35 \%}$, defined analogously to $B_{40 \%}$. These reference points are estimated as follows:

Reference point:	$B_{35 \%}$	$B_{40 \%}$	$B_{100 \%}$
Spawning biomass:	$74,400 \mathrm{t}$	$85,000 \mathrm{t}$	$212,000 \mathrm{t}$

For a stock exploited by multiple gear types, estimation of $F_{35 \%}$ and $F_{40 \%}$ requires an assumption regarding the apportionment of fishing mortality among those gear types. In this assessment, total fishing mortality was apportioned between gear types (early trawl, late trawl, longline, and pot) at a ratio of 373:59:126:442. These proportions result in a 2002 catch composition that matches the recent (1998-2000) average distribution of catches between the trawl and fixed-gear fisheries, between the early and late trawl fisheries, and between the longline and pot fisheries. It should be noted that this apportionment scheme is generally consistent with the "preferred alternative" described in the Steller Sea Lion Protection Measures Draft Supplemental Environmental Impact Statement, although the latter is considerably more detailed. This apportionment results in the following estimates of $F_{35 \%}$ and $F_{40 \%}$:

$$
\begin{array}{ll}
F_{35 \%} & F_{40 \%} \\
0.50 & 0.41
\end{array}
$$

Specification of OFL and Maximum Permissible ABC

Spawning biomass for 2002 is estimated at a value of $82,000 \mathrm{t}$. This is about 4% below the $B_{40 \%}$ value of $85,000 \mathrm{t}$, thereby placing Pacific cod in sub-tier "b" of Tier 3. Given this, the model estimates OFL, maximum permissible ABC , and the associated fishing mortality rates for 2002 as follows:

	Overfishing Level	Maximum Permissible ABC
Catch:	$77,100 \mathrm{t}$	$65,200 \mathrm{t}$
Fishing mortality rate:	0.48	0.39

For comparison, the age $3+$ biomass estimate for 2002 is $428,000 \mathrm{t}$.

ABC Recommendation

It is important to remember that the maximum permissible ABC computed under the stock assessment model is only a point estimate, around which there is significant uncertainty. For the past several years, the BSAI and GOA Pacific cod assessments have advocated a harvest strategy that formally addresses some of this uncertainty, namely the uncertainty surrounding parameters M and Q (see "Model Structure" above). For the assessment conducted in 2000, the strategy was simplified by assuming that the ratio between the recommended $F_{A B C}$ and $F_{40 \%}$ estimate given in the 1999 assessment (0.87) was an appropriate factor by which to multiply the 2001 maximum permissible $F_{A B C}$ to obtain a recommended $2001 F_{A B C}$. The same strategy is
recommended for setting the 2002 ABC . This strategy results in a recommended 2002 ABC of $57,600 \mathrm{t}$, corresponding to a fishing mortality rate of 0.34 .

Standard Harvest and Recruitment Scenarios and Projection Methodology

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA).

For each scenario, the projections begin with the vector of 2001 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2002 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2001. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2002, are as follow (" $\max F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, F is set equal to $\max F_{A B C}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, F is set equal to a constant fraction of $\max F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2002 recommended in the assessment to the $\max F_{A B C}$ for 2000. (Rationale: When $F_{A B C}$ is set at a value below $\max F_{A B C}$, it is often set at the value recommended in the stock assessment.)

Scenario 3: In all future years, F is set equal to 50% of $\max F_{A B C}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

Scenario 4: In all future years, F is set equal to the 1996-2000 average F, which was 0.30 . (Rationale: For some stocks, TAC can be well below ABC, and recent average F may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)

Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$):

Scenario 6: In all future years, F is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be above $1 / 2$ of its MSY level in 2002 and above its MSY level in 2012 under this scenario, then the stock is not overfished.)

Scenario 7: In 2002 and 2003, F is set equal to $\max F_{A B C}$, and in all subsequent years, F is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2014 under this scenario, then the stock is not approaching an overfished condition.)

Projections and Status Determination

Table 2.29 defines symbols used to describe projections of spawning biomass, fishing mortality rate, and catch corresponding to the seven standard harvest scenarios. These projections are shown in Tables 2.30-36. Overall, these projections indicate that further declines in the GOA Pacific cod stock can be expected for the next few years except under the most conservative exploitation strategies (Scenarios 3 and 5).

Harvest scenarios \#6 and \#7 are intended to permit determination of the status of a stock with respect to its minimum stock size threshold (MSST). Any stock that is below its MSST is defined to be overfished. Any stock that is expected to fall below its MSST in the next two years is defined to be approaching an overfished condition. Harvest scenarios \#6 and \#7 are used in these determinations as follows:

Is the stock overfished? This depends on the stock's estimated spawning biomass in 2002:
a) If spawning biomass for 2002 is estimated to be below $1 / 2 B_{35 \%}$, the stock is below its MSST.
b) If spawning biomass for 2002 is estimated to be above $B_{35 \%}$, the stock is above its MSST.
c) If spawning biomass for 2002 is estimated to be above $1 / 2 B_{35 \%}$, but below $B_{35 \%}$, the stock's status relative to MSST is determined by referring to harvest scenario \#6 (Table 2.35). If the mean spawning biomass for 2012 is below $B_{35 \%}$, the stock is below its MSST. Otherwise, the stock is above its MSST.

Is the stock approaching an overfished condition? This is determined by referring to harvest scenario \#7 (Table 2.36):
a) If the mean spawning biomass for 2004 is below $1 / 2 B_{35 \%}$, the stock is approaching an overfished condition.
b) If the mean spawning biomass for 2004 is above $B_{35 \%}$, the stock is not approaching an overfished condition.
c) If the mean spawning biomass for 2004 is above $1 / 2 B_{35 \%}$, but below $B_{35 \%}$, the determination depends on the mean spawning biomass for 2014. If the mean spawning biomass for 2014 is below $B_{35 \%}$, the stock is approaching an overfished condition. Otherwise, the stock is not approaching an overfished condition.

In the case of GOA Pacific cod, spawning biomass for 2002 is estimated to be above $B_{35 \%}$. Therefore, the stock is above its MSST and is not overfished. Likewise, Table 2.36 shows that mean spawning biomass is above $1 / 2 B_{35 \%}$ and below $B_{35 \%}$ in 2004 but above $B_{35 \%}$ in 2014. Therefore, the stock is not approaching an overfished condition.

OTHER CONSIDERATIONS

The prey and predators of Pacific cod have been described or reviewed by Albers and Anderson (1985), Livingston $(1989,1991)$, and Westrheim (1996). In terms of percent occurrence, the most important items
in the diet of Pacific cod in the BSAI and GOA are polychaetes, amphipods, and crangonid shrimp. In terms of numbers of individual organisms consumed, the most important dietary items are euphausids, miscellaneous fishes, and amphipods. In terms of weight of organisms consumed, the most important dietary items are walleye pollock, fishery offal, and yellowfin sole. Small Pacific cod feed mostly on invertebrates, while large Pacific cod are mainly piscivorous. Predators of Pacific cod include halibut, salmon shark, northern fur seals, sea lions, harbor porpoises, various whale species, and tufted puffin.

The above qualitative description of Pacific cod's trophic relationships notwithstanding, to date it has not been possible to incorporate ecosystem interactions into the model used to assess the Pacific cod stock. No recommendations regarding adjustment of the Pacific $\operatorname{cod} \mathrm{ABC}$ on the basis of ecosystem considerations are made at this time.

If TAC is to be distributed between regulatory areas in proportion to the biomass estimates from the most recent trawl survey in which all three regulatory areas were surveyed (1999), the proportions are: Western -36%, Central- 57%, and Eastern- 7%. On the other hand, if the 2001 survey biomass estimates are extrapolated into a Gulf-wide equivalent by adding the 1999 estimate of the biomass in the Eastern regulatory area, the implied distribution by regulatory area is as follows: Western -47%, Central -45%, and Eastern -8%.

SUMMARY

The major results of the Pacific cod stock assessment are summarized in Table 2.37.

REFERENCES

Albers, W. D., and P. J. Anderson. 1985. Diet of Pacific cod, Gadus macrocephalus, and predation on the northern pink shrimp, Pandalus borealis, in Pavlof Bay, Alaska. Fish. Bull., U.S. 83:601-610.
Bakkala, R. G., and V. G. Wespestad. 1985. Pacific cod. In R. G. Bakkala and L. L. Low (editors), Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1984, p. 37-49. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-83.
Fournier, D. A. 1983. An analysis of the Hecate Strait Pacific cod fishery using an age-structured model incorporating density-dependent effects. Can. J. Fish. Aquat. Sci. 40:1233-1243.
Fournier, D., and C. P. Archibald. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 38:1195-1207.
Grant, W. S., C. I. Zhang, and T. Kobayashi. 1987. Lack of genetic stock discretion in Pacific cod (Gadus macrocephalus). Can. J. Fish. Aquat. Sci. 44:490-498.
Ketchen, K.S. 1964. Preliminary results of studies on a growth and mortality of Pacific cod (Gadus macrocephalus) in Hecate Strait, British Columbia. J. Fish. Res. Bd. Canada 21:1051-1067.
Livingston, P. A. 1989. Interannual trends in Pacific cod, Gadus macrocephalus, predation on three commercially important crab species in the eastern Bering Sea. Fish. Bull., U.S. 87:807-827.
Livingston, P. A. 1991. Pacific cod. In P. A. Livingston (editor), Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1984 to 1986, p. 31-88. U.S. Dept. Commer., NOAA Tech. Memo. NMFS F/NWC-207.
Low, L. L. 1974. A study of four major groundfish fisheries of the Bering Sea. Ph.D. Thesis, Univ. Washington, Seattle, WA 240 p .
McAllister, M. K., and J. N. Ianelli. 1997. Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Can. J. Fish. Aquat. Sci. 54:284-300.
Methot, R. D. 1986. Synthetic estimates of historical abundance and mortality for northern anchovy, Engraulis mordax. NMFS, Southwest Fish. Cent., Admin. Rep. LJ 86-29, La Jolla, CA.
Methot, R. D. 1989. Synthetic estimates of historical abundance and mortality for northern anchovy. In E. Edwards and B. Megrey (editors), Mathematical analysis of fish stock dynamics: Reviews and current applications, p. 66-82. Amer. Fish. Soc. Symposium 6.
Methot, R. D. 1990. Synthesis model: An adaptable framework for analysis of diverse stock assessment data. Int. N. Pac. Fish. Comm. Bull. 50:259-277.
Methot, R. D. 1998. Application of stock synthesis to NRC test data sets. In V. R. Restrepo (editor), Analyses of simulated data sets in support of the NRC study on stock assessment methods, p. 59-80. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/SPO-30.

Prentice, R. L. 1976. A generalization of the probit and logit methods for dose response curves. Biometrics 32:761-768.
Ricker, W. E. 1954. Stock and recruitment. J. Fish. Res. Board Can. 11:559-63.
Shimada, A. M., and D. K. Kimura. 1994. Seasonal movements of Pacific cod (Gadus macrocephalus) in the eastern Bering Sea and adjacent waters based on tag-recapture data. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 92:800-816.
Thompson, G. G., and M. W. Dorn. 1997. Pacific cod. In Plan Team for Groundfish Fisheries of the Bering Sea/Aleutian Islands (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions, p. 121-158. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.

Thompson, G. G., and M. W. Dorn. 1998. Pacific cod. In Plan Team for Groundfish Fisheries of the Bering Sea/Aleutian Islands (editor), Stock assessment and fishery evaluation report for the groundfish
resources of the Bering Sea/Aleutian Islands regions, p. 113-181. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., and M. W. Dorn. 1999. Pacific cod. In Plan Team for Groundfish Fisheries of the Bering Sea/Aleutian Islands (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions, p. 151-230. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., and R. D. Methot. 1993. Pacific cod. In Plan Team for Groundfish Fisheries of the Bering Sea/Aleutian Islands (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands region as projected for 1994, chapter 2. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., and A. M. Shimada. 1990. Pacific cod. In L. L. Low and R. E. Narita (editors), Condition of groundfish resources of the eastern Bering Sea-Aleutian Islands region as assessed in 1988, p. 44-66. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-178.
Thompson, G. G, and H. H. Zenger. 1993. Pacific cod. In Plan Team for Groundfish Fisheries of the Gulf of Alaska (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska as projected for 1994, chapter 2. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G, and H. H. Zenger. 1994. Pacific cod. In Plan Team for Groundfish Fisheries of the Gulf of Alaska (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska as projected for 1995, chapter 2. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., and H. H. Zenger. 1995. Pacific cod. In Plan Team for the Groundfish Fisheries of the Gulf of Alaska (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska as projected for 1996, chapter 2. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., H. H. Zenger, and M. W. Dorn. 1997. Pacific cod. In Plan Team for Groundfish Fisheries of the Gulf of Alaska (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska, p. 121-163. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., H. H. Zenger, and M. W. Dorn. 1998. Pacific cod. In Plan Team for Groundfish Fisheries of the Gulf of Alaska (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska, p. 91-155. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., H. H. Zenger, and M. W. Dorn. 1999. Pacific cod. In Plan Team for Groundfish Fisheries of the Gulf of Alaska (editor), Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska, p. 105-184. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501.
Thompson, G. G., H. H. Zenger, and M. K. Dorn. 2000. Pacific cod. In Plan Team for the Groundfish Fisheries of the Gulf of Alaska (compiler), Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Gulf of Alaska p. 91-110. North Pacific Fishery Management Council, 605 West $4^{\text {th }}$ Ave., Suite 306, Anchorage, AK 99501.
Walters, C. J., and D. Ludwig. 1981. Effects of measurement errors on the assessment of stock-recruitment relationships. Can. J. Fish. Aquat. Sci. 38:704-710.

Wespestad, V., R. Bakkala, and J. June. 1982. Current abundance of Pacific cod (Gadus macrocephalus) in the eastern Bering Sea and expected abundance in 1982-1986. NOAA Tech. Memo. NMFS F/NWC-25, 26 p.
Westrheim, S. J. 1996. On the Pacific cod (Gadus macrocephalus) in British Columbia waters, and a comparison with Pacific cod elsewhere, and Atlantic cod (G. morhua). Can. Tech. Rep. Fish. Aquat. Sci. 2092. 390 p.

Table 2.1--Summary of catches (t) of Pacific cod by fleet sector and gear type. All catches since 1980 include discards. Jt. Vent. = joint venture. Catches for 2001 are through August.

| Fleet Sector | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Foreign | Jt. Vent. | Domestic | $\underline{\text { Trawl }}$ | Longline | $\underline{\text { Pot }}$ | $\underline{\text { Other }}$ | |
| 1978 | 11370 | 7 | 813 | 4547 | 6800 | 0 | 843 | 12190 |
| 1979 | 13173 | 711 | 1020 | 3629 | 9545 | 0 | 1730 | 14904 |
| 1980 | 34245 | 466 | 634 | 6464 | 27780 | 0 | 1101 | 35345 |
| 1981 | 34969 | 58 | 1104 | 10484 | 25472 | 0 | 175 | 36131 |
| 1982 | 26937 | 193 | 2335 | 6679 | 22667 | 0 | 119 | 29465 |
| 1983 | 29777 | 2426 | 4337 | 9512 | 26756 | 0 | 272 | 36540 |
| 1984 | 15896 | 4649 | 3353 | 8805 | 14844 | 0 | 249 | 23898 |
| 1985 | 9086 | 2266 | 3076 | 4876 | 9411 | 2 | 139 | 14428 |
| 1986 | 15211 | 1357 | 8444 | 6850 | 17619 | 141 | 402 | 25012 |
| 1987 | 0 | 1978 | 30961 | 22486 | 8261 | 642 | 1550 | 32939 |
| 1988 | 0 | 1661 | 32141 | 27145 | 3933 | 1422 | 1302 | 33802 |
| 1989 | 0 | 0 | 43293 | 37637 | 3662 | 376 | 1618 | 43293 |
| 1990 | 0 | 0 | 72517 | 59188 | 5919 | 5661 | 1749 | 72517 |
| 1991 | 0 | 0 | 76328 | 58093 | 7656 | 10464 | 115 | 76328 |
| 1992 | 0 | 0 | 80746 | 54593 | 15675 | 10154 | 325 | 80746 |
| 1993 | 0 | 0 | 56487 | 37806 | 8962 | 9708 | 11 | 56487 |
| 1994 | 0 | 0 | 47484 | 31446 | 6778 | 9160 | 100 | 47484 |
| 1995 | 0 | 0 | 68985 | 41875 | 10978 | 16055 | 77 | 68985 |
| 1996 | 0 | 0 | 68280 | 45991 | 10196 | 12040 | 53 | 68280 |
| 1997 | 0 | 0 | 68474 | 48405 | 10977 | 9065 | 26 | 68474 |
| 1998 | 0 | 0 | 62102 | 41569 | 9993 | 10510 | 29 | 62102 |
| 1999 | 0 | 0 | 68613 | 37167 | 12362 | 19015 | 70 | 68613 |
| 2000 | 0 | 0 | 65905 | 25457 | 11667 | 28728 | 54 | 65905 |
| 2001 | 0 | 0 | 42022 | 18413 | 9900 | 13693 | 16 | 42022 |

Table 2.2--History of Pacific cod ABC, TAC, total catch, and type of stock assessment model used to recommend ABC. ABC was not used in management of GOA groundfish prior to 1986. Catch for 2001 is current through August 30. The values in the column labeled "TAC" correspond to "optimum yield" for the years 1980-1986, "target quota" for the year 1987, and true TAC for the years 1988-2001.

Year	ABC	TAC	Catch	Stock Assessment Model
1980	n / a	60000	35345	n / a
1981	n / a	70000	36131	n / a
1982	n / a	60000	29465	n / a
1983	n / a	60000	36540	n / a
1984	n / a	60000	23898	n / a
1985	n / a	60000	14428	n / a
1986	136000	75000	25012	survey biomass
1987	125000	50000	32939	survey biomass
1988	99000	80000	33802	survey biomass
1989	71200	71200	43293	stock reduction analysis
1990	90000	90000	72517	stock reduction analysis
1991	77900	77900	76328	stock reduction analysis
1992	63500	63500	80746	stock reduction analysis
1993	56700	56700	56487	stock reduction analysis
1994	50400	50400	47484	stock reduction analysis
1995	69200	69200	68985	length-structured Synthesis model
1996	65000	65000	68280	length-structured Synthesis model
1997	81500	69115	68474	length-structured Synthesis model
1998	77900	66060	62102	length-structured Synthesis model
1999	84400	67835	68613	length-structured Synthesis model
2000	76400	58715	65905	length-structured Synthesis model
2001	67800	52110	42022	length-structured Synthesis model

Table 2.3--Discarded and retained catch of Pacific cod in the 2000 and 2001 fisheries, expressed in both absolute and relative terms. For data expressed in absolute terms, the discarded and retained catches in each row sum to the total catch (t) for the respective target. For data expressed in relative terms, the discarded and retained catches in each row sum to 1.0. For each portion of the table, data are sorted in descending order of the "discarded" column. Data for 2001 are through September 29.

Catch for year 2000 expressed in absolute terms Catch for year 2000 expressed in relative terms

Target	Discarded	Retained	Target	Discarded	Retained
shallow-water flatfish	484	1050	no retained groundfish	1.000	0.000
rockfish (all species)	301	1245	deep-water flatfish	0.483	0.517
arrowtooth flounder	179	820	shallow-water flatfish	0.315	0.685
rex sole	150	409	flathead sole	0.292	0.708
Pacific cod	131	48847	rex sole	0.269	0.731
deep-water flatfish	81	87	sablefish	0.251	0.749
sablefish	38	113	rockfish (all species)	0.194	0.806
flathead sole	6	14	arrowtooth flounder	0.180	0.820
bottom pollock	4	379	midwater pollock	0.012	0.988
midwater pollock	2	163	bottom pollock	0.010	0.990
no retained groundfish	1	0	other	0.004	0.996
other	0	23	Pacific cod	0.003	0.997
all	1378	53151	all	0.025	0.975

Catch for year 2001 expressed in absolute terms Catch for year 2001 expressed in relative terms

Target	Discarded	Retained	Target	Discarded	Retained
shallow-water flatfish	844	822	arrowtooth flounder	0.578	0.422
Pacific cod	523	29551	shallow-water flatfish	0.507	0.493
arrowtooth flounder	272	198	deep-water flatfish	0.450	0.550
rockfish (all species)	96	1053	sablefish	0.287	0.713
rex sole	50	374	flathead sole	0.204	0.796
sablefish	38	93	rex sole	0.118	0.882
deep-water flatfish	34	42	rockfish (all species)	0.083	0.917
flathead sole	22	87	Pacific cod	0.017	0.983
bottom pollock	0	447	bottom pollock	0.000	1.000
midwater pollock	0	127	midwater pollock	0.000	1.000
other	0	11	other	0.000	1.000
all	1878	32804	all	0.054	0.946

Table 2.4--Catch of Pacific cod by year, gear, and period as used in the stock assessment model. Jig catches have been merged with pot catches for 1997-2001. Catch for 2001 is complete through period 2.

Year	Trawl				Longline				
	Period 1	Period 2	Period 3	Period 1	Period 2	Period 3	Period 1	Period 2	Period 3
1978	0	0	4547	0	0	6800	0	0	0
1979	0	0	3629	0	0	9545	0	0	0
1980	0	0	6464	0	0	27780	0	0	0
1981	387	3532	6565	10504	5312	9656	0	0	0
1982	1143	2041	3495	9912	2890	9865	0	0	0
1983	2861	2844	3807	10960	4651	11145	0	0	0
1984	3429	2008	3368	11840	425	2579	0	0	0
1985	2427	571	1878	9127	6	278	0	0	2
1986	2999	431	3420	15922	401	1296	5	59	77
1987	5377	7928	9181	5343	983	1935	219	141	282
1988	16021	6569	4555	2979	507	447	1081	23	318
1989	24614	12857	166	2378	356	928	241	103	32
1990	43279	7514	8395	5557	109	253	2577	1008	2076
1991	55977	631	1484	7260	325	70	9627	7	945
1992	51911	1189	1494	12692	750	2232	9926	66	487
1993	33632	2624	1550	8474	307	181	9699	19	1
1994	29152	1421	873	6678	48	52	8760	0	500
1995	38476	802	2597	10591	160	227	15490	50	592
1996	41450	3048	1493	9938	152	105	12066	27	0
1997	40727	1638	6040	10403	195	379	8981	3	107
1998	34693	3678	3197	9548	198	247	10538	1	1
1999	30124	1501	5542	11937	268	157	14438	3302	1344
2000	22133	2574	750	11446	114	107	17142	113	149
2001	15237	2038	1138	9732	96	72	5487	0	0

Table 2.5--Pacific cod length sample sizes from the commercial fisheries.

Year	Trawl Fishery			Longline Fishery			Pot Fishery		
	Per. 1	Per. 2	Per. 3	Per. 1	Per. 2	Per. 3	Per. 1	Per. 2	Per. 3
1978	0	0	634	0	0	18670	0	0	0
1979	0	0	0	0	0	14460	0	0	0
1980	0	0	783	0	0	18671	0	0	0
1981	0	0	461	0	0	19308	0	0	0
1982	0	0	1390	0	0	22856	0	0	0
1983	0	0	2896	0	0	127992	0	0	0
1984	0	0	1039	0	0	47485	0	0	0
1985	0	0	0	0	0	10141	0	0	0
1986	0	0	0	0	0	87304	0	0	0
1987	0	0	0	0	0	387	0	0	0
1988	0	0	0	0	0	2432	0	0	0
1989	660	0	312	0	0	0	0	0	0
1990	25396	10892	12025	9925	0	0	2783	2920	10711
1991	38514	0	131	12551	143	0	49453	139	0
1992	39683	0	2255	28817	577	3603	37177	664	5013
1993	26844	0	0	11748	0	0	20866	0	0
1994	12579	0	0	5201	0	0	16342	0	217
1995	26039	120	2402	24635	0	0	46625	0	1233
1996	17858	0	0	14706	0	0	35256	432	0
1997	22822	225	3746	7239	119	154	26880	252	1537
1998	52448	3465	6763	7981	410	148	31569	291	2902
1999	11550	232	1101	9013	86	396	33876	3719	3656
2000	6951	425	69	11426	47	20	28991	902	277
2001	5992	367		12642	145		13432	0	

Table 2.6-Length frequencies of Pacific cod in the pre-1987 trawl fishery by year, period, and length bin.

Length Bin																										
Yr.	Per	1	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	7	$\underline{8}$	$\underline{9}$	10	11	$\underline{12}$	13	$\underline{14}$	$\underline{15}$	$\underline{16}$	$\underline{17}$	$\underline{18}$	$\underline{19}$	$\underline{20}$	$\underline{21}$	$\underline{22}$	$\underline{23}$	$\underline{24}$	$\underline{25}$
1978	3	0	0	0	0	0	1	1	5	9	5	4	14	40	93	125	106	106	59	39	23	3	1	0	0	0
1980	3	0	0	0	0	0	0	1	0	0	0	1	6	60	162	96	71	91	134	93	48	17	3	0	0	0
1981	3	0	0	0	0	0	0	0	0	0	0	5	29	85	148	145	47	2	0	0	0	0	0	0	0	0
1982	3	0	0	0	0	0	0	0	0	1	3	26	39	118	255	280	294	174	111	52	14	15	5	2	1	0
1983	3	0	0	0	0	0	0	1	2	1	11	24	106	332	388	403	439	375	310	252	143	76	23	7	3	0
1984	3	0	0	0	0	0	0	0	0	1	7	49	135	265	127	140	122	70	47	23	19	13	10	6	4	1

Table 2.7-Length frequencies of Pacific cod in the pre-1987 longline fishery by year, period, and length bin.

Length Bin																										
Yr.	Per	1	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$	11	$\underline{12}$	13	14	15	16	17	$\underline{18}$	$\underline{19}$	$\underline{20}$	$\underline{21}$	$\underline{22}$	23	$\underline{24}$	$\underline{25}$
1978	3	0	0	0	0	0	0	0	0	7	38	91	276	1160	2235	3077	4051	3359	2139	1261	696	224	49	6	1	0
1979	3	0	0	0	0	0	0	1	6	35	113	285	475	1124	1327	1744	2148	2534	2258	1401	651	271	75	12	0	0
1980	3	0	0	0	0	0	0	0	1	2	43	256	1184	3776	3199	1989	1555	1854	1998	1630	787	276	99	19	2	1
1981	3	0	0	0	0	0	0	0	0	9	29	83	263	1558	4685	5824	3243	1485	844	570	379	199	101	28	8	0
1982	3	0	0	0	0	0	0	0	5	40	106	280	498	1945	3992	5101	4586	3115	1729	815	351	181	80	26	6	0
1983	3	0	0	0	0	0	0	0	3	24	164	728	2661	11515	21037	24663	22224	17602	13130	7842	3868	1638	588	234	63	8
1984	3	0	0	0	0	0	1	1	5	40	135	341	885	4389	9372	10579	7666	4722	3612	2572	1666	958	380	134	23	4
1985	3	0	0	0	0	1	0	8	45	114	206	316	440	1036	990	1847	2170	1294	626	462	294	186	89	14	3	0
1986	3	0	0	0	0	0	0	0	10	133	387	487	681	2963	6979	11599	12075	10988	13158	12084	7943	4112	2254	1025	346	80

Table 2.8-Length frequencies of Pacific cod in the post-1986 trawl fishery by year, period, and length bin.

		Length Bin																								
Yr.	Per	1	$\underline{2}$	3	4	$\underline{5}$	$\underline{6}$	7	$\underline{8}$	$\underline{9}$	$\underline{10}$	11	12	13	14	15	$\underline{16}$	17	$\underline{18}$	19	20	21	$\underline{22}$	$\underline{23}$	$\underline{24}$	$\underline{25}$
1989	1	0	0	0	0	0	0	0	0	0	0	0	0	5	52	175	248	141	30	5	3	1	0	0	0	0
1989	3	0	0	0	0	0	6	28	41	29	17	3	3	16	37	50	39	14	4	6	2	7	4	4	2	0
1990	1	1	0	1	1	12	7	15	76	119	160	201	228	574	1322	3188	4903	4680	3357	2562	1572	1311	754	256	70	26
1990	2	41	36	15	0	0	1	0	1	3	31	81	169	419	954	1892	2562	2555	1323	510	181	90	24	3	0	1
1990	3	0	0	0	1	2	0	7	13	39	62	180	427	1447	1239	1240	1744	1726	1269	1101	860	434	133	67	18	16
1991	1	0	1	2	2	2	7	63	142	163	226	235	346	1905	3794	4421	5618	6609	5126	3629	2613	1621	1016	618	273	82
1991	3	0	0	0	0	0	0	0	0	0	0	0	0	2	5	15	15	24	28	24	6	9	3	0	0	0
1992	1	0	0	0	1	4	13	21	78	261	567	921	1084	1796	3160	4966	6796	5825	4257	3355	2548	1734	1143	749	280	124
1992	3	0	0	0	0	0	1	8	21	18	7	64	214	479	502	415	211	145	77	63	28	2	0	0	0	0
1993	1	0	0	1	4	2	5	4	58	234	469	547	544	2077	3445	3613	4744	4817	2832	1430	846	491	345	214	87	35
1994	1	0	0	0	0	0	0	0	7	31	83	115	138	499	1022	1734	2551	2642	1659	944	490	347	167	82	44	24
1995	1	0	0	0	0	0	0	1	8	60	91	204	316	1000	2363	3475	4628	5820	4040	1903	993	533	300	164	74	66
1995	2	0	0	0	0	0	1	1	0	0	1	1	9	26	15	20	19	19	6	2	0	0	0	0	0	0
1995	3	0	0	0	0	0	1	14	14	16	14	12	7	51	140	222	583	642	470	153	50	9	3	1	0	0
1996	1	0	0	0	1	6	28	39	64	105	187	250	230	290	690	1575	2924	3744	2948	1949	1237	793	437	217	96	48
1997	1	0	0	3	8	12	12	5	44	123	300	357	276	807	2271	2841	2945	4449	3874	2247	1140	562	288	174	67	17
1997	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	9	28	54	78	46	8	1	0	0	0	0
1997	3	0	0	0	1	3	8	29	49	100	62	56	96	318	374	477	823	589	342	262	100	46	10	1	0	0
1998	1	0	0	0	1	5	7	9	57	293	746	989	832	2009	4345	5676	9100	10443	8205	4970	2379	1278	652	327	98	27
1998	2	0	0	1	3	0	0	1	1	0	2	13	49	196	310	656	854	720	419	148	60	26	1	4	0	1
1998	3	3	4	0	0	5	35	112	133	209	209	146	225	1027	1139	906	1048	747	438	214	112	45	4	1	1	0
1999	1	0	0	1	4	4	4	4	21	73	144	184	215	453	1052	1797	2194	2226	1644	851	397	173	61	30	14	4
1999	2	0	0	0	0	0	5	0	0	0	0	0	1	5	8	34	52	65	36	18	6	2	0	0	0	0
1999	3	0	0	0	0	0	1	0	2	3	6	2	9	14	31	59	271	281	213	124	54	19	10	2	0	0
2000	1	0	0	0	0	0	0	2	10	29	74	84	99	250	787	1091	1429	1310	806	475	243	163	72	20	6	1
2000	2	0	0	0	0	0	0	0	3	1	0	9	21	31	30	56	88	100	48	20	14	4	0	0	0	0
2000	3	0	0	0	0	0	0	0	0	0	0	2	6	13	11	7	6	9	9	5	1	0	0	0	0	0
2001	1	0	1	2	2	1	1	4	7	37	97	158	146	287	689	941	1147	1143	764	330	140	62	22	8	1	2
2001	2	0	0	0	0	0	0	0	1	0	1	0	4	12	19	35	79	97	68	23	12	11	5	0	0	0

Table 2.9-Length frequencies of Pacific cod in the post-1986 longline fishery by year, period, and length bin.

														gth B												
Yr.	$\underline{\text { Per }}$	1	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	7	$\underline{8}$	$\underline{9}$	10	11	12	13	$\underline{14}$	$\underline{15}$	16	17	$\underline{18}$	19	20	$\underline{21}$	$\underline{22}$	$\underline{23}$	$\underline{24}$	$\underline{25}$
1987	3	0	0	0	0	0	0	0	1	1	4	9	17	49	102	109	72	15	6	0	1	1	0	0	0	0
1988	3	0	0	0	0	0	0	0	1	2	17	58	76	252	580	662	412	165	115	39	27	13	3	6	1	3
1990	1	0	0	0	0	0	0	2	2	6	28	82	57	219	511	991	1633	1999	1535	1173	850	549	186	69	30	3
1991	1	0	0	0	0	0	0	0	1	3	8	56	155	670	1351	1839	2473	2486	1740	909	411	229	119	49	23	29
1991	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	16	34	50	22	12	4	1	0	3	0	0
1992	1	0	0	0	0	0	2	3	8	20	57	137	333	1078	2326	4103	5900	4910	3817	2585	1598	906	580	306	103	45
1992	2	0	0	0	0	0	0	0	0	1	2	6	8	13	76	84	119	145	71	28	11	11	2	0	0	0
1992	3	0	0	0	0	0	0	0	1	2	0	11	7	68	185	466	986	1130	541	142	43	15	1	2	2	1
1993	1	0	0	0	1	3	6	9	5	8	18	43	67	357	924	1503	2077	1959	1226	1036	947	856	413	163	75	52
1994	1	0	0	0	0	0	0	0	0	0	1	4	20	166	500	630	1000	1065	788	450	213	167	93	61	26	17
1995	1	0	0	0	0	1	0	3	2	3	24	96	173	692	1662	2521	4264	5252	4025	2628	1606	874	421	212	117	59
1996	1	0	0	0	0	0	0	1	4	21	42	54	79	260	516	1268	2763	3858	3178	1627	583	265	109	48	26	4
1997	1	0	0	0	0	0	0	0	0	3	3	10	12	159	559	925	1267	1575	1431	791	317	118	46	16	6	1
1997	2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	19	27	24	28	15	2	0	0	0	0	0
1997	3	0	0	0	0	0	0	0	0	1	0	1	7	34	17	30	41	12	5	5	1	0	0	0	0	0
1998	1	0	0	0	0	0	0	0	0	2	9	18	53	277	748	1015	1458	1548	1197	833	473	243	78	27	2	0
1998	2	0	0	0	0	0	0	0	0	0	0	0	0	7	28	34	80	116	79	48	8	6	3	0	1	0
1998	3	0	0	0	0	0	0	0	0	0	0	1	0	0	6	18	29	35	38	12	7	1	1	0	0	0
1999	1	0	0	0	0	0	0	0	0	3	6	20	60	254	707	1385	1802	1679	1243	881	474	268	132	62	22	15
1999	2	0	0	0	0	0	0	0	0	0	0	0	0	0	21	36	15	8	6	0	0	0	0	0	0	0
1999	3	0	0	0	0	0	0	0	0	0	0	0	1	17	26	58	67	99	53	48	12	9	1	3	2	0
2000	1	0	0	0	0	0	0	0	1	2	3	2	25	197	797	1697	2548	2714	1747	946	422	179	97	36	10	3
2000	2	0	0	0	0	0	0	0	0	0	0	1	1	1	7	11	13	9	3	1	0	0	0	0	0	0
2000	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	7	10	2	0	0	0	0	0	0	0	0
2001	1	0	0	0	0	0	0	1	1	3	6	33	82	296	915	1969	2850	3074	1919	906	358	126	60	34	6	3
2001	2	0	0	0	0	0	0	0	0	0	0	1	4	3	9	8	24	43	18	14	12	6	2	1	0	0

Table 2.10-Length frequencies of Pacific cod in the pot fishery by year, period, and length bin.

Table 2.11-Length frequencies of Pacific cod in the trawl survey by year (all surveys take place in period 2). Numbers shown are survey estimates of population numbers at length, rescaled so that the sum equals the total size of the actual survey length sample.

Length Bin																										
$\underline{Y r .}$	Per	1	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$	11	$\underline{12}$	13	$\underline{14}$	$\underline{15}$	16	17	$\underline{18}$	$\underline{19}$	$\underline{20}$	$\underline{21}$	$\underline{22}$	$\underline{23}$	$\underline{24}$	$\underline{25}$
1984	2	174	34	34	121	104	87	104	469	992	1479	1653	1096	1566	3046	2576	1897	1131	469	226	69	52	17	17	0	0
1987	2	450	19	19	39	98	254	490	529	705	666	1234	1411	2822	4076	3116	1724	842	333	333	254	117	39	19	0	0
1990	2	251	0	11	103	217	137	57	114	240	286	435	549	1602	1774	1969	1683	973	549	194	160	80	34	11	11	0
1993	2	0	17	188	325	239	291	205	256	462	548	839	1318	2055	2620	3134	2055	1404	650	274	119	68	34	17	17	17
1996	2	0	35	232	875	1191	903	244	84	193	303	446	445	712	1043	1389	1668	1403	608	228	87	41	30	15	13	2
1999	2	1	17	68	154	166	97	75	142	310	352	402	582	1093	1142	1448	1208	793	416	168	11	0	0	0	0	0
2001	2	5	58	105	193	233	319	228	186	182	310	455	435	749	753	725	767	536	304	135	52	18	14	5	5	0

Table 2.12--Biomass, standard error, 95% confidence interval (CI), and population numbers of Pacific cod estimated by NMFS' triennial bottom trawl survey of the GOA. All figures except population numbers are expressed in metric tons. Population numbers are expressed in terms of individual fish.

Year	Biomass	Standard Error	Lower 95\% CI	Upper 95\% CI	Numbers
1984	571,188	85,600	403,412	738,964	$217,187,811$
1987	558,662	61,500	438,122	679,202	$204,177,687$
1990	379,494	53,100	275,418	483,570	$196,188,094$
1993	409,848	73,431	265,923	553,773	$164,652,074$
1996	538,154	107,736	326,991	749,317	$315,443,816$
1999	306,413	38,699	230,563	382,263	$166,145,850$
2001	277,743	52,355	175,127	380,359	$167,386,950$

Note: The 2001 survey did not cover the eastern GOA. To account for the missing stations, the 1999 survey estimates of biomass, biomass variance, and numbers for the eastern GOA were added to the respective 2001values to produce the figures shown in the above table.

Table 2.13-Magnitude of hydroacoustic, longline, and bottom trawl survey removals (t) in the GOA from 1977 through 2001. Cells with an entry of zero indicate that survey removals amounted to less than 0.5 t , whereas cells with no entry indicate that there was no survey in that region and year.

Year	Gulf of Alaska			
	Acoustic	Longline	$\frac{\text { Trawl }}{}$	$\frac{\text { Total }}{15}$
1977			15	15
1978			32	32
1979		14	21	35
1980		25	65	90
1981	0	23	70	94
1982		20	41	61
1983	1	28	22	52
1984	0	24	104	128
1985	0	16	30	45
1986	0	17	194	210
1987	0	21	117	138
1988	0	66	1	68
1989	0	47	6	53
1990	0	48	38	87
1991	0	51		51
1992	0	68		68
1993	0	60	46	106
1994	0	42		43
1995	0	38		39
1996	1	39	35	75
1997	0	39		39
1998	0	30		30
1999	0	22	18	40
2000	1	15		16
2001	1	10	24	35

Table 2.14-Symbols used in the Synthesis assessment model for Pacific cod (page 1 of 2).
Indices

a	age group
g	gear type
i	time interval
j	size bin
y	year

Dimensions

$a_{\text {min }}$	age of youngest group
$a_{\max }$	age of oldest group
$g_{\text {max }}$	number of gear types
$i_{\max }$	number of time intervals in each year
$j_{\max }$	number of size bins
$y_{\max }$	number of years

Special Values of Indices

$a_{\text {rec }}$	index of age group used to assess recruitment strength
$\mathrm{g}_{\text {sur }}$	index of survey gear type
$i_{\text {spa }}$	index of time interval during which spawning occurs
$i_{\text {sur }}$	index of time interval during which survey occurs

Operators

$e(y \mid g) \quad$ returns the era containing year y given gear type g
$l_{\text {mid }} \quad$ returns the length corresponding to the midpoint of bin j
$l_{\text {min }} \quad$ returns the smallest length contained in bin j
$t_{\text {dur }} \quad$ returns the duration (in years) of time interval i
Continuous Variables

α	age
λ	length
τ	time
Special	
α_{1}	falues of Continuous Variables reference age used in length-at-age relationship (in years)
α_{2}	second reference age used in length-at-age relationship (in years)
$\lambda_{\text {min }}$	minimum length used in assessment
$\lambda_{\text {max }}$	maximum length used in assessment
$\tau_{\text {spa }}$	annual time of spawning (in years)
$\tau_{\text {sur }}$	annual time of survey (in years)

Table 2.14-Symbols used in the Synthesis assessment model for Pacific cod (page 2 of 2).
Functions of Age or Length
$h(\lambda \mid \alpha) \quad$ probability density function describing distribution of length, conditional on age
$l(\alpha) \quad$ length at age
$p(\lambda) \quad$ proportion mature at length
$s(\lambda \mid g, y)$ selectivity at length, conditional on gear type and year
$w(\lambda) \quad$ weight at length
$x(\alpha) \quad$ standard deviation associated with the length-at-age relationship, as a function of age
Arrays Generated by Synthesis
$b_{y} \quad$ biomass of population aged $a \geq a_{r e c}$ at start of year y
$c_{y} \quad$ spawning biomass at time of spawning in year y
$d_{y} \quad$ survey biomass at time of survey in year y
$n_{a, y, i} \quad$ population numbers at age a, year y, and time interval i
$u_{a, y} \quad$ population numbers at time of spawning at age a and year y
$v_{a, y} \quad$ population numbers at time of survey at age a and year y
$z_{a, i, j} \quad$ proportion of length distribution falling within size bin j at age a and time interval i
Parameters Used by Synthesis
$F_{g, y, i} \quad$ instantaneous fishing mortality rate at each gear g, year y, and time i for which catch >0
$K \quad$ Brody's growth parameter
$L_{1} \quad$ length at age α_{1}
$L_{2} \quad$ length at age α_{2}
$M \quad$ instantaneous natural mortality rate
$N_{a} \quad$ initial population numbers at each age $a>a_{\text {min }}$
$P_{1} \quad$ length at point of inflection in maturity schedule
$P_{2} \quad$ relative slope at point of inflection in maturity schedule
$Q \quad$ survey catchability
$R_{y} \quad$ recruitment at age $a_{\text {min }}$ in year y
$S_{1, g, e(y \mid g)}$ selectivity at minimum length in gear type g and era e
$S_{2, g, e(y \mid g)}$ length at inflection in ascending part of selectivity schedule in gear type g and era e
$S_{3, g, e(y \mid g)}$ relative slope at inflection in ascending part of selectivity schedule in gear type g and era e
$S_{4, g, e(y \mid g)}$ length at maximum selectivity in gear type g and era e
$S_{5, g, e(y \mid g)}$ selectivity at maximum length in gear type g and era e
$S_{6, g, e(y \mid g)}$ length at inflection in descending part of selectivity schedule in gear type g and era e
$S_{7, g, e(y \mid g)}$ relative slope at inflection in descending part of selectivity schedule in gear type g and era e
$W_{1} \quad$ weight-length proportionality
$W_{2} \quad$ weight-length exponent
$X_{1} \quad$ standard deviation of length evaluated at age α_{1}
$X_{2} \quad$ standard deviation of length evaluated at age α_{2}

Table 2.15-Dimensions and special values of indices and variables used in the Pacific cod assessment. Symbols are defined in Table 2.14.

Dimensions

| $\underline{\text { Term }}$ | Value | Comments/Rationale |
| :--- | ---: | :--- | :--- |
| $a_{\text {min }}$ | 1 | assumed minimum age group observed in the trawl survey |
| $a_{\text {max }}$ | 12 | a convenient place to insert an "age-plus" category |
| $g_{\text {max }}$ | 5 | early trawl, late trawl, longline, pot, survey |
| $i_{\text {max }}$ | 3 | January through March, June through August, September through December |
| $j_{\text {max }}$ | 25 | bin boundaries are given in the "Data" section of the text |
| $y_{\text {max }}$ | 21 | 1978 through 1999 |

Special Values of Indices

| $\underline{\text { Term }}$ | $\underline{\text { Value }}$ | $\underline{\text { Comments/Rationale }}$ |
| :--- | ---: | :--- | :--- |
| $a_{\text {rec }}$ | 3 | age traditionally used to indicate first significant recruitment to the fishery |
| $\mathrm{g}_{\text {sur }}$ | 5 | index of survey gear type |
| $i_{\text {spa }}$ | 1 | March (see $\tau_{\text {spa }}$ below) falls within the first intra-annual time period |
| $i_{\text {sur }}$ | 2 | July (see $\tau_{\text {sur }}$ below) falls within the second intra-annual time period |

Special Values of Continuous Variables

$\underline{\text { Term }}$	$\underline{\text { Value }}$		Comments/Rationale
α_{1}	1.5		assumed age of youngest fish seen in the trawl survey
α_{2}	12.0	set equal to the lower bound of the age-plus group for convenience	
$\lambda_{\text {min }}$	9	close to the length of the smallest fish seen by the survey in a typical year	
$\lambda_{\text {max }}$	115	close to the length of the largest fish seen by the survey in a typical year	
$\tau_{\text {spa }}$	$3 / 12$	March appears to be the month of peak spawning in the observer data	
$\tau_{\text {sur }}$	$7 / 12$	July is the approximate mid-point of the June-August trawl survey season	

Table 2.16-Partitioning the list of parameters used in the Synthesis model of Pacific cod into those that are estimated independently (i.e., outside) of Synthesis and those that are estimated conditionally (i.e., inside of Synthesis).

Parameters Estimated Independently

L_{1}	length at age α_{1}
M	instantaneous natural mortality rate
P_{1}	length at point of inflection in maturity schedule
P_{2}	relative slope at point of inflection in maturity schedule
Q	survey catchability
W_{1}	weight-length proportionality
W_{2}	weight-length exponent
X_{1}	standard deviation of length evaluated at age α_{1}
X_{2}	standard deviation of length evaluated at age α_{2}
Parameters Estimated Conditionally	
$F_{g, y, i}$	instantaneous fishing mortality rate at each gear g, year y, and time i for which catch >0
K	Brody's growth parameter
L_{2}	length at age α_{2}
N_{a}	initial population numbers at each age $a>a_{m i n}$
R_{y}	recruitment at age $a_{m i n}$ in year y
$S_{1, g, e(y \mid g)}$	selectivity at minimum length in gear type g and era e
$S_{2, g, e(y \mid g)}$	length at inflection in ascending part of selectivity schedule in gear type g and era e
$S_{3, g, e(y \mid g)}$	relative slope at inflection in ascending part of selectivity schedule in gear type g and era e
$S_{4, g, e(y \mid g)}$	length at maximum selectivity in gear type g and era e
$S_{5, g, e(y \mid g)}$	selectivity at maximum length in gear type g and era e
$S_{6, g, e(y \mid g)}$	length at inflection in descending part of selectivity schedule in gear type g and era e
$S_{7, g, e(y \mid g)}$	relative slope at inflection in descending part of selectivity schedule in gear type g and era e

Table 2.17-Pacific cod commercial fishery length sample sizes used in the multinomial distribution. (These values correspond to the square roots of the true sample sizes shown in Table 2.5.)

Trawl Fishery				Longline Fishery			Pot Fishery		
	Per. 1	$\frac{\text { Per. 2 }}{}$	Per. 3	Per. 1	$\frac{\text { Per. 2 }}{}$	$\frac{\text { Per. 3 }}{}$	Per. 1	Per. 2	Per. 3
1978	0	0	25	0	0	137	0	0	0
1979	0	0	0	0	0	120	0	0	0
1980	0	0	28	0	0	137	0	0	0
1981	0	0	21	0	0	139	0	0	0
1982	0	0	37	0	0	151	0	0	0
1983	0	0	54	0	0	358	0	0	0
1984	0	0	32	0	0	218	0	0	0
1985	0	0	0	0	0	101	0	0	0
1986	0	0	0	0	0	295	0	0	0
1987	0	0	0	0	0	20	0	0	0
1988	0	0	0	0	0	49	0	0	0
1989	26	0	18	0	0	0	0	0	0
1990	159	104	110	100	0	0	53	54	103
1991	196	0	11	112	12	0	222	12	0
1992	199	0	47	170	24	60	193	26	71
1993	164	0	0	108	0	0	144	0	0
1994	112	0	0	72	0	0	128	0	15
1995	161	11	49	157	0	0	216	0	35
1996	134	0	0	121	0	0	188	21	0
1997	151	15	61	85	11	12	164	16	39
1998	229	59	82	89	20	12	178	17	54
1999	107	15	33	95	9	20	184	61	60
2000	83	21	8	107	7	4	170	30	17
2001	77	19	0	112	12	0	116	0	0

Table 2.18-Estimates of Pacific cod fishing mortality rates, expressed on an annual time scale. Empty cells indicate that no catch was recorded.

Year	Trawl				Longline				Pot		
	Per. 1	$\underline{\text { Per. 2 }}$	Per. 3	$\underline{\text { Per. 1 }}$	$\underline{\text { Per. 2 }}$	$\underline{\text { Per. 3 }}$	Per. 1	Per. 2	Per. 3		
1978			0.04			0.05					
1979			0.03			0.06					
1980			0.05			0.17					
1981	0.00	0.02	0.03	0.05	0.04	0.05					
1982	0.01	0.01	0.02	0.04	0.02	0.05					
1983	0.02	0.02	0.02	0.04	0.03	0.06					
1984	0.02	0.01	0.02	0.05	0.00	0.01					
1985	0.01	0.00	0.01	0.04	0.00	0.00			0.00		
1986	0.02	0.00	0.02	0.06	0.00	0.01	0.00	0.00	0.00		
1987	0.03	0.08	0.07	0.03	0.01	0.01	0.00	0.00	0.00		
1988	0.08	0.07	0.04	0.02	0.00	0.00	0.01	0.00	0.00		
1989	0.13	0.13	0.00	0.01	0.00	0.01	0.00	0.00	0.00		
1990	0.23	0.08	0.07	0.03	0.00	0.00	0.02	0.01	0.02		
1991	0.33	0.01	0.01	0.04	0.00	0.00	0.08		0.01		
1992	0.32	0.01	0.01	0.08	0.01	0.02	0.08	0.00	0.01		
1993	0.22	0.03	0.01	0.05	0.00	0.00	0.08	0.00			
1994	0.19	0.02	0.01	0.04	0.00	0.00	0.07		0.00		
1995	0.25	0.01	0.02	0.07	0.00	0.00	0.13	0.00	0.01		
1996	0.29	0.04	0.02	0.07	0.00	0.00	0.11	0.00			
1997	0.31	0.02	0.07	0.08	0.00	0.00	0.14	0.02	0.01		
1998	0.30	0.06	0.04	0.08	0.00	0.00	0.23	0.01	0.01		
1999	0.29	0.03	0.08	0.12	0.00	0.00	0.34	0.09	0.05		
2000	0.24	0.05	0.01	0.12	0.00	0.00	0.41	0.01	0.00		
2001	0.17	0.04	0.05	0.10	0.00	0.00	0.19	0.01	0.02		

Table 2.19-Estimates of Pacific cod recruitment at age 1 and initial numbers at age (in millions of fish).

Year	Recruitment at age 1
1978	561
1979	209
1980	329
1981	313
1982	234
1983	247
1984	232
1985	394
1986	256
1987	238
1988	358
1989	255
1990	339
1991	260
1992	217
1993	185
1994	187
1995	201
1996	276
1997	188
1998	159
1999	167
2000	165
2001	295
Age	Initial numbers at age
2	217
3	55
4	58
5	35
6	83
7	0
8	21
9	15
10	0
11	1
12	

Table 2.20-Estimates of Pacific cod selectivity parameters. The first column lists the parameter families for which the remaining columns contain gear- and era- specific estimates. Gear types consist of period 1 (January-May) trawl, periods 2-3 (June-December) trawl, longline, and pot commercial gears, and the trawl survey. Eras consist of the ranges 1978-1986 and 1987-2001 (longline and periods 2-3 trawl gear types only).

	Trawl(1)	Trawl (2-3)		Longline		Pot	
			$\underline{1978-86}$	$\underline{1987-01}$		$1978-86$	$\underline{1987-01}$

Table 2.21-Distribution of Pacific cod lengths (in cm) at age (mid-year) as defined by final parameter estimates. Lengths correspond to lower bounds of size bins. Columns sum to 1.0 .

Len.	Age Group											
	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$	$\underline{11}$	$\underline{12+}$
105	0	0	0	0	0	0	0	0	0	0	0	0.021
100	0	0	0	0	0	0	0	0	0	0	0.002	0.057
95	0	0	0	0	0	0	0	0	0	0.004	0.019	0.135
90	0	0	0	0	0	0	0	0	0.007	0.038	0.100	0.218
85	0	0	0	0	0	0	0	0.010	0.061	0.163	0.264	0.242
80	0	0	0	0	0	0	0.010	0.083	0.226	0.328	0.336	0.185
75	0	0	0	0	0	0.006	0.090	0.277	0.362	0.306	0.208	0.097
70	0	0	0	0	0.001	0.075	0.309	0.375	0.254	0.132	0.062	0.035
65	0	0	0	0	0.039	0.312	0.385	0.206	0.078	0.026	0.009	0.009
60	0	0	0	0.007	0.263	0.411	0.175	0.046	0.010	0.002	0.001	0.001
55	0	0	0	0.133	0.461	0.172	0.029	0.004	0.001	0	0	0
50	0	0	0.015	0.480	0.211	0.023	0.002	0	0	0	0	0
45	0	0	0.270	0.335	0.025	0.001	0	0	0	0	0	0
42	0	0.001	0.371	0.040	0.001	0	0	0	0	0	0	0
39	0	0.026	0.259	0.005	0	0	0	0	0	0	0	0
36	0	0.205	0.076	0	0	0	0	0	0	0	0	0
33	0	0.446	0.009	0	0	0	0	0	0	0	0	0
30	0	0.273	0	0	0	0	0	0	0	0	0	0
27	0.034	0.047	0	0	0	0	0	0	0	0	0	0
24	0.394	0.002	0	0	0	0	0	0	0	0	0	0
21	0.499	0	0	0	0	0	0	0	0	0	0	0
18	0.071	0	0	0	0	0	0	0	0	0	0	0
15	0.001	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0

Table 2.22-Schedules of Pacific cod weight (kg) and maturity proportions at length (cm) as defined by final parameter estimates. Lengths correspond to lower bounds of size bins.

Bin	Length	Weight	Maturity
1	9	0.01	0
2	12	0.02	0
3	15	0.04	0
4	18	0.07	0
5	21	0.11	0
6	24	0.16	0
7	27	0.23	0
8	30	0.32	0.01
9	33	0.42	0.01
10	36	0.55	0.02
11	39	0.70	0.02
12	42	0.87	0.04
13	45	1.16	0.06
14	50	1.59	0.12
15	55	2.11	0.21
16	60	2.75	0.35
17	65	3.50	0.51
18	70	4.39	0.68
19	75	5.41	0.81
20	80	6.59	0.89
21	85	7.93	0.95
22	90	9.45	0.97
23	95	11.16	0.99
24	100	13.07	0.99
25	105	14.07	1.00
2			

Table 2.23-Schedules of Pacific cod selectivities as defined by final parameter estimates. Lengths (cm) correspond to lower bounds of size bins. Trawl(1) = period 1 (January-May) trawl fishery, Trawl(2-3) = periods 2-3 (June-December) trawl fishery.

Bin	Len.	Trawl(1)	Trawl (2-3)		Longline		Pot	Survey
			1978-86	1987-01	1978-86	1987-01		
1	9	0.00	0.00	0.00	0.00	0.00	0.00	0.09
2	12	0.00	0.00	0.00	0.00	0.00	0.00	0.10
3	15	0.00	0.00	0.00	0.00	0.00	0.00	0.10
4	18	0.00	0.00	0.00	0.00	0.00	0.00	0.10
5	21	0.00	0.00	0.00	0.00	0.00	0.00	0.10
6	24	0.00	0.00	0.00	0.00	0.00	0.00	0.11
7	27	0.00	0.00	0.01	0.00	0.00	0.00	0.12
8	30	0.01	0.00	0.01	0.00	0.00	0.00	0.14
9	33	0.01	0.01	0.02	0.01	0.00	0.00	0.18
10	36	0.02	0.03	0.03	0.02	0.01	0.00	0.23
11	39	0.03	0.09	0.05	0.04	0.01	0.00	0.31
12	42	0.06	0.23	0.07	0.11	0.03	0.01	0.42
13	45	0.09	0.46	0.12	0.25	0.05	0.02	0.56
14	50	0.20	0.83	0.24	0.64	0.16	0.08	0.81
15	55	0.39	0.97	0.44	0.90	0.40	0.26	1.00
16	60	0.62	0.99	0.69	0.98	0.70	0.60	0.97
17	65	0.80	1.00	0.92	1.00	0.89	0.90	0.86
18	70	0.91	1.00	0.91	1.00	0.97	0.92	0.61
19	75	0.96	1.00	0.74	1.00	0.99	0.68	0.40
20	80	0.99	1.00	0.57	1.00	1.00	0.49	0.33
21	85	0.99	1.00	0.44	1.00	0.86	0.38	0.32
22	90	1.00	0.85	0.35	1.00	0.82	0.31	0.31
23	95	1.00	0.85	0.30	1.00	0.82	0.27	0.31
24	100	1.00	0.85	0.28	0.98	0.82	0.26	0.31
25	105	1.00	0.85	0.27	0.98	0.82	0.25	0.31

Table 2.24-Time series of Pacific cod age 3+ biomass, spawning biomass, and survey biomass as estimated in last year's and this year's assessments.

Year	Age 3+ Biomass		Spawning Biomass		Survey Biomass	
	Last Year	This Year	Last Year	This Year	Last Year	This Year
1978	653	555	116	111		
1979	725	598	132	126		
1980	799	721	141	135		
1981	853	746	147	140		
1982	887	781	157	148		
1983	907	808	169	158		
1984	911	808	182	170	521	526
1985	912	802	191	177		
1986	928	797	197	183		
1987	932	825	198	184	488	498
1988	934	822	195	180		
1989	941	811	194	179		
1990	935	816	186	171	488	490
1991	913	779	173	158		
1992	888	764	163	147		
1993	853	731	156	140	473	459
1994	830	708	157	140		
1995	805	678	158	138		
1996	760	625	152	131	394	371
1997	719	578	142	120		
1998	671	553	128	106		
1999	621	520	116	94	326	306
2000	560	471	104	83		
2001	n / a	441	n / a	80		285

Notes: Spawning biomass is computed as the sum of March female numbers at age times population weight at age times fraction mature at age.
"Survey biomass" is the model's estimate of what the actual survey should have observed.
All biomass figures are in 1000s of t .

Table 2.25-Time series of Pacific cod age 3 recruitment as estimated in last year's and this year's assessments.

Year	Recruitment (millions of age 3 fish)	
	$\underline{\text { Last Year }}$	This Year
1978	56	55
1979	150	150
1980	287	268
1981	106	100
1982	164	157
1983	159	149
1984	121	112
1985	119	118
1986	115	111
1987	200	188
1988	131	122
1989	117	114
1990	187	171
1991	127	122
1992	180	162
1993	138	124
1994	116	103
1995	100	88
1996	105	89
1997	106	96
1998	136	131
1999	86	89
2000	66	76
2001	n / a	80

Table 2.26-Time series of Pacific cod catch divided by age 3+ biomass as estimated in last year's and this year's assessments (the entry for 2001 under "This Year" is based on catch through August, 2001; the entry for 2000 under "Last Year" was based on catch through August, 2000).

Year	Catch Divided by Age 3+ Biomass	
	Last Year	This Year
1978	0.02	0.02
1979	0.02	0.02
1980	0.05	0.05
1981	0.05	0.05
1982	0.04	0.04
1983	0.04	0.05
1984	0.03	0.03
1985	0.02	0.02
1986	0.03	0.03
1987	0.04	0.04
1988	0.04	0.04
1989	0.05	0.05
1990	0.08	0.09
1991	0.09	0.10
1992	0.10	0.11
1993	0.07	0.08
1994	0.06	0.07
1995	0.09	0.10
1996	0.10	0.11
1997	0.11	0.12
1998	0.11	0.11
1999	0.14	0.13
2000	0.13	0.14
2001	n / a	0.10

Table 2.27-Age structure of the total and spawning populations of GOA Pacific cod.

Total numbers at age (millions)

Spawning numbers at age (millions)

Table 2.28-Calculation of the correlation (Cor, shown in the bottom-right cell of each half of the table) between two indices of stock structure "breadth" and subsequent age 1 recruitment $R(t+1)$.

Shannon-Wiener information index

Year	Age												Index $R(t+1)$	
	$\underline{1}$	$\underline{2}$	$\underline{3}$	4	$\underline{5}$	$\underline{6}$	7	$\underline{8}$	$\underline{9}$	$\underline{10}$	11	12		
1978	0.000	0.085	0.084	0.189	0.231	0.364	0.005	0.316	0.289	0.008	0.045	0.027	1.644	209
1979	0.000	0.124	0.163	0.137	0.239	0.248	0.367	0.004	0.273	0.238	0.005	0.044	1.845	329
1980	0.000	0.058	0.227	0.248	0.180	0.257	0.238	0.363	0.003	0.224	0.188	0.033	2.018	313
1981	0.000	0.079	0.116	0.318	0.299	0.191	0.240	0.203	0.330	0.002	0.171	0.145	2.094	234
1982	0.000	0.072	0.151	0.182	0.356	0.309	0.175	0.204	0.160	0.275	0.002	0.179	2.064	247
1983	0.000	0.055	0.140	0.230	0.229	0.363	0.294	0.147	0.164	0.122	0.217	0.130	2.092	232
1984	0.000	0.057	0.113	0.221	0.286	0.247	0.357	0.263	0.118	0.128	0.092	0.208	2.090	394
1985	0.000	0.054	0.117	0.185	0.280	0.308	0.239	0.339	0.225	0.093	0.098	0.188	2.127	256
1986	0.000	0.080	0.111	0.191	0.241	0.304	0.303	0.216	0.307	0.185	0.071	0.179	2.188	238
1987	0.000	0.058	0.161	0.184	0.250	0.266	0.300	0.280	0.184	0.264	0.148	0.162	2.256	358
1988	0.000	0.056	0.121	0.253	0.243	0.275	0.261	0.274	0.241	0.148	0.216	0.187	2.274	255
1989	0.000	0.076	0.115	0.198	0.314	0.267	0.267	0.232	0.233	0.196	0.113	0.236	2.248	339
1990	0.000	0.059	0.153	0.190	0.258	0.335	0.259	0.238	0.193	0.187	0.152	0.215	2.240	260
1991	0.000	0.076	0.125	0.247	0.252	0.282	0.327	0.226	0.195	0.150	0.142	0.214	2.234	217
1992	0.000	0.064	0.156	0.208	0.311	0.276	0.271	0.293	0.181	0.148	0.109	0.204	2.219	185
1993	0.000	0.057	0.133	0.249	0.271	0.332	0.262	0.232	0.240	0.134	0.106	0.181	2.198	187
1994	0.000	0.051	0.118	0.216	0.311	0.292	0.320	0.226	0.186	0.187	0.098	0.168	2.174	201
1995	0.000	0.052	0.107	0.196	0.278	0.332	0.283	0.289	0.185	0.144	0.142	0.158	2.166	276
1996	0.000	0.058	0.114	0.186	0.263	0.307	0.326	0.252	0.244	0.143	0.108	0.175	2.176	188
1997	0.000	0.078	0.127	0.197	0.253	0.293	0.301	0.298	0.208	0.195	0.107	0.169	2.226	159
1998	0.000	0.063	0.167	0.218	0.266	0.282	0.284	0.267	0.249	0.160	0.146	0.163	2.266	167
1999	0.000	0.059	0.136	0.269	0.286	0.292	0.268	0.243	0.212	0.190	0.115	0.174	2.245	165
2000	0.000	0.065	0.129	0.229	0.335	0.308	0.270	0.218	0.183	0.152	0.133	0.161	2.183	295

Simpson diversity index

| Age | | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | |
| 1978 | 0.000 | 0.001 | 0.000 | 0.005 | 0.010 | 0.177 | 0.000 | 0.036 | 0.024 | 0.000 | 0.000 | 0.000 | 0.746 | 209 |
| 1979 | 0.000 | 0.001 | 0.003 | 0.002 | 0.011 | 0.013 | 0.148 | 0.000 | 0.019 | 0.011 | 0.000 | 0.000 | 0.790 | 329 |
| 1980 | 0.000 | 0.000 | 0.009 | 0.013 | 0.004 | 0.015 | 0.011 | 0.094 | 0.000 | 0.009 | 0.005 | 0.000 | 0.838 | 313 |
| 1981 | 0.000 | 0.000 | 0.001 | 0.037 | 0.028 | 0.005 | 0.012 | 0.006 | 0.046 | 0.000 | 0.004 | 0.002 | 0.858 | 234 |
| 1982 | 0.000 | 0.000 | 0.003 | 0.005 | 0.077 | 0.033 | 0.004 | 0.007 | 0.003 | 0.019 | 0.000 | 0.004 | 0.845 | 247 |
| 1983 | 0.000 | 0.000 | 0.002 | 0.010 | 0.010 | 0.095 | 0.026 | 0.002 | 0.003 | 0.001 | 0.008 | 0.002 | 0.840 | 232 |
| 1984 | 0.000 | 0.000 | 0.001 | 0.009 | 0.023 | 0.013 | 0.080 | 0.016 | 0.001 | 0.002 | 0.001 | 0.007 | 0.847 | 394 |
| 1985 | 0.000 | 0.000 | 0.001 | 0.005 | 0.021 | 0.032 | 0.012 | 0.054 | 0.009 | 0.001 | 0.001 | 0.005 | 0.859 | 256 |
| 1986 | 0.000 | 0.000 | 0.001 | 0.005 | 0.012 | 0.030 | 0.030 | 0.008 | 0.031 | 0.005 | 0.000 | 0.004 | 0.873 | 238 |
| 1987 | 0.000 | 0.000 | 0.003 | 0.005 | 0.013 | 0.017 | 0.028 | 0.021 | 0.005 | 0.017 | 0.002 | 0.003 | 0.885 | 358 |
| 1988 | 0.000 | 0.000 | 0.001 | 0.014 | 0.012 | 0.020 | 0.016 | 0.019 | 0.012 | 0.002 | 0.008 | 0.005 | 0.891 | 255 |
| 1989 | 0.000 | 0.000 | 0.001 | 0.006 | 0.035 | 0.017 | 0.017 | 0.010 | 0.010 | 0.006 | 0.001 | 0.011 | 0.884 | 339 |
| 1990 | 0.000 | 0.000 | 0.003 | 0.005 | 0.015 | 0.050 | 0.015 | 0.011 | 0.006 | 0.005 | 0.003 | 0.008 | 0.879 | 260 |
| 1991 | 0.000 | 0.000 | 0.001 | 0.013 | 0.014 | 0.022 | 0.043 | 0.009 | 0.006 | 0.002 | 0.002 | 0.008 | 0.879 | 217 |
| 1992 | 0.000 | 0.000 | 0.003 | 0.007 | 0.034 | 0.020 | 0.018 | 0.026 | 0.004 | 0.002 | 0.001 | 0.007 | 0.878 | 185 |
| 1993 | 0.000 | 0.000 | 0.002 | 0.013 | 0.018 | 0.047 | 0.016 | 0.010 | 0.012 | 0.002 | 0.001 | 0.004 | 0.874 | 187 |
| 1994 | 0.000 | 0.000 | 0.001 | 0.008 | 0.033 | 0.025 | 0.039 | 0.009 | 0.005 | 0.005 | 0.001 | 0.004 | 0.869 | 201 |
| 1995 | 0.000 | 0.000 | 0.001 | 0.006 | 0.020 | 0.048 | 0.022 | 0.024 | 0.005 | 0.002 | 0.002 | 0.003 | 0.867 | 276 |
| 1996 | 0.000 | 0.000 | 0.001 | 0.005 | 0.016 | 0.032 | 0.043 | 0.014 | 0.012 | 0.002 | 0.001 | 0.004 | 0.869 | 188 |
| 1997 | 0.000 | 0.000 | 0.002 | 0.006 | 0.014 | 0.026 | 0.029 | 0.027 | 0.007 | 0.006 | 0.001 | 0.004 | 0.879 | 159 |
| 1998 | 0.000 | 0.000 | 0.004 | 0.008 | 0.017 | 0.022 | 0.022 | 0.017 | 0.013 | 0.003 | 0.002 | 0.003 | 0.888 | 167 |
| 1999 | 0.000 | 0.000 | 0.002 | 0.018 | 0.023 | 0.025 | 0.018 | 0.012 | 0.008 | 0.005 | 0.001 | 0.004 | 0.884 | 165 |
| 2000 | 0.000 | 0.000 | 0.002 | 0.010 | 0.050 | 0.032 | 0.018 | 0.008 | 0.005 | 0.003 | 0.002 | 0.003 | 0.868 | 0 |

Table 2.29-Definitions of symbols and terms used in the Pacific cod projection tables.
Symbol Definition
SPR Equilibrium spawning per recruit, expressed as a percentage of the maximum level
L90\%CI Lower bound of the 90% confidence interval
Median Point that divides projection outputs into two groups of equal size (50\% higher, 50\%
Mean Average value of the projection outputs
U90\%CI Upper bound of the 90% confidence interval
St. Dev. Standard deviation of the projection outputs

Table 2.30-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000 s of t), fishing mortality, and catch (1000 s of t) under the assumption that $F=\max F_{A B C}$ in each year 2002-2014, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

Spawning Biomass Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	82.0	82.0	82.0	82.0	0.01
2003	74.1	74.2	74.2	74.3	0.06
2004	70.7	71.2	71.2	71.9	0.36
2005	71.2	72.9	73.0	75.5	1.36
2006	73.2	77.2	77.7	83.2	3.27
2007	74.3	81.2	81.9	90.9	5.40
2008	74.4	83.2	84.3	96.7	7.03
2009	74.8	84.4	85.4	99.8	7.96
2010	75.1	84.6	86.0	100.7	8.36
2011	74.7	85.2	86.2	101.8	8.50
2012	75.2	84.9	86.3	101.6	8.43
2013	75.3	84.8	86.3	101.3	8.30
2014	75.3	84.8	86.3	101.6	8.26

Fishing Mortality Projections					
Year	L90\% Cl	Median	Mean	U90\%CI	St. Dev.
2002	0.39	0.39	0.39	0.39	0.000
2003	0.35	0.35	0.35	0.35	0.000
2004	0.34	0.34	0.34	0.34	0.002
2005	0.34	0.35	0.35	0.36	0.007
2006	0.35	0.37	0.37	0.40	0.016
2007	0.35	0.39	0.39	0.41	0.018
2008	0.35	0.40	0.39	0.41	0.018
2009	0.36	0.41	0.39	0.41	0.018
2010	0.36	0.41	0.39	0.41	0.018
2011	0.36	0.41	0.39	0.41	0.019
2012	0.36	0.41	0.40	0.41	0.018
2013	0.36	0.41	0.40	0.41	0.018
2014	0.36	0.41	0.40	0.41	0.018

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	65.2	65.2	65.2	65.2	0.00
2003	55.9	53.0	53.0	53.1	0.05
2004	48.3	48.8	48.8	49.6	0.40
2005	50.3	52.5	52.8	56.2	1.87
2006	55.3	61.1	61.7	71.8	5.54
2007	55.6	67.9	68.6	81.6	8.42
2008	55.5	70.9	71.3	86.8	9.76
2009	55.9	72.9	72.2	88.6	10.37
2010	55.8	72.9	72.4	8.3	10.60
2011	56.2	72.9	72.5	89.3	10.65
2012	56.5	72.7	72.5	88.8	10.40
2013	56.2	72.6	72.4	88.6	10.18
2014			72.4	89.4	10.24

Table 2.31-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000s of t), fishing mortality, and catch (1000 s of t) under the assumption that the ratio of F to max $F_{A B C}$ in each year 2002-2014 is fixed at a value of 0.87, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

Spawning Biomass Projections L90\%CI	Median	Mean	U90\%CI	St. Dev.	
2002	82.4	82.5	82.5	82.5	0.01
2003	76.6	76.7	76.7	76.8	0.06
2004	74.0	74.5	74.5	75.2	0.36
2005	74.7	76.4	76.6	79.0	1.37
2006	76.9	81.0	81.4	87.0	3.33
2007	78.2	85.3	86.1	95.6	5.68
2008	78.4	87.7	89.1	102.7	7.68
2009	78.9	89.6	90.8	106.7	8.89
2010	79.2	90.4	91.8	108.4	9.47
2011	79.1	91.3	92.4	109.5	9.70
2012	79.8	91.7	92.7	109.7	9.67
2013	79.8	91.5	92.8	109.9	9.54
2014	79.9	91.6	92.8	109.9	9.49

Fishing Mortality Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	0.34	0.34	0.34	0.34	0.000
2003	0.32	0.32	0.32	0.32	0.000
2004	0.31	0.31	0.31	0.31	0.002
2005	0.31	0.32	0.32	0.33	0.006
2006	0.32	0.34	0.34	0.36	0.012
2007	0.32	0.35	0.35	0.36	0.011
2008	0.32	0.36	0.35	0.36	0.011
2009	0.33	0.36	0.35	0.36	0.010
2010	0.33	0.36	0.35	0.36	0.010
2011	0.33	0.36	0.35	0.36	0.010
2012	0.33	0.36	0.35	0.36	0.009
2013	0.33	0.36	0.35	0.36	0.009
2014	0.33	0.36	0.35	0.36	0.009

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	57.6	57.6	57.6	57.6	0.00
2003	49.3	49.3	49.4	49.4	0.05
2004	46.0	46.4	46.4	47.1	0.36
2005	48.0	50.1	50.3	53.4	1.72
2006	51.8	58.1	58.5	66.8	4.76
2007	53.2	64.7	64.4	74.8	6.81
2008	53.3	66.5	66.9	80.0	8.19
2009	53.6	67.8	67.9	82.5	8.87
2010	54.0	68.0	68.4	83.1	9.13
2011	53.8	68.7	68.7	83.4	9.19
2012	54.5	68.4	68.8	83.5	9.00
2013	54.6	68.3	68.8	83.2	8.79
2014	54.6	68.4	68.8	84.1	8.76

Table 2.32-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000s of t), fishing mortality, and catch (1000s of t) under the assumption that $F=1 / 2 \max F_{A B C}$ in each year 20022014, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

| Spawning Biomass Projections
 Year | | L90\%CI | Median | Mean | U90\%CI |
| :--- | ---: | ---: | ---: | ---: | ---: | St. Dev.

Fishing Mortality Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	0.20	0.20	0.20	0.20	0.000
2003	0.20	0.20	0.20	0.20	0.000
2004	0.20	0.20	0.20	0.20	0.001
2005	0.20	0.20	0.20	0.20	0.000
2006	0.20	0.20	0.20	0.20	0.000
2007	0.20	0.20	0.20	0.20	0.000
2008	0.20	0.20	0.20	0.20	0.000
2009	0.20	0.20	0.20	0.20	0.000
2010	0.20	0.20	0.20	0.20	0.000
2011	0.20	0.20	0.20	0.20	0.000
2012	0.20	0.20	0.20	0.20	0.000
2013	0.20	0.20	0.20	0.20	0.000
2014	0.20	0.20	0.20	0.20	0.000

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	34.6	34.6	34.6	34.6	0.00
2003	34.6	34.6	34.6	34.7	0.03
2004	35.1	35.3	35.4	35.8	0.24
2005	37.3	37.9	38.0	39.0	0.55
2006	39.3	41.7	41.9	45.3	1.91
2007	40.4	45.0	45.5	51.7	3.64
2008	41.0	47.3	48.0	56.3	4.91
2009	41.9	48.9	49.5	59.1	5.56
2010	42.5	49.9	50.4	60.4	5.84
2011	42.9	50.6	51.0	61.1	5.94
2012	43.0	50.9	51.3	61.3	5.90
2013	43.3	51.0	51.5	61.6	5.78
2014		51.0	51.6	61.8	5.74

Table 2.33-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000s of t), fishing mortality, and catch (1000s of t) under the assumption that $F=$ the 1996-2000 average in each year 2002-2014, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

Spawning Biomass Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	82.8	82.8	82.8	82.9	0.01
2003	78.6	78.7	78.7	78.8	0.06
2004	76.1	76.6	76.7	77.4	0.39
2005	76.4	78.3	78.5	81.2	1.49
2006	78.6	83.2	83.6	89.9	3.73
2007	80.1	88.5	89.4	100.4	6.51
2008	81.2	92.7	93.9	109.0	8.79
2009	82.1	95.8	96.9	114.9	10.16
2010	83.4	98.0	98.9	117.5	10.82
2011	84.2	99.5	100.1	119.1	11.07
2012	84.9	100.3	101.0	120.0	11.05
2013	85.2	100.2	101.3	120.0	10.89
2014	85.6	100.5	101.5	119.4	10.79

Fishing Mortality Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	0.30	0.30	0.30	0.30	0.000
2003	0.30	0.30	0.30	0.30	0.000
2004	0.30	0.30	0.30	0.30	0.000
2005	0.30	0.30	0.30	0.30	0.000
2006	0.30	0.30	0.30	0.30	0.000
2007	0.30	0.30	0.30	0.30	0.000
2008	0.30	0.30	0.30	0.30	0.000
2009	0.30	0.30	0.30	0.30	0.000
2010	0.30	0.30	0.30	0.30	0.000
2011	0.30	0.30	0.30	0.30	0.000
2012	0.30	0.30	0.30	0.30	0.000
2013	0.30	0.30	0.30	0.30	0.000
2014	0.30	0.30	0.30	0.30	0.000

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	51.2	51.2	51.2	51.2	0.00
2003	48.0	48.0	48.0	48.0	0.01
2004	46.3	46.5	46.5	46.8	0.15
2005	47.6	48.7	48.8	50.3	0.83
2006	49.8	53.3	53.6	58.5	2.76
2007	50.7	57.2	57.9	66.4	5.10
2008	51.0	59.7	60.5	71.9	6.67
2009	51.4	61.3	62.0	74.9	7.38
2010	51.6	62.0	62.9	76.0	7.64
2011	52.2	62.9	63.4	76.4	7.72
2012	52.8	63.0	63.6	76.6	7.61
2013	52.9	63.0	63.7	76.6	7.44
2014	53.0	63.1	63.8	76.9	7.41

Table 2.34-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000s of t), fishing mortality, and catch (1000s of t) under the assumption that $F=0$ in each year 2002-2014, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

Spawning Biomass Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	85.7	85.7	85.7	85.7	0.01
2003	97.1	97.2	97.2	97.3	0.06
2004	108.1	108.6	108.7	109.4	0.39
2005	119.5	121.3	121.5	124.2	1.51
2006	131.0	135.7	136.2	142.8	3.88
2007	141.4	150.6	151.7	164.4	7.29
2008	149.6	163.7	165.2	183.8	10.89
2009	156.3	175.0	176.6	200.9	13.95
2010	162.1	184.4	186.0	214.2	16.21
2011	167.6	191.6	193.2	223.9	17.69
2012	172.3	197.8	199.4	232.2	18.53
2013	175.5	202.4	203.2	236.8	19.02
2014	177.2	204.7	205.9	238.6	19.17

Fishing Mortality Projections Year L90\%CI	Median	Mean	U90\%CI	St. Dev.	
2002	0	0	0	0	0
2003	0	0	0	0	0
2004	0	0	0	0	0
2005	0	0	0	0	0
2006	0	0	0	0	0
2007	0	0	0	0	0
2008	0	0	0	0	0
2009	0	0	0	0	0
2010	0	0	0	0	0
2011	0	0	0	0	0
2012	0	0	0	0	0
2013	0	0	0	0	
2014	0		0	0	

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	0	0	0	0	0
2003	0	0	0	0	0
2004	0	0	0	0	0
2005	0	0	0	0	0
2006	0	0	0	0	0
2007	0	0	0	0	0
2008	0	0	0	0	0
2009	0	0	0	0	0
2010	0	0	0	0	0
2011	0	0	0	0	0
2012	0	0	0	0	0
2013	0	0	0	0	0
2014	0	0	0	0	

Table 2.35-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000s of t), fishing mortality, and catch (1000s of t) under the assumption that $F=F_{\text {OFL }}$ in each year 2002-2014, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

Spawning Biomass Projections L90\%CI	Median	Mean	U90\%CI	St. Dev.	
2002	81.2	81.2	81.2	81.2	0.01
2003	70.3	70.3	70.4	70.5	0.06
2004	66.0	66.4	66.5	67.1	0.36
2005	66.2	67.9	68.1	70.5	1.35
2006	68.2	72.1	72.5	77.9	3.20
2007	69.0	75.7	76.4	84.8	5.10
2008	69.0	77.3	78.1	88.6	6.25
2009	69.2	78.1	78.7	90.5	6.73
2010	69.4	78.0	78.8	90.9	6.86
2011	69.2	78.3	78.7	90.8	6.86
2012	69.6	77.9	78.7	90.4	6.73
2013	69.5	77.8	78.6	89.9	6.60
2014	69.3		78.6	90.1	6.57

Fishing Mortality Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	0.48	0.48	0.48	0.48	0.000
2003	0.41	0.41	0.41	0.41	0.000
2004	0.38	0.38	0.39	0.39	0.002
2005	0.38	0.39	0.39	0.41	0.008
2006	0.40	0.42	0.42	0.46	0.020
2007	0.40	0.44	0.45	0.50	0.028
2008	0.40	0.45	0.45	0.50	0.031
2009	0.40	0.46	0.46	0.50	0.032
2010	0.40	0.46	0.46	0.50	0.032
2011	0.40	0.46	0.46	0.50	0.032
2012	0.40	0.46	0.46	0.50	0.031
2013	0.40	0.46	0.46	0.50	0.031
2014	0.40	0.46	0.46	0.50	0.032

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	77.1	77.1	77.1	77.1	0.01
2003	57.7	57.8	57.8	57.9	0.06
2004	51.2	51.7	51.8	52.6	0.45
2005	53.2	55.8	56.0	59.9	2.10
2006	57.6	65.2	66.0	77.0	6.38
2007	58.7	72.1	73.7	92.5	10.45
2008	58.5	75.0	76.5	97.1	12.08
2009	58.5	76.2	77.1	98.6	12.61
2010	58.6	75.8	77.1	98.2	12.78
2011	57.9	76.2	76.9	97.6	12.73
2012	58.9	75.4	76.7	97.5	12.38
2013	58.5	75.2	76.5	97.0	12.21
2014	58.4	75.2	76.6	97.7	12.33

Table 2.36-Equilibrium reference points and projections for GOA Pacific cod spawning biomass (1000s of t), fishing mortality, and catch (1000s of t) under the assumption that $F=\max F_{A B C}$ in each year 2002-2003 and $F=F_{\text {OFL }}$ thereafter, where future recruitment is drawn from a distribution based on estimated recruitments spawned during the period 1977-2000. See Table 2.29 for symbol definitions.

Equilibrium Reference Points

SPR	Spawning Biomass	Fishing Mortality	Catch
100%	212.5	0	0
40%	85.0	0.41	73.5
35%	74.4	0.50	79.3

Spawning Biomass Projections L90\%CI	Median	Mean	U90\%CI	St. Dev.	
2002	82.0	82.0	82.0	82.0	0.01
2003	74.1	74.2	74.2	74.3	0.06
2004	70.2	70.6	70.7	0.36	
2005	68.2	69.9	70.0	72.3	1.34
2006	69.0	72.9	73.3	78.7	3.19
2007	69.2	75.9	76.6	85.0	5.09
2008	69.0	77.3	78.1	88.6	6.24
2009	69.2	78.0	78.6	90.5	6.73
2010	69.4	78.0	78.7	90.8	6.86
2011	69.2	78.3	78.7	90.7	6.85
2012	69.6	77.9	78.7	90.4	6.73
2013	69.5	77.8	78.6	89.8	6.60
2014	69.3		78.6	90.1	6.57

Fishing Mortality Projections					
Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	0.39	0.39	0.39	0.39	0.000
2003	0.35	0.35	0.35	0.35	0.000
2004	0.41	0.41	0.41	0.42	0.002
2005	0.40	0.41	0.41	0.42	0.008
2006	0.40	0.43	0.43	0.46	0.020
2007	0.40	0.44	0.45	0.50	0.028
2008	0.40	0.45	0.45	0.50	0.031
2009	0.40	0.46	0.46	0.50	0.032
2010	0.40	0.46	0.46	0.50	0.032
2011	0.40	0.46	0.46	0.50	0.032
2012	0.40	0.46	0.46	0.50	0.031
2013	0.40	0.46	0.46	0.50	0.031
2014	0.40	0.46	0.46	0.50	0.032

Catch Projections

Year	L90\%CI	Median	Mean	U90\%CI	St. Dev.
2002	65.2	65.2	65.2	65.2	0.00
2003	52.9	53.0	53.0	53.1	0.05
2004	57.4	58.0	58.1	58.9	0.47
2005	58.0	58.6	58.9	62.8	2.15
2006	58.9	66.2	67.0	78.2	6.40
2007	58.4	72.3	73.9	92.5	10.41
2008	58.4	74.9	76.4	97.0	12.07
2009	58.5	76.2	77.0	98.6	12.61
2010	57.9	75.8	77.0	98.1	12.78
2011	58.9	76.1	76.9	97.6	12.73
2012	58.5	75.4	76.7	97.4	12.38
2013	58.4	75.2	76.5	97.0	12.20
2014		75.2	76.6	97.7	12.33

Table 2.37--Summary of major results for the stock assessment of Pacific cod in the GOA region.

Natural mortality rate:		0.37
Reference fishing mortalities:	$\underline{\text { Rate }}$	$\underline{\text { Value }}$
	$F_{35 \%}$	0.50
	$F_{40 \%}$	0.41
	$\max F_{A B C}$	0.39
Reference spawning biomass:	$\underline{\text { Type }}$	$\underline{\text { Value }}$
	$B_{35 \%}$	$74,400 \mathrm{t}$
	$B_{40 \%}$	$85,000 \mathrm{t}$
	$\underline{\text { Type }}$	$\underline{\text { Value }}$
Projected biomass for 2002:	Age 3+	$428,000 \mathrm{t}$
	Spawning (at max $\left.F_{A B C}\right)$	$82,000 \mathrm{t}$
	$\underline{\text { Units }}$	$\underline{\text { Value }}$
Recommended ABC for 2002:	Fishing Mortality	0.34
	Catch	$57,600 \mathrm{t}$
	$\underline{\text { Units }}$	$\underline{\text { Value }}$
Overfishing level for 2002:	Fishing Mortality	0.48
	Catch	$77,100 \mathrm{t}$

Figure 2.1-Observed fishing locations in the 2000 trawl fisheries for Pacific cod in the GOA.

Figure 2.2-Observed fishing locations in the 2000 longline fisheries for Pacific cod in the GOA.

Figure 2.3-Observed fishing locations in the 2000 pot fisheries for Pacific cod in the GOA.

Figure 2.4-Observed fishing locations in the 2001 trawl fisheries for Pacific cod in the GOA.

Figure 2.5-Observed fishing locations in the 2001 longline fisheries for Pacific cod in the GOA.

Figure 2.6-Observed fishing locations in the 2001 pot fisheries for Pacific cod in the GOA.

Figure 2.7-Three Pacific cod biomass time series estimated by the assessment model, together with the time

series of biomass levels observed by the survey.

Figure 2.8-Pacific cod recruitment at age 3 as estimated by the assessment model.

Figure 2.9-Some aspects of uncertainty surrounding the stock-recruitment relationship. The upper panel shows a 95% confidence ellipse for the estimated parameters of the stock-recruitment relationship, with dashed lines indicating the location of the point estimates. The lower panel shows the data (small squares), the estimated relationship (bold curve), and the 95% confidence interval around the curve (thin curves), with dashed lines indicating the locations of the data means. See text for details and caveats.

Appendix 2A: Approximate Functional Representations of Population Dynamics Used in Synthesis

These equations are similar to those used in Synthesis. Symbols are defined in Table 2.14.

Functions of Length or Age

Weight at length:

$$
w(\lambda)=W_{1} \lambda^{W_{2}}
$$

Proportion mature at length:

$$
p(\lambda)=\frac{1}{1+\exp \left(-P_{1}\left(P_{2}-\lambda\right)\right)}
$$

Length at age:

$$
l(\alpha)=L_{1}+\left(L_{2}-L_{1}\right)\left(\frac{1-\exp \left(-K\left(\alpha-\alpha_{1}\right)\right)}{1-\exp \left(-K\left(\alpha_{2}-\alpha_{1}\right)\right)}\right)
$$

Standard deviation of length at age:

$$
x(\alpha)=X_{1}+\left(X_{2}-X_{1}\right)\left(\frac{l(\alpha)-L_{1}}{L_{2}-L_{1}}\right)
$$

Probability density function describing distribution of length, conditional on age:

$$
h(\lambda \mid \alpha)=\sqrt{\frac{1}{2 \pi}}\left(\frac{1}{x(\alpha)}\right) \exp \left(-\left(\frac{1}{2}\right)\left(\frac{\lambda-l(\alpha)}{x(\alpha)}\right)^{2}\right)
$$

Selectivity at length $\lambda \leq S_{g, 4, e(y \mid g)}$ (ascending limb), conditional on gear type and year:

$$
\begin{aligned}
& s(\lambda \mid g, y)=S_{g, 1, e(y \mid g)}+ \\
& \quad\left(1-S_{g, 1, e(y \mid g)}\right)\left(\frac{\frac{1}{1+\exp \left(-S_{g, 3, e(y \mid g)}\left(\lambda-S_{g, 2, e(y \mid g)}\right)\right.}-\frac{1}{1+\exp \left(-S_{g, 3, e(y \mid g)}\left(\lambda_{\min }-S_{g, 2, e(y \mid g)}\right)\right)}}{\frac{1}{1+\exp \left(-S_{g, 3, e(y \mid g)}\left(S_{g, 4, e(y \mid g)}-S_{g, 2, e(y \mid g)}\right)\right)}-\frac{1+\exp \left(-S_{g, 3, e(y \mid g)}\left(\lambda_{\min }-S_{g, 2, e(y \mid g)}\right)\right)}{10}}\right)
\end{aligned}
$$

Selectivity at length $\lambda \geq S_{g, 4, e(y \mid g)}$ (descending limb), conditional on gear type and year:

$$
\begin{aligned}
& s(\lambda \mid g, y)=1+ \\
& \quad\left(1-S_{g, 5, e(y \mid g)}\right)\left(\frac{\frac{1}{1+\exp \left(-S_{g, 7, e(y \mid g)}\left(\lambda-S_{g, 6, e(y \mid g)}\right)\right)}-\frac{1}{1+\exp \left(-S_{g, 7, e(y \mid g)}\left(S_{g, 4}-S_{g, 6, e(y \mid g)}\right)\right.}}{\frac{1}{1+\exp \left(-S_{g, 7, e(y \mid g)}\left(\lambda_{\max }-S_{g, 6, e(y \mid g)}\right)\right)}-\frac{1}{1+\exp \left(-S_{g, 7, e(y \mid g)}\left(S_{g, 4, e(y \mid g)}-S_{g, 6, e(y \mid g)}\right)\right)}}\right)
\end{aligned}
$$

Numbers at Age

Matrix for converting numbers at length into numbers at age:

$$
z_{a, i, j}=\frac{\int_{l_{\min }(j)}^{l_{m i n}(j+1)} h\left(\lambda \mid a+t_{d u r}(i)\right) \mathrm{d} \lambda}{\int_{\lambda_{\text {min }}}^{\lambda_{\max }} h\left(\lambda \mid a+t_{d u r}(i)\right) \mathrm{d} \lambda}
$$

For all y :

$$
n_{a_{m i n}, y, 1}=R_{y}
$$

For all $a>a_{\text {min }}$:

$$
n_{a, 1,1}=N_{a}
$$

For all $i<i_{\text {max }}$:

$$
n_{a, y, i+1}=n_{a, y, i} \sum_{j=1}^{j_{\text {max }}}\left(z_{a, i, j} \exp \left(\left(-M-\sum_{g=1}^{g_{\text {max }}} F_{g, y, i} s\left(l_{m i d}(j) \mid g, y\right)\right) t_{d u r}(i)\right)\right)
$$

For all $a<a_{\max }$ and all $y<y_{\max }$:

$$
n_{a+1, y+1,1}=n_{a, y, i_{\max }} \sum_{j=1}^{j_{\max }}\left(z_{a, i_{\max }, j} \exp \left(\left(-M-\sum_{g=1}^{g_{\max }} F_{g, y, i_{\max }} s\left(l_{\operatorname{mid}}(j) \mid g, y\right)\right) t_{d u r}\left(i_{\max }\right)\right)\right)
$$

For all $y<y_{\max }$:

$$
\begin{aligned}
& n_{a_{\text {max }}, y+1,1}=n_{a_{\max }-1, y, i_{\max }} \sum_{j=1}^{j_{\max }}\left(z_{a_{\max }-1, i_{\max }, j} \exp \left(\left(-M-\sum_{g=1}^{g_{\text {max }}} F_{g, y, i_{\max }} s\left(l_{\operatorname{mid}}(j) \mid g, y\right)\right) t_{d u r}\left(i_{\max }\right)\right)\right) \\
& +n_{a_{\text {max }}, y, i_{\text {max }}} \sum_{j=1}^{j_{\text {max }}}\left(z_{a_{\text {max }}, i_{\text {max }}, j} \exp \left(\left(-M-\sum_{g=1}^{g_{\text {max }}} F_{g, y, i_{\text {max }}} s\left(l_{\text {mid }}(j) \mid g, y\right)\right) t_{d u r}\left(i_{\text {max }}\right)\right)\right)
\end{aligned}
$$

At time of spawning:

$$
u_{a, y}=n_{a, y, i_{\text {spa }}} \sum_{j=1}^{j_{\text {max }}}\left(z_{a, i_{\text {spa }}, j} \exp \left(\left(-M-\sum_{g=1}^{g_{\text {max }}} F_{g, y, i_{\text {spa }}} s\left(l_{m i d}(j) \mid g, y\right)\right)\left(\tau_{s p a}-\sum_{i=1}^{i_{\text {spa }}^{-1}} t_{d u r}(i)\right)\right)\right)
$$

At time of survey:

$$
v_{a, y}=n_{a, y, i_{s u r}} \sum_{j=1}^{j_{\text {max }}}\left(z_{a, i_{s u r}, j} \exp \left(\left(-M-\sum_{g=1}^{g_{\text {mar }}} F_{g, y, i_{s u r}} s\left(l_{m i d}(j) \mid g, y\right)\right)\left(\tau_{s u r}-\sum_{i=1}^{i_{\text {sur }}-1} t_{d u r}(i)\right)\right)\right)
$$

Biomass

Start-of-year biomass at ages $a>a_{\text {rec }}$:

$$
b_{y}=\sum_{a=a_{r e c}}^{a_{\text {max }}}\left(n_{a, y, 1} \sum_{j=1}^{j_{\text {max }}} z_{a, 1, j} w\left(l_{\text {mid }}(j)\right)\right)
$$

Female spawning biomass:

$$
c_{y}=\frac{1}{2} \sum_{a=a_{\text {min }}}^{a_{\text {max }}}\left(u_{a, y} \sum_{j=1}^{j_{\text {max }}} z_{a, i_{\text {spa }}, j} w\left(l_{\text {mid }}(j)\right) p\left(l_{\text {mid }}(j)\right)\right)
$$

Survey biomass:

$$
d_{y}=Q \sum_{a=a_{\text {min }}}^{a_{\text {max }}}\left(v_{a, y} \sum_{j=1}^{j_{\text {max }}} z_{a, i_{s u r}, j} w\left(l_{m i d}(j)\right) s\left(l_{\text {mid }}(j) \mid g_{s u r}, y\right)\right)
$$

